Loading [MathJax]/jax/element/mml/optable/BasicLatin.js
Research article

Stabilization of wind farm integrated transmission system with input delay

  • In the process of large-scale wind farms integration, the time delay is usually caused by the introduction of wide area control signal, which leads to the unstable operation of integrated transmission system. In order to solve this problem, using the control principle of interconnection and damping assignment passivity-based (IDA-PB), this paper puts forward a control method which applies voltage source converter high voltage direct current (VSC-HVDC) technology to the integrated system of time-delay wind farm and keeps the system running stably. In this method, the framework of time-delay port controlled Hamiltonian (PCH) system is constructed, and the energy shaping of the system is carried out by extending the IDA-PB control principle, thus the feedback controller of the system is designed. Around the problem of time-delay stabilization, the stability criterion is obtained by constructing Lyapunov-Krasovskii functional and introducing free weighting matrices. Finally, the simulation results show that the proposed method can effectively solve the time delay problem of the integrated transmission system and avoid the performance deterioration of the system.

    Citation: Gaoran Wang, Weiwei Sun, Shuqing Wang. Stabilization of wind farm integrated transmission system with input delay[J]. AIMS Mathematics, 2021, 6(9): 9177-9193. doi: 10.3934/math.2021533

    Related Papers:

    [1] Manal Alqhtani, Khaled M. Saad . Numerical solutions of space-fractional diffusion equations via the exponential decay kernel. AIMS Mathematics, 2022, 7(4): 6535-6549. doi: 10.3934/math.2022364
    [2] Shazia Sadiq, Mujeeb ur Rehman . Solution of fractional boundary value problems by ψ-shifted operational matrices. AIMS Mathematics, 2022, 7(4): 6669-6693. doi: 10.3934/math.2022372
    [3] Waleed Mohamed Abd-Elhameed, Youssri Hassan Youssri . Spectral tau solution of the linearized time-fractional KdV-Type equations. AIMS Mathematics, 2022, 7(8): 15138-15158. doi: 10.3934/math.2022830
    [4] Mariam Al-Mazmumy, Maryam Ahmed Alyami, Mona Alsulami, Asrar Saleh Alsulami, Saleh S. Redhwan . An Adomian decomposition method with some orthogonal polynomials to solve nonhomogeneous fractional differential equations (FDEs). AIMS Mathematics, 2024, 9(11): 30548-30571. doi: 10.3934/math.20241475
    [5] Sunyoung Bu . A collocation methods based on the quadratic quadrature technique for fractional differential equations. AIMS Mathematics, 2022, 7(1): 804-820. doi: 10.3934/math.2022048
    [6] Zahra Pirouzeh, Mohammad Hadi Noori Skandari, Kamele Nassiri Pirbazari, Stanford Shateyi . A pseudo-spectral approach for optimal control problems of variable-order fractional integro-differential equations. AIMS Mathematics, 2024, 9(9): 23692-23710. doi: 10.3934/math.20241151
    [7] Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta . A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials. AIMS Mathematics, 2025, 10(1): 1201-1223. doi: 10.3934/math.2025057
    [8] Khalid K. Ali, Mohamed A. Abd El Salam, Mohamed S. Mohamed . Chebyshev fifth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 7759-7780. doi: 10.3934/math.2022436
    [9] Chang Phang, Abdulnasir Isah, Yoke Teng Toh . Poly-Genocchi polynomials and its applications. AIMS Mathematics, 2021, 6(8): 8221-8238. doi: 10.3934/math.2021476
    [10] K. Ali Khalid, Aiman Mukheimer, A. Younis Jihad, Mohamed A. Abd El Salam, Hassen Aydi . Spectral collocation approach with shifted Chebyshev sixth-kind series approximation for generalized space fractional partial differential equations. AIMS Mathematics, 2022, 7(5): 8622-8644. doi: 10.3934/math.2022482
  • In the process of large-scale wind farms integration, the time delay is usually caused by the introduction of wide area control signal, which leads to the unstable operation of integrated transmission system. In order to solve this problem, using the control principle of interconnection and damping assignment passivity-based (IDA-PB), this paper puts forward a control method which applies voltage source converter high voltage direct current (VSC-HVDC) technology to the integrated system of time-delay wind farm and keeps the system running stably. In this method, the framework of time-delay port controlled Hamiltonian (PCH) system is constructed, and the energy shaping of the system is carried out by extending the IDA-PB control principle, thus the feedback controller of the system is designed. Around the problem of time-delay stabilization, the stability criterion is obtained by constructing Lyapunov-Krasovskii functional and introducing free weighting matrices. Finally, the simulation results show that the proposed method can effectively solve the time delay problem of the integrated transmission system and avoid the performance deterioration of the system.



    A wide range of fields rely on Chebyshev polynomials (CPs). Some CPs are famously special polynomials of Jacobi polynomials (JPs). We can extract four kinds of CPs from JPs. They were employed in many applications; see [1,2,3,4]. However, others can be considered special types of generalized ultraspherical polynomials; see [5,6]. Some contributions introduced and utilized other specific kinds of generalized ultraspherical polynomials. In the sequence of papers [7,8,9,10], the authors utilized CPs of the fifth- and sixth-kinds to treat different types of differential equations (DEs). Furthermore, the eighth-kind CPs were utilized in [11,12] to solve other types of DEs.

    Several phenomena that arise in different applied sciences can be better understood by delving into fractional calculus, which studies the integration and derivatives for non-integer orders. When describing important phenomena, fractional differential equations (FDEs) are vital. There are many examples of FDEs applications; see, for instance, [13,14,15]. Because it is usually not feasible to find analytical solutions for these equations, numerical methods are relied upon. Several methods were utilized to tackle various types of FDEs. Here are some techniques used to treat several FDEs: the Adomian decomposition method [16], a finite difference scheme [17], generalized finite difference method [18], Gauss collocation method [19], the inverse Laplace transform [20], the residual power series method [21], multi-step methods [22], Haar wavelet in [23], matrix methods in [24,25,26], collocation methods in [27,28,29,30], Galerkin methods in [31,32,33], and neural networks method in [34].

    Among the essential FDEs are the Rayleigh-Stokes equations. The fractional Rayleigh-Stokes equation is a mathematical model for the motion of fluids with fractional derivatives. This equation is used in many areas of study, such as non-Newtonian fluids, viscoelastic fluids, and fluid dynamics. Many contributions were devoted to investigating the types of Rayleigh-Stokes from a theoretical and numerical perspective. Theoretically, one can consult [35,36,37]. Several numerical approaches were followed to solve these equations. In [38], the authors used a finite difference method for the fractional Rayleigh-Stokes equation (FRSE). In [39], a computational method for two-dimensional FRSE is followed. The authors of [40] used a finite volume element algorithm to treat a nonlinear FRSE. In [41], a numerical method is applied to handle a type of Rayleigh-Stokes problem. Discrete Hahn polynomials treated variable-order two-dimensional FRSE in [42]. The authors of [43] numerically solved the FRSE.

    The significance of spectral approaches in engineering and fluid dynamics has been better understood in recent years, and this trend is being further explored in the applied sciences [44,45,46]. In these techniques, approximations to integral and differential equations are assumed by expanding a variety of polynomials, which are frequently orthogonal. The three spectral techniques used most often are the collocation, tau, and Galerkin methods. The optimal spectral approach to solving the provided equation depends on the nature of the DE and the governing conditions that regulate it. The three spectral methods use distinct trial and test functions. In the Galerkin method, the test and trial functions are chosen so that each basis function member meets the given DE's underlying constraints; see [47,48]. The tau method is not limited to a specific set of basis functions like the Galerkin approach. This is why it solves many types of DEs; see [49]. Among the spectral methods, the collocation method is the most suitable; see, for example, [50,51].

    In his seminal papers [52,53], Shen explored a new idea to apply the Galerkin method. He selected orthogonal combinations of Legendre and first-kind CPs to solve the second- and fourth-order DEs. The Galerkin approach was used to discretize the problems with their governing conditions. To address the even-order DEs, the authors of [54] employed a generalizing combination to solve even-order DEs.

    This paper's main contribution and significance is the development of a new Galerkin approach for treating the FRSE. The suggested technique has the advantage that it yields accurate approximations by picking a small number of the retained modes of the selected Galerkin basis functions.

    The current paper has the following structure. Section 2 presents some preliminaries and essential relations. Section 3 describes a Galerkin approach for treating FRSE. A comprehensive study on the convergence analysis is studied in Section 4. Section 5 is devoted to presenting some illustrative examples to show the efficiency and applicability of our proposed method. Section 6 reports some conclusions.

    This section defines the fractional Caputo derivative and reviews some of its essential properties. Next, we gather significant characteristics of the second-kind CPs. This paper will use some orthogonal combinations of the second-kind CPs to solve the FRSE.

    Definition 2.1. In Caputo's sense, the fractional-order derivative of the function ξ(s) is defined as [55]

    Dαξ(s)=1Γ(pα)s0(st)pα1ξ(p)(t)dt,α>0,s>0, p1<α<p,pN. (2.1)

    For Dα with p1<α<p,pN, the following identities are valid:

    DαC=0,C is a constant, (2.2)
    Dαsp={0,if pN0andp<α,p!Γ(pα+1)spα,if pN0andpα, (2.3)

    where N={1,2,...} and N0={0,1,2,}, and α is the ceiling function.

    The shifted second-kind CPs Uj(t) are orthogonal regarding the weight function ω(t)=t(τt) in the interval [0,τ] and defined as [56,57]

    Uj(t)=jr=0λr,jtr,j0, (2.4)

    where

    λr,j=22r(1)j+r(j+r+1)!τr(2r+1)!(jr)!, (2.5)

    with the following orthogonality relation [56]:

    τ0ω(t)Um(t)Un(t)dt=qm,n, (2.6)

    where

    qm,n=πτ28{1,if  m=n,0,if  mn. (2.7)

    {Um(t)}m0 can be generated by the recursive formula:

    Um(t)=2(2tτ1)Um1(t)Um2(t),U0(t)=1,U1(t)=2tτ1,m2. (2.8)

    The following theorem that presents the derivatives of Um(t) is helpful in what follows.

    Theorem 2.1. [56] For all jn, the following formula is valid:

    DnUj(t)=(4τ)njnp=0 (p+j+n)even(p+1)(n)12(jnp)(12(jnp))!(12(j+n+p+2))1nUp(t). (2.9)

    The following particular formulas of (2.9) give expressions for the first- and second-order derivatives.

    Corollary 2.1. The following derivative formulas are valid:

    DUj(t)=4τj1p=0 (p+j)odd(p+1)Up(t),j1, (2.10)
    D2Uj(t)=4τ2j2p=0 (p+j)even(p+1)(jp)(j+p+2)Up(t),j2. (2.11)

    Proof. Special cases of Theorem 2.1.

    This section is devoted to analyzing a Galerkin approach to solve the following FRSE [38,58]:

    vt(x,t)Dαt[avxx(x,t)]bvxx(x,t)=S(x,t),0<α<1, (3.1)

    governed by the following constraints:

    v(x,0)=v0(x),0<x<, (3.2)
    v(0,t)=v1(t),v(,t)=v2(t),0<tτ, (3.3)

    where a and b are two positive constants and S(x,t) is a known smooth function.

    Remark 3.1. The well-posedness and regularity of the fractional Rayleigh-Stokes problem are discussed in detail in [36].

    We choose the trial functions to be

    φi(x)=x(x)Ui(x). (3.4)

    Due to (2.6), it can be seen that {φi(x)}i0 satisfies the following orthogonality relation:

    0ˆω(x)φi(x)φj(x)dx=ai,j, (3.5)

    where

    ai,j=π28{1,if  i=j,0,if  ij, (3.6)

    and ˆω(x)=1x32(x)32.

    Theorem 3.1. The second-derivative of φi(x) can be expressed explicitly in terms of Uj(x) as

    d2φi(x)dx2=ij=0μj,iUj(x), (3.7)

    where

    μj,i=2{j+1,ifi>j, and(i+j)even,12(i+1)(i+2),ifi=j,0,otherwise. (3.8)

    Proof. Based on the basis functions in (3.4), we can write

    d2φi(x)dx2=2Ui(x)+2(2x)dUi(x)dx+(xx2)d2Ui(x)dx2. (3.9)

    Using Corollary 2.1, Eq (3.9) may be rewritten as

    d2φi(x)dx2=2Ui(x)+8j1p=0 (p+j)odd(p+1)Up(x)16j1p=0 (p+j)odd(p+1)xUp(x)+4j2p=0 (p+j)even(p+1)(jp)(j+p+2)xUp(x)(2)2j2p=0 (p+j)even(p+1)(jp)(j+p+2)x2Up(x). (3.10)

    With the aid of the recurrence relation (2.8), the following recurrence relation for Ui(x) holds:

    xUi(x)=4[Ui+1(x)+2Ui(x)+Ui1(x)]. (3.11)

    Moreover, the last relation enables us to write the following relation:

    x2Ui(x)=24[4Ui+1(x)+6Ui(x)+4Ui1(x)+Ui2(x)+Ui+2(x)]. (3.12)

    If we insert relations (3.11) and (3.12) into relation (3.10), and perform some computations, then we get

    d2φi(x)dx2=ij=0μj,iUj(x), (3.13)

    where

    μj,i=2{j+1,if  i>j, and (i+j)even,12(i+1)(i+2),if i=j,0,otherwise. (3.14)

    This completes the proof.

    Consider the FRSE (3.1), governed by the conditions: v(0,t)=v(,t)=0.

    Now, consider the following spaces:

    PM(Ω)=span{φi(x)Uj(t):i,j=0,1,,M},XM(Ω)={v(x,t)PM(Ω):v(0,t)=v(,t)=0}, (3.15)

    where Ω=(0,)×(0,τ].

    The approximate solution ˆv(x,t)XM(Ω) may be expressed as

    ˆv(x,t)=Mi=0Mj=0cijφi(x)Uj(t)=φCUT, (3.16)

    where

    φ=[φ0(x),φ1(x),,φM(x)],
    U=[U0(t),U1(t),,UM(t)],

    and C=(cij)0i,jM is the unknown matrix to be determined whose order is (M+1)×(M+1).

    The residual R(x,t) of Eq (3.1) may be calculated to give

    R(x,t)=ˆvt(x,t)Dαt[aˆvxx(x,t)]bˆvxx(x,t)S(x,t). (3.17)

    The philosophy in applying the Galerkin method is to find ˆv(x,t)XM(Ω), such that

    (R(x,t),φr(x)Us(t))ˉω(x,t)=0,0rM,0sM1, (3.18)

    where ˉω(x,t)=ˆω(x)ω(t). The last equation may be rewritten as

    Mi=0Mj=0cij(φi(x),φr(x))ˆω(x)(dUj(t)dt,Us(t))ω(t)aMi=0Mj=0cij(d2φi(x)dx2,φr(x))ˆω(x)(DαtUj(t),Us(t))ω(t)bMi=0Mj=0cij(d2φi(x)dx2,φr(x))ˆω(x)(Uj(t),Us(t))ω(t)=(S(x,t),φr(x)Us(t))ˉω(x,t). (3.19)

    In matrix form, Eq (3.19) can be written as

    ATCBaHTCKbHTCQ=G, (3.20)

    where

    G=(gr,s)(M+1)×M,grs=(S(x,t),φr(x)Us(t))ˉω(x,t), (3.21)
    A=(ai,r)(M+1)×(M+1),ai,r=(φi(x),φr(x))ˆω(x), (3.22)
    B=(bj,s)(M+1)×M,bj,s=(dUj(t)dt,Us(t))ω(t), (3.23)
    H=(hir)(M+1)×(M+1),hi,r=(d2φi(x)dx2,φr(x))ˆω(x), (3.24)
    K=(kj,s)(M+1)×M,kj,s=(DαtUj(t),Us(t))ω(t), (3.25)
    Q=(qj,s)(M+1)×M,qj,s=(Uj(t),Us(t))ω(t). (3.26)

    Moreover, (3.2) implies that

    Mi=0Mj=0cijai,rUj(0)=(v(x,0),φr(x))ˆω(x),0rM. (3.27)

    Now, Eq (3.20) along with (3.27) constitutes a system of algebraic equations of order (M+1)2, that may be solved using a suitable numerical procedure.

    Now, the derivation of the formulas of the entries of the matrices A, B, H, K and Q are given in the following theorem.

    Theorem 3.2. The following definite integral formulas are valid:

    (a)0ˆω(x)φi(x)φr(x)dx=ai,r,(b)0ˆω(x)d2φi(x)dx2φr(x)dx=hi,r,(c)τ0ω(t)Uj(t)Us(t)dt=qj,s,(d)τ0ω(t)dUj(t)dtUs(t)dt=bj,s,(e)τ0ω(t)[DαtUj(t)]Us(t)dt=kj,s, (3.28)

    where qj,s and ai,r are given respectively in Eqs (2.6) and (3.6). Also, we have

    hi,r=ij=0μj,iγj,r, (3.29)
    bj,s=πτ2j1p=0 (p+j+1)even(p+1)δp,s, (3.30)
    γj,r={π(r+1),ifjr and(r+j)even,π(j+1),ifj<r and(r+j)even,0,otherwise, (3.31)
    δp,s={1,ifp=s,0,ifps, (3.32)

    and

    kj,s=jk=1π4k1(s+1)k!τ2α(1)j+k+s(j+k+1)!Γ(kα+32)(2k+1)!(jk)!Γ(kα+1)× 3˜F2(s,s+2,α+k+3232,α+k+3|1), (3.33)

    where  3˜F2 is the regularized hypergeometric function [59].

    Proof. To find the elements hi,r: Using Theorem 3.1, one has

    hi,r=0ˆω(x)d2φi(x)dx2φr(x)dx=ij=0μj,i0ˆω(x)Uj(x)φr(x)dx. (3.34)

    Now, 0ˆω(x)Uj(x)φr(x)dx can be calculated to give the following result:

    0ˆω(x)Uj(x)φr(x)dx=γj,r, (3.35)

    and therefore, we get the following desired result:

    hi,r=ij=0μj,iγj,r. (3.36)

    To find the elements bj,s: Formula (2.10) along with the orthogonality relation (2.6) helps us to write

    bj,s=τ0ω(t)dUj(t)dtUs(t)dt=πτ2j1p=0 (p+j)odd(p+1)δp,s. (3.37)

    To find kj,s: Using property (2.3) together with (2.4), one can write

    kj,s=τ0ω(t)[DαtUj(t)]Us(t)dt=jk=122kk!(1)j+k(j+k+1)!(2k+1)!τk(jk)!Γ(kα+1)τ0Us(t)tkαω(t)dt=jk=122kk!(1)j+k(j+k+1)!(2k+1)!(jk)!(kα)!sn=0π22n1τ2α(1)n+sΓ(n+s+2)Γ(k+nα+32)(2n+1)!(sn)!Γ(k+nα+3). (3.38)

    If we note the following identity:

    sn=0π22n1τ2α(1)n+s(n+s+1)!Γ(k+nα+32)(2n+1)!(sn)!Γ(k+nα+3)=14π(1)s(s+1)τα+2 Γ(kα+32)3˜F2(s,s+2,α+k+3232,α+k+3|1), (3.39)

    then, we get

    kj,s=jk=1π4k1(s+1)k!τ2α(1)j+k+sΓ(j+k+2)Γ(kα+32)Γ(2k+2)(jk)!Γ(kα+1)× 3˜F2(s,s+2,α+k+3232,α+k+3|1). (3.40)

    Theorem 3.2 is now proved.

    Remark 3.2. The following algorithm shows our proposed Galerkin technique, which outlines the necessary steps to get the approximate solutions.

    Algorithm 1 Coding algorithm for the proposed technique
    Input a,b,,τ,α,v0(x), and S(x,t).
    Step 1. Assume an approximate solution ˆv(x,t) as in (3.16).
    Step 2. Apply Galerkin method to obtain the system in (3.20) and (3.27).
    Step 4. Use Theorem 3.2 to get the elements of matrices A,B,H,K and Q.
    Step 5. Use NDsolve command to solve the system in (3.20) and (3.27) to get cij.
    Output ˆv(x,t).

    Remark 3.3. Based on the following substitution:

    v(x,t):=y(x,t)+(1x)v(0,t)+xv(,t), (3.41)

    the FRSE (3.1) with non-homogeneous boundary conditions will convert to homogeneous ones y(0,t)=y(,t)=0.

    In this section, we study the error bound for the two cases corresponding to the 1-D and 2-D Chebyshev-weighted Sobolev spaces.

    Assume the following Chebyshev-weighted Sobolev spaces:

    Hα,mω(t)(I1)={u:Dα+ktuL2ω(t)(I1),0km}, (4.1)
    Ymˆω(x)(I2)={u:u(0)=u()=0 and DkxuL2ˆω(x)(I2),0km}, (4.2)

    where I1=(0,τ) and I2=(0,) are quipped with the inner product, norm, and semi-norm

    (u,v)Hα,mω(t)=mk=0(Dα+ktu,Dα+ktv)L2ω(t),||u||2Hα,mω(t)=(u,u)Hα,mω(t),|u|Hα,mω(t)=||Dα+mtu||L2ω(t),(u,v)Ymˆω(x)=mk=0(Dkxu,Dkxv)L2ˆω(x),||u||2Ymˆω(x)=(u,u)Ymˆω(x),|u|Ymˆω(x)=||Dmxu||L2ˆω(x), (4.3)

    where 0<α<1 and mN.

    Also, assume the following two-dimensional Chebyshev-weighted Sobolev space:

    Hr,sˉω(x,t)(Ω)={u:u(0,t)=u(,t)=0 and α+p+quxptα+qL2ˉω(x,t)(Ω),rp0,sq0}, (4.4)

    equipped with the norm and semi-norm

    ||u||Hr,sˉω(x,t)=(rp=0sq=0||α+p+quxptα+q||2L2ˉω(x,t))12,|u|Hr,sˉω(x,t)=||α+r+suxrtα+s||L2ˉω(x,t), (4.5)

    where 0<α<1 and r,sN.

    Lemma 4.1. [60] For nN, n+r>1, and n+s>1, where r,sR are any constants, we have

    Γ(n+r)Γ(n+s)or,snnrs, (4.6)

    where

    or,sn=exp(rs2(n+s1)+112(n+r1)+(rs)2n). (4.7)

    Theorem 4.1. Suppose 0<α<1, and ˉη(t)=Mj=0ˆηjUj(t) is the approximate solution of η(t)Hα,mω(t)(I1). Then, for 0kmM+1, we get

    ||Dα+kt(η(t)ˆη(t))||L2ω(t)τmkM54(mk)|η(t)|2Hα,mω(t), (4.8)

    where AB indicates the existence of a constant ν such that AνB.

    Proof. The definitions of η(t) and ˆη(t) allow us to have

    ||Dα+kt(η(t)ˆη(t))||2L2ω(t)=n=M+1|ˆηn|2||Dα+ktUn(t)||2L2ω(t)=n=M+1|ˆηn|2||Dα+ktUn(t)||2L2ω(t)||Dα+mtUn(t)||2L2ω(t)||Dα+mtUn(t)||2L2ω(t)||Dα+ktUM+1(t)||2L2ω(t)||Dα+mtUM+1(t)||2L2ω(t)|η(t)|2Hα,mω(t). (4.9)

    To estimate the factor ||Dα+ktUM+1(t)||2L2ω(t)||Dα+mtUM+1(t)||2L2ω(t), we first find ||Dα+ktUM+1(t)||2L2ω(t).

    ||Dα+ktUM+1(t)||2L2ω(t)=τ0Dα+ktUM+1(t)Dα+ktUM+1(t)ω(t)dt. (4.10)

    Equation (2.3) along with (2.4) allows us to write

    Dα+ktUM+1(t)=M+1r=k+1λr,M+1r!Γ(rkα+1)trkα, (4.11)

    and accordingly, we have

    ||Dα+ktUM+1(t)||2L2ω(t)=M+1r=k+1λ2r,M+1(r!)2Γ2(rkα+1)τ0t2(rkα)+12(τt)12dt=M+1r=k+1λ2r,M+1τ2(rkα+1)π(r!)2Γ(2(rkα)+32)2Γ2(rkα+1)Γ(2(rkα)+3). (4.12)

    The following inequality can be obtained after applying the Stirling formula [44]:

    Γ2(r+1)Γ(2(rkα)+32)Γ2(rkα+1)Γ(2(rkα)+3)r2(k+α)(rk)32. (4.13)

    By virtue of the Stirling formula [44] and Lemma 4.1, ||Dα+ktUM+1(t)||2L2ω(t) can be written as

    ||Dα+ktUM+1(t)||2L2ω(t)λτ2(Mkα+2)(M+1)2(k+α)(Mk+1)32M+1r=k+11=λτ2(Mkα+2)(M+1)2(k+α)(Mk+1)12=λτ2(Mkα+2)(Γ(M+2)Γ(M+1))2(k+α)(Γ(Mk+2)Γ(Mk+1))12τ2(Mkα+2)M2(k+α)(Mk)12, (4.14)

    where λ=max.

    Similarly, we have

    \begin{equation} ||D_{t}^{\alpha+m}\,\mathbf{U}^{*}_{\mathcal{M}+1}(t)||^{2}_{L^{2}_{\omega(t)}}\lesssim \tau^{2\,(\mathcal{M}-m-\alpha+2)}\, \mathcal{M}^{2\,(m+\alpha)}\,(\mathcal{M}-m)^{-\frac{1}{2}}, \end{equation} (4.15)

    and accordingly, we have

    \begin{equation} \begin{split} \frac{||D_{t}^{\alpha+k}\,\mathbf{U}^{*}_{\mathcal{M}+1}(t)||^{2}_{L^{2}_{\omega(t)}}}{||D_{t}^{\alpha+m}\,\mathbf{U}^{*}_{\mathcal{M}+1}(t)||_{L^{2}_{\omega(t)}}} &\lesssim \tau^{2\,(m-k)}\,\mathcal{M}^{2\,(k-m)}\,\left(\frac{\mathcal{M}-k}{\mathcal{M}-m}\right)^{-\frac{1}{2}}\\& = \tau^{2\,(m-k)}\,\mathcal{M}^{-2\,(m-k)}\,\left(\frac{\Gamma(\mathcal{M}-k+1)}{\Gamma(\mathcal{M}-m+1)}\right)^{-\frac{1}{2}}\\& \lesssim \tau^{2\,(m-k)}\,\mathcal{M}^{\frac{-5}{2}(m-k)}. \end{split} \end{equation} (4.16)

    Inserting Eq (4.16) into Eq (4.9), one gets

    \begin{equation} ||D_{t}^{\alpha+k}\,(\eta(t)-\hat{\eta}(t))||^{2}_{L^{2}_\omega(t)}\lesssim \tau^{2\,(m-k)}\,\mathcal{M}^{\frac{-5}{2}(m-k)}\,|\eta(t)|^{2}_{\mathbf{H}^{\alpha,m}_{\omega(t)}}. \end{equation} (4.17)

    Therefore, we get the desired result.

    Theorem 4.2. Suppose \bar{\zeta}(x) = \sum_{i = 0}^{\mathcal{M}} \hat{\zeta}_{i}\, \varphi_i(x), is the approximate solution of \zeta_{\mathcal{M}}(x)\in\mathbf{Y}^{m}_{\hat{\omega}(x)}(I_{2}). Then, for 0\leq k\leq m\leq \mathcal{M}+1, we get

    \begin{equation} ||D_{x}^{k}\,(\zeta(x)-\bar{\zeta}(x))||_{L^{2}_{\hat{\omega}(x)}}\lesssim \ell^{m-k}\,\mathcal{M}^{\frac{-1}{4}\,(m-k)}\,|\zeta(x)|^{2}_{\mathbf{Y}^{m}_{\hat{\omega}(x)}}. \end{equation} (4.18)

    Proof. At first, based on the definitions of \zeta(x) and \bar{\zeta}(x), one has

    \begin{equation} \begin{split} ||D_{x}^{k}\,(\zeta(x)-\bar{\zeta}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}& = \sum\limits_{n = \mathcal{M}+1}^{\infty} |\hat{\zeta}_{n}|^{2}\,||D_{x}^{k}\,\varphi_n(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}\\& = \sum\limits_{n = \mathcal{M}+1}^{\infty} |\hat{\zeta}_{n}|^{2}\,\frac{||D_{x}^{k}\,\varphi_{n}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}}{||D_{x}^{m}\,\varphi_{n}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}}\,||D_{x}^{m}\,\varphi_{n}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}\\& \leq \frac{||D_{x}^{k}\,\varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}}{||D_{x}^{m}\,\varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}}\,|\zeta(x)|^{2}_{\mathbf{Y}^{m}_{\hat{\omega}(x)}}. \end{split} \end{equation} (4.19)

    Now, we have

    \begin{equation} \begin{split} D_{x}^{k}\,\varphi_{\mathcal{M}+1}(x) = \sum _{r = k}^{\mathcal{M}+1} \ell\,\lambda_{r,\mathcal{M}+1} \frac{\Gamma(r+2)}{\Gamma(r-k+2)}\,x^{r-k+1}-\sum _{r = k}^{\mathcal{M}+1} \lambda_{r,\mathcal{M}+1} \frac{\Gamma(r+3)}{\Gamma(r-k+3)}\,x^{r-k+2}, \end{split} \end{equation} (4.20)

    and therefore, ||D_{x}^{k}\, \varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}} can be written as

    \begin{equation} \begin{split} ||D_{x}^{k}\,\varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}} = & -\sum _{r = k}^{\mathcal{M}+1} \ell^{2(r-k)}\,\lambda^{2}_{r,\mathcal{M}+1} \frac{2\,\sqrt{\pi}\,\Gamma^{2}(r+2)\,\Gamma(2(r-k+1)-\frac{1}{2})}{\Gamma^{2}(r-k+2)\,\Gamma(2(r-k+1)-1)}\\& +\sum _{r = k}^{\mathcal{M}+1} \ell^{2(r-k+1)}\,\lambda^{2}_{r,\mathcal{M}+1} \frac{2\,\sqrt{\pi}\,\Gamma^{2}(r+3)\,\Gamma(2(r-k+2)-\frac{1}{2})}{\Gamma^{2}(r-k+3)\,\Gamma(2(r-k+2)-1)}. \end{split} \end{equation} (4.21)

    The application of the Stirling formula [44] leads to

    \begin{equation} \begin{split} &\frac{\Gamma^{2}(r+2)\,\Gamma(2(r-k+1)-\frac{1}{2})}{\Gamma^{2}(r-k+2)\,\Gamma(2(r-k+1)-1)} \lesssim r^{2\,k}\,(r-k)^{\frac{1}{2}},\\& \frac{\Gamma^{2}(r+3)\,\Gamma(2(r-k+2)-\frac{1}{2})}{\Gamma^{2}(r-k+3)\,\Gamma(2(r-k+2)-1)}\lesssim r^{2\,k}\,(r-k)^{\frac{1}{2}}, \end{split} \end{equation} (4.22)

    and hence, we get

    \begin{equation} ||D_{x}^{k}\,\varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}\lesssim \ell^{2(r-k+1)}\,\mathcal{M}^{2\,k}\,(\mathcal{M}-k)^{\frac{3}{2}}. \end{equation} (4.23)

    Finally, we get the following estimation:

    \begin{equation} \begin{split} \frac{||D_{x}^{k}\,\varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}}{||D_{x}^{m}\,\varphi_{\mathcal{M}+1}(x)||^{2}_{L^{2}_{\hat{\omega}(x)}}} &\lesssim \ell^{2\,(m-k)}\,\mathcal{M}^{\frac{-1}{2}\,(m-k)}. \end{split} \end{equation} (4.24)

    At the end, we get

    \begin{equation} ||D_{x}^{k}\,(\zeta(x)-\bar{\zeta}(x))||_{L^{2}_{\hat{\omega}(x)}}\lesssim \ell^{m-k}\,\mathcal{M}^{\frac{-1}{4}\,(m-k)}\,|\zeta(x)|^{2}_{\mathbf{Y}^{m}_{\hat{\omega}(x)}}. \end{equation} (4.25)

    Theorem 4.3. Given the following assumptions: \alpha = 0, 0\leq p\leq r\leq \mathcal{M}+1, and the approximation to v(x, t)\in{\mathbf{H}^{r, s}_{\ddot{\omega}}}(\Omega) is \hat{v}(x, t) . As a result, the estimation that follows is applicable:

    \begin{equation} \left|\left|\frac{\partial^{p}}{\partial\,x^{p}}\,(v(x,t)-\hat{v}(x,t))\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\lesssim \ell^{r-p}\,\mathcal{M}^{\frac{-1}{4}\,(r-p)}\,|v(x,t)|_{\mathbf{H}^{r,0}_{\bar{\omega}(x,t)}}. \end{equation} (4.26)

    Proof. According to the definitions of v(x, t) and \hat{v}(x, t), one has

    \begin{equation} \begin{split} v(x,t)-\hat{v}(x,t)& = \sum\limits_{i = 0}^{\mathcal{M}}\sum\limits_{j = \mathcal{M}+1}^{\infty}c_{ij}\,\varphi_i(x)\,\mathbf{U}^{*}_{j}(t)+\sum\limits_{i = \mathcal{M}+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\,\varphi_i(x)\,\mathbf{U}^{*}_{j}(t)\\& \leq\sum\limits_{i = 0}^{\mathcal{M}}\sum\limits_{j = 0}^{\infty}c_{ij}\,\varphi_i(x)\,\mathbf{U}^{*}_{j}(t)+\sum\limits_{i = \mathcal{M}+1}^{\infty}\sum\limits_{j = 0}^{\infty}c_{ij}\,\varphi_i(x)\,\mathbf{U}^{*}_{j}(t). \end{split} \end{equation} (4.27)

    Now, applying the same procedures as in Theorem 4.2, we obtain

    \begin{equation} \left|\left|\frac{\partial^{p}}{\partial\,x^{p}}\,(v(x,t)-\hat{v}(x,t))\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\lesssim \ell^{r-p}\,\mathcal{M}^{\frac{-1}{4}\,(r-p)}\,|v(x,t)|_{\mathbf{H}^{r,0}_{\bar{\omega}(x,t)}}. \end{equation} (4.28)

    Theorem 4.4. Given the following assumptions: \alpha = 0, 0\leq q\leq s\leq \mathcal{M}+1, and the approximation to v(x, t)\in{\mathbf{H}^{r, s}_{\ddot{\omega}}}(\Omega) is \hat{v}(x, t) . As a result, the estimation that follows is applicable:

    \begin{equation} \left|\left|\frac{\partial^{q}}{\partial\,t^{q}}\,(v(x,t)-\hat{v}(x,t))\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\lesssim \tau^{s-q}\,\mathcal{M}^{\frac{-5}{4}\,(s-q)}\,|v(x,t)|_{\mathbf{H}^{0,s}_{\bar{\omega}(x,t)}}. \end{equation} (4.29)

    Theorem 4.5. Let \hat{v}(x, t) be the approximate solution of v(x, t)\in{\mathbf{H}^{r, s}_{\bar{\omega}(x, t)}}(\Omega) , and assume that 0 < \alpha < 1 . Consequently, for 0\leq p\leq r\leq \mathcal{M}+1, and 0\leq q\leq s\leq \mathcal{M}+1, we obtain

    \begin{equation} \left|\left|\frac{\partial^{\alpha+q}}{\partial\,t^{\alpha+q}}\,\left[\frac{\partial^{p}}{\partial\,x^{p}}(v(x,t)-\hat{v}(x,t))\right]\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\lesssim \tau^{s-q}\,\ell^{r-p}\,\mathcal{M}^{\frac{-1}{4}\,[5\,(s-q)+r-p)]}\,|v(x,t)|_{\mathbf{H}^{r,0}_{\bar{\omega}(x,t)}}. \end{equation} (4.30)

    Proof. The proofs of Theorems 4.4 and 4.5 are similar to the proof of Theorem 4.3.

    Theorem 4.6. Let \mathbf{\mathcal{R}}(x, t) be the residual of Eq (3.1), then \left|\left|\mathbf{\mathcal{R}}(x, t)\right|\right|_{L^{2}_{\bar{\omega}(x, t)}}\rightarrow 0 as \mathcal{M}\rightarrow \infty .

    Proof. \left|\left|\mathbf{\mathcal{R}}(x, t)\right|\right|_{L^{2}_{\bar{\omega}(x, t)}} of Eq (3.28) can be written as

    \begin{equation} \begin{split} \left|\left|\mathbf{\mathcal{R}}(x,t)\right|\right|_{L^{2}_{\bar{\omega}(x,t)}} = &\left|\left|\hat{v}_{t}(x,t)-{D_{t}^{\alpha}}\,[\,a\,\hat{v}_{xx}(x,t)\,]-b\,\hat{v}_{xx}(x,t)-\mathcal{S}(x,t)\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\\ \leq& \left|\left|\frac{\partial}{\partial\,t}\,(v(x,t)-\hat{v}(x,t))\right|\right|_{L^{2}_{\bar{\omega}(x,t)}} -a\,\left|\left|\frac{\partial^{\alpha}}{\partial\,t^{\alpha}}\,\left[\frac{\partial^{2}}{\partial\,x^{2}}(v(x,t)-\hat{v}(x,t))\right]\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\\& -b\,\left|\left|\frac{\partial^{2}}{\partial\,x^{2}}\,(v(x,t)-\hat{v}(x,t))\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}. \end{split} \end{equation} (4.31)

    Now, the application of Theorems 4.3–4.5 leads to

    \begin{equation} \begin{split} \left|\left|\mathbf{\mathcal{R}}(x,t)\right|\right|_{L^{2}_{\bar{\omega}(x,t)}}\lesssim& \tau^{s-1}\,\mathcal{M}^{\frac{-5}{4}\,(s-1)}\,|v(x,t)|_{\mathbf{H}^{0,s}_{\bar{\omega}(x,t)}}-a\, \tau^{s}\,\ell^{r-2}\,\mathcal{M}^{\frac{-1}{4}\,[5\,s+r-2)]}\,|v(x,t)|_{\mathbf{H}^{r,0}_{\bar{\omega}(x,t)}}\\&-b\,\ell^{r-2}\,\mathcal{M}^{\frac{-1}{4}\,(r-2)}\,|v(x,t)|_{\mathbf{H}^{r,0}_{\bar{\omega}(x,t)}}. \end{split} \end{equation} (4.32)

    Therefore, it is clear that \left|\left|\mathbf{\mathcal{R}}(x, t)\right|\right|_{L^{2}_{\bar{\omega}(x, t)}}\rightarrow 0 as \mathcal{M}\rightarrow \infty.

    This section will compare our shifted second-kind Galerkin method (SSKGM) with other methods. Three test problems will be presented in this regard.

    Example 5.1. [38] Consider the following equation:

    \begin{equation} v_{t}(x,t)-{D_{t}^{\alpha}}\,[\,v_{xx}(x,t)\,]-v_{x}(x,t) = \mathcal{S}(x,t), \quad 0 < \alpha < 1, \end{equation} (5.1)

    where

    \begin{equation} \mathcal{S}(x,t) = 2\, t\, x\, (x-\ell ) \left[\left(5\, x^2-5\, x\, \ell +\ell ^2\right) \left(\frac{6 }{\Gamma (3-\alpha )}\,t^{1-\alpha }+3\, t\right)-x^2\, (x-\ell )^2\right], \end{equation} (5.2)

    governed by (3.2) and (3.3). Problem (5.1) has the exact solution: u(x, t) = x^3\, (\ell -x)^3\, t^2.

    In Table 1, we compare the L_{2} errors of the SSKGM with that obtained in [38] at \ell = \tau = 1 . Table 2 reports the amount of time for which a central processing unit (CPU) was used for obtaining results in Table 1. These tables show the high accuracy of our method. Figure 1 illustrates the absolute errors (AEs) at different values of \alpha at \mathcal{M} = 4 when \ell = \tau = 1 . Figure 2 illustrates the AEs at different values of \alpha at \mathcal{M} = 4 when \ell = 3, and \tau = 2 . Figure 3 shows the AEs at different \alpha at \mathcal{M} = 4 when \ell = 10, and \tau = 5 .

    Table 1.  Comparison of the L_{2} errors for Example 5.1.
    Our method Method in [38]
    \alpha \mathcal{M}=4 h= \frac{1}{5000}, T= \frac{1}{128} T= \frac{1}{5000}, h= \frac{1}{128}
    0.1 1.22946\times10^{-16} 1.1552\times10^{-6} 1.4408\times10^{-6}
    0.5 2.40485\times10^{-16} 1.0805\times10^{-6} 1.4007\times10^{-6}
    0.9 8.83875\times10^{-17} 8.1511\times10^{-7} 1.3682\times10^{-6}

     | Show Table
    DownLoad: CSV
    Table 2.  CPU time used for Table 1.
    CPU time of our method CPU time of method in [38]
    \alpha \mathcal{M}=4 h= \frac{1}{5000}, T= \frac{1}{128} T= \frac{1}{5000}, h= \frac{1}{128}
    0.1 30.891 16.828 67.243
    0.5 35.953 16.733 67.470
    0.9 31.078 16.672 67.006

     | Show Table
    DownLoad: CSV
    Figure 1.  The AEs at different values of \alpha for Example 5.1.
    Figure 2.  The AEs at different values of \alpha for Example 5.1.
    Figure 3.  The AEs at different values of \alpha for Example 5.1.

    Example 5.2. [38] Consider the following equation:

    \begin{equation} v_{t}(x,t)-{D_{t}^{\alpha}}\,[\,v_{x}(x,t)\,]-v_{x}(x,t) = \mathcal{S}(x,t) , \quad 0 < \alpha < 1, \end{equation} (5.3)

    where

    \mathcal{S}(x,t) = u^2+\sin (\pi\, x) \left[\frac{2 \,\pi ^2 }{\Gamma (3-\alpha )}\,t^{2-\alpha }+\pi ^2\, t^2+2\, t\right]-t^4 \sin ^2(\pi \, x),

    governed by (3.2) and (3.3). Problem (5.3) has the exact solution: u(x, t) = t^2\, \sin (\pi \, x).

    Table 3 compares the L_{2} errors of the SSKGM with those obtained by the method in [38] at \ell = \tau = 1 . This table shows that our results are more accurate. Table 4 reports the CPU time used for obtaining results in Table 3. Moreover, Figure 4 sketches the AEs at different values \mathcal{M} when \alpha = 0.7 , and \ell = \tau = 1 . Table 5 presents the maximum AEs at \alpha = 0.8 and \mathcal{M} = 8 when \ell = \tau = 1 . Figure 5 sketches the AEs at different \alpha for \mathcal{M} = 10, \ell = 3 and \tau = 1 .

    Table 3.  Comparison of the L_{2} errors for Example 5.2.
    Our method Method in [38]
    \alpha \mathcal{M}=8 h= \frac{1}{5000}, T= \frac{1}{128} T= \frac{1}{5000}, h= \frac{1}{128}
    0.1 4.97952\times10^{-10} 9.1909\times10^{-5} 5.1027\times10^{-5}
    0.5 5.85998\times10^{-10} 8.4317\times10^{-5} 4.4651\times10^{-5}
    0.9 4.62473\times10^{-10} 6.2864\times10^{-5} 4.0543\times10^{-5}

     | Show Table
    DownLoad: CSV
    Table 4.  CPU time used for Table 3.
    CPU time of our method CPU time of method in [38]
    \alpha \mathcal{M}=8 h= \frac{1}{5000}, T= \frac{1}{128} T= \frac{1}{5000}, h= \frac{1}{128}
    0.1 119.061 20.095 70.952
    0.5 118.001 19.991 71.117
    0.9 121.36 19.908 71.153

     | Show Table
    DownLoad: CSV
    Figure 4.  The AEs at different values of \mathcal{M} when \alpha = 0.7 for Example 5.2.
    Table 5.  The maximum AEs of Example 5.2 at \alpha = 0.8, \, \mathcal{M} = 8 .
    x t=0.2 t=0.4 t=0.6 t=0.8
    0.1 7.82271\times10^{-12} 9.69765\times10^{-11} 1.48667\times10^{-10} 2.65085\times10^{-10}
    0.2 4.24386\times10^{-11} 6.82703\times10^{-11} 2.34553\times10^{-10} 5.1182\times10^{-10}
    0.3 4.48637\times10^{-11} 6.28317\times10^{-11} 2.69028\times10^{-10} 4.28024\times10^{-10}
    0.4 2.57132\times10^{-11} 5.02944\times10^{-11} 1.45928\times10^{-10} 3.26067\times10^{-10}
    0.5 6.59974\times10^{-11} 1.22092\times10^{-11} 4.38141\times10^{-10} 7.16844\times10^{-10}
    0.6 1.11684\times10^{-11} 1.04731\times10^{-10} 1.78963\times10^{-10} 2.80989\times10^{-10}
    0.7 4.19906\times10^{-11} 7.33454\times10^{-11} 2.70484\times10^{-10} 4.25895\times10^{-10}
    0.8 2.97515\times10^{-11} 1.16961\times10^{-10} 2.70621\times10^{-10} 4.63116\times10^{-10}
    0.9 1.0014\times10^{-11} 8.68311\times10^{-11} 1.43244\times10^{-10} 2.71797\times10^{-10}

     | Show Table
    DownLoad: CSV
    Figure 5.  The AEs at different values of \alpha when \mathcal{M} = 10 for Example 5.2.

    Example 5.3. Consider the following equation:

    \begin{equation} v_{t}(x,t)-{D_{t}^{\alpha}}\,[\,v_{x}(x,t)\,]-v_{x}(x,t) = \mathcal{S}(x,t) , \quad 0 < \alpha < 1, \end{equation} (5.4)

    where

    \mathcal{S}(x,t) = \sin (2\, \pi\, x) \left(\frac{4 \,\pi ^2\, \Gamma (5)}{\Gamma (5-\alpha )}\, t^{4-\alpha }+4\, \pi ^2 \,t^4+4\, t^3\right),

    governed by (3.2) and (3.3). The exact solution of this problem is: u(x, t) = t^4\, \sin (2\, \pi\, x).

    Table 6 presents the maximum AEs at \alpha = 0.5 and \mathcal{M} = 9 when \ell = \tau = 1 . Figure 6 sketches the AEs at different \mathcal{M} and \alpha = 0.9 when \ell = \tau = 1 .

    Table 6.  The maximum AEs of Example 5.3 at \alpha = 0.5, \, \mathcal{M} = 9 .
    x t=0.2 t=0.4 t=0.6 t=0.8
    0.1 4.36556\times10^{-8} 6.4783\times10^{-8} 4.6896\times10^{-8} 3.07364\times10^{-8}
    0.2 3.41326\times10^{-8} 5.29923\times10^{-8} 2.18292\times10^{-8} 6.69242\times10^{-8}
    0.3 4.74795\times10^{-8} 5.70081\times10^{-5} 1.14413\times10^{-7} 1.69409\times10^{-7}
    0.4 8.64528\times10^{-8} 1.11593\times10^{-7} 1.6302\times10^{-7} 1.69931\times10^{-7}
    0.5 2.03915\times10^{-8} 2.95873\times10^{-8} 2.78558\times10^{-8} 2.04027\times10^{-11}
    0.6 8.36608\times10^{-8} 1.07773\times10^{-7} 1.59124\times10^{-7} 1.70274\times10^{-7}
    0.7 1.53354\times10^{-8} 1.00892\times10^{-8} 7.07611\times10^{-8} 1.68702\times10^{-7}
    0.8 3.88458\times10^{-8} 6.00347\times10^{-8} 2.85788\times10^{-8} 6.72342\times10^{-8}
    0.9 3.00922\times10^{-8} 4.49878\times10^{-8} 2.82622\times10^{-8} 3.06797\times10^{-8}

     | Show Table
    DownLoad: CSV
    Figure 6.  The AEs at different values of \mathcal{M} when \alpha = 0.9 for Example 5.3.

    Example 5.4. [61] Consider the following equation:

    \begin{equation} v_{t}(x,t)-{D_{t}^{\alpha}}\,[\,v_{x}(x,t)\,]-v_{x}(x,t) = \mathcal{S}(x,t) , \quad 0 < \alpha < 1, \end{equation} (5.5)

    governed by the following constraints:

    \begin{align} &v(x,0) = 0, \quad 0 < x < 1, \end{align} (5.6)
    \begin{align} & v(0,t) = t^{\gamma +2}, \quad v(1,t) = e\, t^{\gamma +2}, \quad 0 < t\leq 1, \end{align} (5.7)

    where

    \mathcal{S}(x,t) = e^x\, \left(t^{\gamma +1} (\gamma -t+2)-\frac{\Gamma(\gamma +3) }{\Gamma (-\alpha +\gamma +3)}\,t^{-\alpha +\gamma +2}\right),

    and the exact solution of this problem is: u(x, t) = e^x\, t^{\gamma +2}. This problem is solved for the case \gamma = 1 . In Table 7, we compare the L_{2} errors of the SSKGM with that obtained in [61] at different values of \alpha . This table shows the high accuracy of our method. Figure 7 illustrates the AE (left) and the approximate solution (right) at \mathcal{M} = 7 when \alpha = 0.6 .

    Table 7.  Comparison of the L_{2} errors for Example 5.4.
    Our method Method in [61]
    \alpha \mathcal{M}=7 n=m=10
    0.1 1.39197\times10^{-11} 2.176\times10^{-9}
    0.3 1.34984\times10^{-10} 9.045\times10^{-9}
    0.5 5.87711\times10^{-11} 1.516\times10^{-8}
    0.7 8.43536\times10^{-12} 1.415\times10^{-8}
    0.9 7.46064\times10^{-12} 5.749\times10^{-9}

     | Show Table
    DownLoad: CSV
    Figure 7.  The AE (left) and the approximate solution (right) at \mathcal{M} = 7 when \alpha = 0.6 for Example 5.4.

    This study presented a Galerkin algorithm technique for solving the FRSE using orthogonal combinations of the second-kind CPs. The Galerkin method converts the FRSE with its underlying conditions into a matrix system whose entries are given explicitly. A suitable algebraic algorithm may be utilized to solve such a system, and by chance, the approximate solution can be obtained. We showcased the effectiveness and precision of the algorithm through a comprehensive study of the error analysis and by presenting multiple numerical examples. We think the proposed method can be applied to other types of FDEs. As an expected future work, we aim to employ this paper's developed theoretical results and suitable spectral methods to treat some other problems.

    W. M. Abd-Elhameed: Conceptualization, Methodology, Validation, Formal analysis, Funding acquisition, Investigation, Project administration, Supervision, Writing–Original draft, Writing–review & editing. A. M. Al-Sady: Methodology, Validation, Writing–Original draft; O. M. Alqubori: Methodology, Validation, Investigation; A. G. Atta: Conceptualization, Methodology, Validation, Formal analysis, Visualization, Software, Writing–Original draft, Writing–review & editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was funded by the University of Jeddah, Jeddah, Saudi Arabia, under grant No. (UJ-23-FR-70). Therefore, the authors thank the University of Jeddah for its technical and financial support.

    The authors declare that they have no competing interests.



    [1] T. An, G. Tang, W. Wang, Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China, High Volt., 2 (2017), 1–10.
    [2] Y. F. Guo, H. L. Gao, Q. W. Wu, H. R. Zhao, J. Ostergaard, M. Shahidehpour, Enhanced voltage control of VSC-HVDC connected offshore wind farms based on model predictive control, IEEE T. Sustain. Energ., 9 (2018), 474–487.
    [3] H. Z. Liu, Z. Chen, Contribution of VSC-HVDC to frequency regulation of power systems with offshore wind generation, IEEE T. Energy Conver., 30 (2015), 918–926.
    [4] J. Lin, Integrating the first HVDC-based offshore wind power into PJM system–A real project case study, IEEE T. Ind. Appl., 52 (2016), 1970–1978.
    [5] B. B. Shao, S. Q. Zhao, Y. H. Yang, B. F. Gao, F. Blaabjerg, Sub-synchronous oscillation characteristics and analysis of direct-drive wind farms with VSC-HVDC systems, IEEE T. Sustain. Energ., 12 (2021), 1127–1140.
    [6] S. B. Wang, X. Y. Meng, T. W. Chen, Wide-area control of power systems through delayed network communication, IEEE T. Contr. Syst. T., 20 (2012), 495–503.
    [7] B. Chaudhuri, R. Majumder, B. C. Pal, Wide-area measurement-based stabilizing control of power system considering signal transmission delay, IEEE T. Power Syst., 19 (2004), 1971–1979.
    [8] B. Yang, Y. Z. Sun, Damping factor based delay margin for wide area signals in power system damping control, IEEE T. Power Syst., 28 (2013), 3501–3502.
    [9] M. Li, Y. Chen, Wide-area stabiliser on sliding mode control for cross-area power systems with random delay and packet dropouts, Asian J. Control, 20 (2018), 2130–2142.
    [10] K. T. Yu, Y. M. Li, Adaptive fuzzy control for nonlinear systems with sampled data and time-varying input delay, AIMS Mathematics, 5 (2020), 2307–2325.
    [11] D. Yang, X. D. Li, J. L. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal.-Hybri., 32 (2019), 294–305.
    [12] X. Y. Yang, X. D. Li, Q. Xi, P. Y. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515.
    [13] W. W. Sun, M. Y. Qiu, X. Y. Lv, H_\infty filter design for a class of delayed Hamiltonian systems with fading channel and sensor saturation, AIMS Mathematics, 5 (2020), 2909–2922.
    [14] Y. Liu, N. Chopra, Gravity-compensation-driven position regulation for robotic systems under input/output delays, IEEE T. Contr. Syst. T., 22 (2014), 995–1005.
    [15] S. Ahmed, H. P. Wang, M. S. Aslam, I. Ghous, I. Qaisar, Robust adaptive control of robotic manipulator with input time-varying delay, Int. J. Control, Autom. Syst., 17 (2019), 2193–2202.
    [16] Y. Kang, Z. J. Li, X. Q. Cao, D. H. Zhai, Robust control of motion/force for robotic manipulators with random time delays, IEEE T. Contr. Syst. T., 21 (2013), 1708–1718.
    [17] Q. He, J. K. Liu, An observer for a velocity-sensorless VTOL aircraft with time-varying measurement delay, Int. J. Syst. Sci., 47 (2016), 652–661.
    [18] S. W. Su, Y. Lin, Output tracking control for a velocity-sensorless VTOL aircraft with measurement delays, Int. J. Syst. Sci., 46 (2015), 885–895.
    [19] X. J. Jin, G. D. Yin, Y. J. Li, J. Q. Li, Stabilizing vehicle lateral dynamics with considerations of state delay of AFS for electric vehicles via robust gain-scheduling control, Asian J. Control, 18 (2016), 89–97.
    [20] M. Z. Huang, W. N. Gao, Z. P. Jiang, Connected cruise control with delayed feedback and disturbance: An adaptive dynamic programming approach, Int. J. Adapt. Control., 33 (2019), 356–370.
    [21] S. Y. Han, G. Y. Tang, Y. H. Chen, X. X. Yang, X. Yang, Optimal vibration control for vehicle active suspension discrete-time systems with actuator time delay, Asian J. Control, 15 (2013), 1579–1588.
    [22] D. Soudbakhsh, A. Chakrabortty, A. M. Annaswamy, A delay-aware cyber-physical architecture for wide-area control of power systems, Control Eng. Pract., 60 (2017), 171–182.
    [23] D. Efimov, J. Schiffer, R. Ortega, Robustness of delayed multistable systems with application to droop-controlled inverter-based microgrids, Int. J. Control, 89 (2016), 909–918.
    [24] J. Li, Z. H. Chen, D. S. Cai, W. Zhen, Q. Huang, Delay-dependent stability control for power system with multiple time-delays, IEEE T. Power Syst., 31 (2016), 2316–2326.
    [25] X. Li, R. Wang, S. Wu, S. N. Wu, G. M. Dimirovski, Exponential stability for multi-area power systems with time delays under load frequency controller failures, Asian J. Control, 19 (2017), 787–791.
    [26] H. Luo, I. A. Hiskens, Z. Hu, Stability analysis of load frequency control systems with sampling and transmission delay, IEEE T. Power Syst., 35 (2020), 3603–3615.
    [27] S. P. Wen, X. H. Yu, Z. G. Zeng, J. J. Wang, Event-triggering load frequency control for multiarea power systems with communication delays, IEEE T. Ind. Electron., 63 (2016), 1308–1317.
    [28] Y. H. Gui, C. H. Kim, C. C. Chung, Improved low-voltage ride through capability for PMSG wind turbine based on port-controlled hamiltonian system, Int. J. Control Autom. Syst., 14 (2016), 1195–1204.
    [29] H. H. Song, Y. B. Qu, Energy-based modelling and control of wind energy conversion system with DFIG, Int. J. Control, 84 (2011), 281–292.
    [30] W. W. Sun, Y. Wu, L. P. Wang, Trajectory tracking of constrained robotic systems via a hybrid control strategy, Neurocomputing, 330 (2019), 188–195.
    [31] Y. Ren, W. W. Sun, Robust adaptive control for robotic systems with input time-varying delay using Hamiltonian method, IEEE/CAA J. Automat., 5 (2018), 852–859.
    [32] Y. Guo, Z. Xi, D. Cheng, Speed regulation of permanent magnet synchronous motor via feedback dissipative Hamiltonian realisation, IET Control Theory A., 1 (2007), 281–290.
    [33] A. Yaghmaei, M. J. Yazdanpanah, Structure preserving observer design for port-Hamiltonian systems, IEEE T. Automat. Contr, 64 (2019), 1214–1220.
    [34] X. M. Fan, L. Guan, C. J. Xia, T. Y. Ji, IDA-PB control design for VSC-HVDC transmission based on PCHD model, Int. T. Electr. Energy., 25 (2015), 2133–2143.
    [35] S. Y. Dai, X. F. Koutsoukos, Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems, Nonlinear Anal.-Hybri., 35 (2020), 100816.
    [36] S. Aoues, F. L. Cardoso-Ribeiro, D. Matignon, D. Alazard, Modeling and control of a rotating flexible spacecraft: A port-Hamiltonian approach, IEEE T. Contr. Syst. T., 27 (2019), 355–362.
    [37] W. W. Sun, B. Z. Fu, Adaptive control of time-varying uncertain nonlinear systems with input delay: A Hamiltonian approach, IET Control Theory A., 10 (2016), 1844–1858.
    [38] W. W. Sun, X. Y. Lv, K. L. Wang, L. P. Wang, Observer-based output feedback stabilisation and L_2-disturbance attenuation of uncertain Hamiltonian systems with input and output delays, Int. J. Syst. Sci., 50 (2019), 2565–2578.
    [39] J. Schiffer, E. Fridman, R. Ortega, J. Raischde, Stability of a class of delayed port-Hamiltonian systems with application to microgrids with distributed rotational and electronic generation, Automatica, 74 (2016), 71–79.
  • This article has been cited by:

    1. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, On generalized Hermite polynomials, 2024, 9, 2473-6988, 32463, 10.3934/math.20241556
    2. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Abdulrahman Khalid Al-Harbi, Mohammed H. Alharbi, Ahmed Gamal Atta, Generalized third-kind Chebyshev tau approach for treating the time fractional cable problem, 2024, 32, 2688-1594, 6200, 10.3934/era.2024288
    3. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta, A Collocation Procedure for Treating the Time-Fractional FitzHugh–Nagumo Differential Equation Using Shifted Lucas Polynomials, 2024, 12, 2227-7390, 3672, 10.3390/math12233672
    4. Waleed Mohamed Abd-Elhameed, Abdullah F. Abu Sunayh, Mohammed H. Alharbi, Ahmed Gamal Atta, Spectral tau technique via Lucas polynomials for the time-fractional diffusion equation, 2024, 9, 2473-6988, 34567, 10.3934/math.20241646
    5. M.H. Heydari, M. Razzaghi, M. Bayram, A numerical approach for multi-dimensional ψ-Hilfer fractional nonlinear Galilei invariant advection–diffusion equations, 2025, 68, 22113797, 108067, 10.1016/j.rinp.2024.108067
    6. Youssri Hassan Youssri, Waleed Mohamed Abd-Elhameed, Amr Ahmed Elmasry, Ahmed Gamal Atta, An Efficient Petrov–Galerkin Scheme for the Euler–Bernoulli Beam Equation via Second-Kind Chebyshev Polynomials, 2025, 9, 2504-3110, 78, 10.3390/fractalfract9020078
    7. Minilik Ayalew, Mekash Ayalew, Mulualem Aychluh, Numerical approximation of space-fractional diffusion equation using Laguerre spectral collocation method, 2025, 2661-3352, 10.1142/S2661335224500291
    8. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta, A Collocation Approach for the Nonlinear Fifth-Order KdV Equations Using Certain Shifted Horadam Polynomials, 2025, 13, 2227-7390, 300, 10.3390/math13020300
    9. Waleed Mohamed Abd-Elhameed, Omar Mazen Alqubori, Ahmed Gamal Atta, A collocation procedure for the numerical treatment of FitzHugh–Nagumo equation using a kind of Chebyshev polynomials, 2025, 10, 2473-6988, 1201, 10.3934/math.2025057
    10. M. Hosseininia, M.H. Heydari, D. Baleanu, M. Bayram, A hybrid method based on the classical/piecewise Chebyshev cardinal functions for multi-dimensional fractional Rayleigh–Stokes equations, 2025, 25, 25900374, 100541, 10.1016/j.rinam.2025.100541
    11. Waleed Mohamed Abd-Elhameed, Abdulrahman Khalid Al-Harbi, Omar Mazen Alqubori, Mohammed H. Alharbi, Ahmed Gamal Atta, Collocation Method for the Time-Fractional Generalized Kawahara Equation Using a Certain Lucas Polynomial Sequence, 2025, 14, 2075-1680, 114, 10.3390/axioms14020114
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2652) PDF downloads(118) Cited by(3)

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog