
A labeling of a connected, simple and undirected graph G(V, E) is a map that assigns the elements of a graph G with positive numbers. Many types of labeling for graph are found and one of them is a total edge irregularity strength (TEIS) of G, which denoted by tes(G). In the current paper, we defined a new type of family of graph called uniform theta snake graph, θn(t,m). Also, the exact values of total edge irregularity strengths for some special types of the new family have been determined.
Citation: Fatma Salama, Randa M. Abo Elanin. On total edge irregularity strength for some special types of uniform theta snake graphs[J]. AIMS Mathematics, 2021, 6(8): 8127-8148. doi: 10.3934/math.2021471
[1] | Martin Bača, Muhammad Imran, Zuzana Kimáková, Andrea Semaničová-Feňovčíková . A new generalization of edge-irregular evaluations. AIMS Mathematics, 2023, 8(10): 25249-25261. doi: 10.3934/math.20231287 |
[2] | Muhammad Amir Asif, Rashad Ismail, Ayesha Razaq, Esmail Hassan Abdullatif Al-Sabri, Muhammad Haris Mateen, Shahbaz Ali . An application on edge irregular reflexive labeling for mt-graph of cycle graph. AIMS Mathematics, 2025, 10(1): 1300-1321. doi: 10.3934/math.2025060 |
[3] | Mohamed Basher . On the reflexive edge strength of the circulant graphs. AIMS Mathematics, 2021, 6(9): 9342-9365. doi: 10.3934/math.2021543 |
[4] | Gohar Ali, Martin Bača, Marcela Lascsáková, Andrea Semaničová-Feňovčíková, Ahmad ALoqaily, Nabil Mlaiki . Modular total vertex irregularity strength of graphs. AIMS Mathematics, 2023, 8(4): 7662-7671. doi: 10.3934/math.2023384 |
[5] | Ibrahim Tarawneh, Roslan Hasni, Ali Ahmad, Muhammad Ahsan Asim . On the edge irregularity strength for some classes of plane graphs. AIMS Mathematics, 2021, 6(3): 2724-2731. doi: 10.3934/math.2021166 |
[6] | Ali N. A. Koam, Ali Ahmad, Martin Bača, Andrea Semaničová-Feňovčíková . Modular edge irregularity strength of graphs. AIMS Mathematics, 2023, 8(1): 1475-1487. doi: 10.3934/math.2023074 |
[7] | Kooi-Kuan Yoong, Roslan Hasni, Gee-Choon Lau, Muhammad Ahsan Asim, Ali Ahmad . Reflexive edge strength of convex polytopes and corona product of cycle with path. AIMS Mathematics, 2022, 7(7): 11784-11800. doi: 10.3934/math.2022657 |
[8] | Mohamed Basher . Edge irregular reflexive labeling for the r-th power of the path. AIMS Mathematics, 2021, 6(10): 10405-10430. doi: 10.3934/math.2021604 |
[9] | Wei Gao, Zahid Iqbal, Shehnaz Akhter, Muhammad Ishaq, Adnan Aslam . On irregularity descriptors of derived graphs. AIMS Mathematics, 2020, 5(5): 4085-4107. doi: 10.3934/math.2020262 |
[10] | Sadik Delen, Ismail Naci Cangul . Effect of edge and vertex addition on Albertson and Bell indices. AIMS Mathematics, 2021, 6(1): 925-937. doi: 10.3934/math.2021055 |
A labeling of a connected, simple and undirected graph G(V, E) is a map that assigns the elements of a graph G with positive numbers. Many types of labeling for graph are found and one of them is a total edge irregularity strength (TEIS) of G, which denoted by tes(G). In the current paper, we defined a new type of family of graph called uniform theta snake graph, θn(t,m). Also, the exact values of total edge irregularity strengths for some special types of the new family have been determined.
In graph theory, graph labeling is an assignment of labels or weights to the vertices and edges of a graph. Graph labeling plays an important role in many fields such as computer science, coding theory and physics [32]. Baca et al. [10] have introduced the definition of an edge irregular total ℓ-labeling of any graph as a labeling L:V∪E→{1,2,3,…,ℓ} in which every two distinct edges fh and f∗h∗ of a graph G have distinct weights, this means that wL(fh)≠wL(f∗h∗) where wL(fh)=L(f)+L(h)+L(fh). They have deduced inequality which gives a lower bound of tes(G) for a graph G,
tes(G)≥max{⌈|E(G)|+23⌉,⌈Δ+12⌉} | (1) |
Also, they have introduced the exact value of TEIS, tes(G) for some families of graphs like fan graph Fn and wheel graph Wn,
tes(Fn)=⌈3n+23⌉, |
tes(Wn)=⌈2n+23⌉. |
In [15] authors have proved that for any tree T
tes(T)=max{⌈k+13⌉,⌈Δ+12⌉}, |
where Δ is maximum degree on k vertices. In addition, Salama [26] investigated the exact value of TEIS for a polar grid graph,
tes(Pm,n)=⌈2mn+23⌉. |
Authors in [1] determined TEIS for zigzag graphs. Also, the exact value of TEIS of the generalized web graph Wn,m and some families has been determined, see [14]. Tilukay et al. [31] have investigated total irregularity strength for a wheel graph, a fan graph, a triangular Book graph and a friendship graph. On the other hand, in [2,3,8,17,20,24,29] the total edge irregularity strengths for hexagonal grid graphs, centralized uniform theta graphs, generalized helm graph, series parallel graphs, disjoint union of isomorphic copies of generalized Petersen graph, disjoint union of wheel graphs, subdivision of star Sn and categorical product of two cycles have been investigated. For more details, see [4,5,6,7,9,11,12,13,16,18,19,21,23,25,27,28,30].
A generalized theta graph θ(t1,t2,…,tn) is a pair of n internal disjoint paths with lengths at least two joined by end vertices where the end vertices are named south pole S and north pole N and ti is the number of vertices in the nth path. Uniform theta graph θ(t,m) is a generalized theta graph in which all paths have the same numbers of internal vertices, for more details see [22].
In this paper, we have defined a new type of family of graph called uniform theta snake graph, θn(t,m). Also, the exact value of TEIS for some special types of the new family has been determined.
In the following, we define a new type of graph which is called uniform theta snake graph.
Definition 1. If we replace each edge of a path Pn by a uniform theta graph θ(t,m), we have a uniform theta snake graph θn(t,m). See Figure 1.
It is clear that for a uniform theta snake graph |E(θn(t,m))|=t(m+1)n and |V(θn(t,m))|=(tm+1)n+1. In this section, we determine the exact value of TEIS for uniform theta snake graph θn(3,3), θn(3,m), θn(t,3), θn(4,m), and θn(t,4).
Theorem 1. For a uniform theta snake graph θn(3,3) with 10n+1 vertices and 12n edges, we have
tes(θn(3,3))=4n+1. |
Proof. Since a uniform theta snake graph θn(3,3) has 12n edges and (θn(3,3))=6, then from (1) we have:
tes(θn(3,3))≥4n+1. |
To prove the invers inequality, we show that ħ− labeling is an edge irregular total for θn(3,3), see Figure 2, and ħ=4n+1. Let ħ=4n+1 and a total ħ− labeling α:V(θn(3,3))∪E(θn(3,3))→{1,2,3,…,ħ} is defined as:
α(c0)=1, |
α(cs)=4sfor1≤s≤n−1 |
α(cn)=ħ, |
α(xi,j)={jfor1≤j≤3j+1for4≤j≤6....j+n−1for3n−2≤j≤3n−1,i=1,2,3, |
α(xi,3n)=ħ−1fori=1,2,3 |
α(c0xi,1)=ifori=i1,2,3 |
α(cSxi,3S)=4S+ifor1≤S≤n−1,i=1,2,3 |
α(cSxi,3S+1)=4S+i+1for1≤S≤n−1,i=1,2,3 |
α(cnxi,3n)={ħ−2fori=1ħ−1fori=2ħfori=3, |
α(xi,jxi,j+1i)={j+i+1for1≤j≤2j+i+2for4≤j≤5....j+i+n−I1for3n−5≤j≤3n−4ħ+i−3for3n−2≤j≤3n−1,i=1,2,3. |
It is clear that ħ is the greatest used label. The weights of edges of θn(3,3) are given by:
wα(c0xi,1)=i+2fori=1,2,3, |
wα(cSxi,3S)=12S+i−1for1≤S≤n−1,i=1,2,3 |
wα(cSxi,3S+1)=12S+i+2for1≤S≤n−1,i=1,2,3, |
wα(cnxi,3n)={3(ħ−1)fori=13ħ−2fori=23ħ−1fori=3, |
wα(xi,jxi,j+1)={3j+i+2for1≤j≤23j+i+5for4≤j≤5....3j+i+3n−4for3n−5≤j≤3n−43ħ+i−10forj=3n−23ħ+i−7forj=3n−1,i=1,2,3 |
Obviously, the weights of edges are distinct. So α is an edge irregular total ħ− labeling. Hence
tes(θn(3,3))=4n+1. |
Theorem 2. For θn(3,m),m>3 be a uniform theta snake graph. Then
tes(θn(3,m))=(m+1)n+1. |
Proof. Since |E(θn(3,m))|=3(m+1)n and Δ(θn(3,m))=6. Substituting in (1), we find
tes(θn(3,m))≥(m+1)n+1. |
The existence of an edge irregular total ƛ− labeling for θn(3,m), See Figure 3, m>3 will be shown, with ƛ=(m+1)n+1. Define a total ƛ− labeling β:V(θn(3,m))∪E(θn(3,m))→{1,2,3,…,ƛ} for θn(3,m) as:
β(c0)=1, |
β(cs)=(m+1)sfor1≤s≤n−1, |
β(cn)=ƛ |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+n−1form(n−1)+1≤j≤mn−1, |
β(xi,mn)=ƛ−1fori=1,2,3 |
β(c0xi,1)=1fori=1,2,3 |
β(cSxi,mS)=(m+1)S+ifor1≤S≤n−1,i=1,2,3 |
β(cSxi,mS+1)=(m+1)S+i+1for1≤S≤n−1,i=1,2,3 |
β(cnxi,mn)={ƛ−2fori=1ƛ−1fori=2ƛfori=3, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+nform(n−1)+1≤j≤mn−2j+i+n−1forj=mn−1. |
Clearly, ƛ is the most label of edges and vertices. The edges weights are given as follows:
wβ(c0xi,1)=i+2fori=1,2,3, |
wβ(cSxi,mS)=3(m+1)S+i−1for1≤S≤n−1,i=1,2,3 |
wβ(cSxi,mS+1)=3(m+1)S+i+2for1≤S≤n−1,i=1,2,3, |
wβ(cnxi,mn)={3ƛ−3fori=13ƛ−2fori=23ƛ−1fori=3, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+5form+1≤j≤2m−1....3jI+i+3n−1form(n−1)+1≤j≤mn−23ƛ+i−7forj=mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(3,m). Hence
tes(θn(3,m))=(m+1)n+1. |
Theorem 3. Let θn(t,3) be a theta snake graph for t>3. Then
tes(θn(t,3))=⌈4tn+23⌉. |
Proof. A size of the graph θn(t,3) equals 4tn and Δ(θn(t,3))=2t, then from (1) we have
tes(θn(t,3))≥⌈4tn+23⌉. |
We define an edge irregular total ħ− labeling for θn(t,3) to get upper bound. So, let ħ=⌈4tn+23⌉ and a total ħ− labeling γ:V(θn(t,3))∪E(θn(t,3))→{1,2,3,…,ħ} is defined in the following three cases:
Case 1. 4tn+2≡0(mod3)
γ is defined as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)I={ifor1≤j≤3,i=1,2,…,ti+t+1for4≤j≤6,i=1,2,…,ti+2(t+1)for7≤j≤9,i=1,2,…,t......i+(n−1)(t+1)for3n−5≤j≤3n−3,i=1,2,…,tħ−1for3n−2≤j≤3n,i=1ħfor3n−2≤j≤3n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,3S)=2St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,3n)={ħ−t+2fori=1ħ−t+ifori=2,3,…,t, |
γ(cSxi,3S+1)=2St−2S+2for1≤S≤n−1,i=1,2,…,t |
γ(cn−1xi,3n−2)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for3n−5≤j≤3n−4,i=1,2,…,tħ−3(t+n)+j+5for3n−2≤j≤3n−1,i=1ħ−3(t+n)+j+5+2(i−2)for3n−2≤j≤3n−1,i=2,3,…,t |
Obviously, ħ is the greatest label. The edges weights of θn(t,3) can be expressed as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,3S)=t(4S−1)+i+2for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,3S+1)=4St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,3n−2)={2nt+3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−4forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for3ni−5≤j≤3n−4,i=1,2,…,t3ħ−3(t+in)+j+3for3n−2≤j≤3n−1,i=13ħ−3(t+in)+j+2i+3for3n−2≤j≤3n−1,i=2,3,…,t |
It implies that the edges weights have distinct values. So γ is the desired edge irregular total ħ− labeling, ħ=⌈4tn+23⌉. Hence
tes(θn(t,3))=⌈4tn+23⌉. |
Case 2. 4tn+2≡1(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤3,i=1,2,…,ti+t+1for4≤j≤6,i=1,2,…,ti+2(t+1)for7≤j≤9,i=1,2,…,t......i+(n+1)(t+1)for3n−5≤j≤3n−3,i=1,2,…,tħ−1for3n−2≤j≤3n,i=1ħfor3n−2≤j≤3n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,3S)=2St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,3n)={ħ−tfori=1ħ−t+i−2fori=2,3,…,t, |
γ(cSxi,3S+1)=2St−2S+2for1≤IS≤n−1,i=1,2,…t |
γ(cn−1xi3n−2)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(It+I1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for3n−5≤j≤3n−4,i=1,2,…,tħ−3(t+n)+j+3for3n−2≤j≤3n−1,i=1ħ−3(t+n)+j+2(i−2)for3n−2≤j≤3n−1,i=2,3,…,t |
It is clear that the greatest label is ħ. We define the weights of edges of θn(t,3) as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,3S)=t(4S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,3n)=3ħ−t+i−2for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,3S+1)=4St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,3n−2)={2nt+3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−4forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for3n−5≤j≤3n−4,i=1,2,…,t3ħ−3(t+n)+j+1for3n−2≤j≤3n−1,i=13ħ−3(t+n)+j+2(i−2)for3n−2≤j≤3n−1,i=2,3,…,t |
It is obvious that the edges weights are different. Then
tes(θn(t,3))=⌈4tn+23⌉. |
Case 3. 4tn+2≡2(mod3)
γ is defined as follows:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤3,i=1,2,…,ti+t+1for4≤j≤6,i=1,2,…,ti+2(t+1)for7≤j≤9,i=1,2,…,t......i+(n−1)(t+1)for3n−5≤j≤3n−3,i=1,2,…,tħ−1for3n−2≤j≤3n,i=1ħfor3n−2≤j≤3n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,3S)=2St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,3n)={ħ−t+1fori=1ħ−t+i−1fori=2,3,…,t, |
γ(cSxi,3S+1)=2St−2S+2for1≤S≤n−2,i=1,2,…,t |
γ(cn−1xi,3n−2)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for3n−5≤j≤3n−4,i=1,2,…tħ−3(t+i)+j+4for3n−2≤j≤3ni−1,i=1ħ−3(t+n)+j+2ifor3n−2≤j≤3n−1,i=2,3,…,t |
We can see that ħ is the greatest label. For edges weights of θn(t,3), we have
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(c0xi,3S)=t(4S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,3n)=3ħ−t+i−1for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,3S+1)=4St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cnxi,3n−2)={2nt−3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−4forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for3n−5≤j≤3n−4,i=1,2,…,t3ħ−3(t+n)+j+2for3n−2≤j≤3n−1,i=13ħ−3(t+n)+j+2ifor3n−2≤j≤3n−1,i=2,3,…,t |
It clears that the edges weights are i distinct. So γ is the desired edge irregular total ħ− labeling, ħ=⌈4tn+23⌉. Hence
tes(θn(t,3))=⌈4tn+23⌉. |
Theorem 4. For θn(4,m) be a theta snake graph for t>3. Then
tes(θn(4,m))=⌈4(m+1)n+23⌉. |
Proof. Since |E(θn(4,m))|=4(m+1)n and Δ(θn(4,m))=8, then from (1) we have
tes(θn(4,m))≥⌈4(m+1)n+23⌉. |
The existence of an edge irregular total ƛ− labeling for θn(4,m), m>3 will be shown, with ƛ=⌈4(m+1)n+23⌉. Define a total ƛ− labeling β:V(θn(4,m))∪E(θn(4,m))→{1,2,3,…,ƛ} for θn(4,m) in the following three cases as:
Case 1. 4(m+1)n+2≡0(mod3), i=1,2,3,4
β is defined as:
β(cs)={1fors=0(m+1)sfor1≤s≤⌈n2⌉ƛ+s−nfor⌈n2⌉≤s≤n, |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+⌈n2⌉−1ƛ−j+22ƛform(⌈n2⌉−1)+1≤j≤m⌈n2⌉+1form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
β(c0xi,1)=1fori=1,2,3,4 |
β(cSxi,mS)={2cS+i−1for1≤S≤⌈n2⌉−1cS+i−4(m+1)for⌈n2⌉≤s≤n−1ƛ−4+ifors=n,i=1,2,3,4 |
β(cSxi,mS+1)={2cS+i+1for1≤S≤⌈n2⌉,i=1,2,3,4cS+i−4(m+1)+2for⌈n2⌉+1≤s≤n−1 |
β(cnxi,mn)={ƛ−3fori=1ƛ−2fori=2ƛ−1ƛfori=3fori=4, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+⌈n2⌉forj=m(⌈n2⌉−1)+12j+i−2[nm(⌈n2⌉−1)+1]form(⌈n2⌉−1)+2≤j≤mn−1. |
It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:
wβ(c0xi,1)=i+2fori=1,2,3,4, |
wβ(cSxi,mS)={2ms+s+2cS+i−1for1≤S≤⌈n2⌉−1,cS+i+ƛ+(s−4)(m+1)−n+⌈n2⌉−1for⌈n2⌉≤s≤n−13ƛ−4+i+s−nfors=n,i=1,2,3,4 |
wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1≤S≤⌈n2⌉,2ƛ+s−n+cS+i−4(m+1)+2for⌈n2⌉≤s≤n−1i=1,2,3,4, |
wβ(cnxi,mn)={3ƛ+s−n−3fori=13ƛ+s−n−2fori=23ƛ+s−n−13ƛ+s−nfori=3fori=4, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+4form+1≤j≤2m−1....3j+i+3⌈n2⌉−1forj=m(⌈n2⌉−1)+14j+2ƛ+45+i−2[nm(⌈n2⌉−1)+1]2j+2ƛ+i−2[nm(⌈n2⌉−1)+1]form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(4,m). Hence
tes(θn(4,m))=⌈4(m+1)n+23⌉. |
Case 2. 4(m+1)n+2≡1(mod3), i=1,2,3,4
β is defined as:
β(cs)={1fors=0(m+1)sfor1≤s≤⌈n2⌉ƛ+s−nfor⌈n2⌉≤s≤n, |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+⌈n2⌉−1ƛ−j+22ƛform(⌈n2⌉−1)+1≤j≤m⌈n2⌉form⌈n2⌉+1≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
β(c0xi,1)=1fori=1,2,3,4 |
β(cSxi,mS)={2cS+i−1for1≤S≤⌈n2⌉−1,ƛ−7+ifors=⌈n2⌉cS+i−4m−2for⌈n2⌉+1≤s≤n−1ƛ−6+ifors=n,i=1,2,3,4 |
β(cSxi,mS+1)={2cS+i+1for1≤S≤⌈n2⌉cS+i−4mfor⌈n2⌉≤s≤n−1,i=1,2,3,4 |
β(cnxi,mn)={ƛ−5fori=1ƛ−4fori=2ƛ−3ƛ−2fori=3fori=4, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+⌈n2⌉forj=m(⌈n2⌉−1)+12j+i−2[nm(⌈n2⌉−1)+1]form(⌈n2⌉−1)+2≤j≤mn−1. |
It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:
wβ(c0xi,1)=i+2fori=1,2,3,4, |
wβ(cSxi,mS)={2ms+s+2cS+i−1for1≤S≤⌈n2⌉−1,2ƛ−m⌈n2⌉+(m+1)s+i+15fors=⌈n2⌉cS+i+ƛ+(s−4)(m+1)−n+⌈n2⌉−1for⌈n2⌉≤s≤n−13ƛ−4+i+s−nfors=n |
wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1≤S≤⌈n2⌉,i=1,2,3,42ƛ+s−n+cS+i−4mfor⌈n2⌉≤s≤n−1i=1,2,3,4, |
wβ(cnxi,mn)={3ƛ+s−n−5fori=13ƛ+s−n−4fori=23ƛ+s−n−33ƛ+s−n−2fori=3fori=4, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+4form+1≤j≤2m−1....3j+i+3⌈n2⌉−1forj=m(⌈n2⌉−1)+14j+2ƛ+45+i−2[nm(⌈n2⌉−1)+1]2j+2ƛ+i−2[nm(⌈n2⌉−1)+1]form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(4,m). Hence
tes(θn(4,m))=⌈4(m+1)n+23⌉. |
Case 3. 4(m+1)n+2≡2(mod3), i=1,2,3,4
β is defined as:
β(cs)={1fors=0(m+1)sfor1≤s≤⌈n2⌉ƛ+s−nfor⌈n2⌉≤s≤n, |
β(xi,j)={jfor1≤j≤mj+1form+1≤j≤2m....j+⌈n2⌉−1ƛ−j+22ƛform(⌈n2⌉−2)+1≤j≤m(⌈n2⌉−1)form(⌈n2⌉−1)+1≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
β(c0xi,1)=1fori=1,2,3,4 |
β(cSxi,mS)={2cS+i−1for1≤S≤⌈n2⌉−1,i=1,2,3,4ƛ−7+ifors=⌈n2⌉cS+i−4m−2for⌈n2⌉+1≤s≤n−1ƛ−5+ifors=n |
β(cSxi,mS+1)={2cS+i+1for1≤S≤⌈n2⌉−1,i=1,2,3,4cS+1+ifors=⌈n2⌉cS+i−4m+1for⌈n2⌉+1≤s≤n−1 |
β(cnxi,mn)={ƛ−4fori=1ƛ−3fori=2ƛ−2ƛ−1fori=3fori=4, |
β(xi,jxi,j+1)={j+i+1for1≤j≤m−1j+i+2form+1≤j≤2m−1....j+i+⌈n2⌉forj=m(⌈n2⌉−1)+12j+i−2[nm(⌈n2⌉−1)+1]+1form(⌈n2⌉−1)+2≤j≤mn−1. |
It is clear that ƛ is the greatest used label. The weights of edges of θn(4,m) are given by:
wβ(c0xi,1)=i+2fori=1,2,3,4, |
wβ(cSxi,mS)={2ms+s+2cS+i−1for1≤S≤⌈n2⌉−1,2ƛ−m⌈n2⌉+(m+1)s+i+15fors=⌈n2⌉cS+i+ƛ+(s−4)(m+1)−n+⌈n2⌉−1for⌈n2⌉≤s≤n−13ƛ−3+i+s−nfors=n |
wβ(cSxi,mS+1)={(2m+1)s+2cS+i+1for1≤S≤⌈n2⌉,i=1,2,3,42ƛ+s−n+cS+i−4m+1for⌈n2⌉≤s≤n−1, |
wβ(cnxi,mn)={3ƛ+s−n−3fori=13ƛ+s−n−2fori=23ƛ+s−n−13ƛ+s−nfori=3fori=4, |
wβ(xi,jxi,j+1)={3j+i+2for1≤j≤m−13j+i+4form+1≤j≤2m−1....3j+i+3⌈n2⌉−1forj=m(⌈n2⌉−1)+14j+2ƛ+45+i−2[nm(⌈n2⌉−1)+1]2j+2ƛ+i−2[nm(⌈n2⌉−1)+1]form⌈n2⌉+2≤j≤m(n−1)form(n−1)+1≤j≤mn−1, |
It is obvious that the weights of edges are different, thus β is an edge irregular total ƛ− labeling of θn(4,m). Hence
tes(θn(4,m))=⌈4(m+1)n+23⌉ |
Theorem 5. If θn(t,4) is theta snake graph for t>3. Then
tes(θn(t,4))=⌈5tn+23⌉. |
Proof. Since |E(θn(t,4))|=5tn and Δ(θn(t,4))=2t. Substituting in (1), we have
tes(θn(t,4))≥⌈5tn+23⌉. |
We define an edge irregular total ħ− labeling for θn(t,4) to get upper bound. Let ħ=⌈5tn+23⌉ and a total ħ− labeling γ:V(θn(t,4))∪E(θn(t,4))→{1,2,3,…,ħ} is defined in the following three cases:
Case 1. 5tn+2≡0(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤4,i=1,2,…,ti+t+1for5≤j≤8,i=1,2,…,ti+2(t+1)for9≤j≤12,i=1,2,…,t......i+(n−1)(t+1)for4n−7≤j≤4n−4,i=1,2,…,tħ−1for4n−3≤j≤4n,i=1ħfor4n−3≤j≤4n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,4S)=3St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,4n)={ħ−t+2fori=1ħ−t+ifori=2,3,…,t, |
γ(cSxi,4S+1)=3St−2S+2for1≤S≤n−1,i=1,2,…,t |
γ(cn−1xi,4n−3)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤23t+j−5for4≤j≤55t+j−10for7≤j≤8......(2n−3)t+j−5(n−2)for4n−5≤j≤4n−4,i=1,2,…,tħ−3(t+n)+j+5for4n−2≤j≤4n,i=1ħ−3(t+n)+j+5+2(i−2)for4n−2≤j≤4n,i=2,3,…,t |
It is clear that, ħ is the greatest label. The edges weights of θn(t,4) can be expressed as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,4S)=t(5S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,4n)=3ħ−t+ifori=1,2,…,t |
wγ(cSxi,4S+1)=5St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,4n−2)={2nt+3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−6forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤25t+j+2i−4for4≤j≤59t+j+2i−6for7≤j≤8......(4n−5)t+j+2i−3n+8for4n−5≤j≤4n−4,i=1,2,…,t3ħ−3(t+n)+j+3for4n−2≤j≤4n−1,i=13ħ−3(t+n)+j+2i+3for4n−2≤j≤4n−1,i=2,3,…,t |
It implies that the edges weights have distinct values. So γ is the desired edge irregular total ħ− labeling, ħ=⌈5tn+23⌉. Hence
tes(θn(t,4))=⌈5tn+23⌉. |
Case 2. 5tn+2≡1(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤4,i=1,2,…,ti+t+1for5≤j≤8,i=1,2,…,ti+2(t+1)for9≤j≤12,i=1,2,…,t......i+(n+1)(t+1)for4n−7≤j≤4n−4,i=1,2,…,tħ−1for4n−3≤j≤4n,i=1ħfor4n−3≤j≤4n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,4S)=3St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,4n)={ħ−tfori=1ħ−t+i−2fori=2,3,…,t, |
γ(cSxi,4S+1)=3St−2S+2 |
for1≤S≤n−1,i=1,2,…t |
γ(cn−1xi,4n−3)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤33t+j−5for5≤j≤75t+j−10for9≤j≤11......(2n−3)t+j−5(n−2)for4n−7≤j≤4n−5,i=1,2,…,tħ−4(t+n)+j+3for4n−3≤j≤4n−1,i=1ħ−4(t+n)+j+2(i−2)for4n−3≤j≤4n−1,i=2,3,…,t |
It is clear that the i greatest label is ħ. We define the weights of edges of θn(t,4) as:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(cSxi,4S)=t(5S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,4n)=3ħ−t+i−2for1≤S≤n−1,i=1,2,…,t |
wγ(cSxi,4S+1)=5St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cn−1xi,4n−3)={3nt+3n−2t+ħ+i−8forn=2,33nt+2n−2t+ħ+i−6forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤35t+j+2i−4fori5≤j≤79t+j+2i−6for9≤j≤11......(4n−5)t+j+2i−3n+8for4n−7≤j≤4n−5,i=1,2,…,t3ħ−4(t+n)+j+1for4n−3≤j≤4n−1,i=13ħ−4(t+n)+j+2(i−2)for4n−3≤j≤4n−1,i=2,3,…,t |
It is obvious that the edges weights are different. Then
tes(θn(t,4))=⌈5tn+23⌉. |
Case 3. 5tn+2≡2(mod3)
Defineγ as:
γ(c0)=1, |
γ(cS)=(t+1)Sfor1≤S≤n−1, |
γ(cn)=ħ |
γ(xi,j)={ifor1≤j≤4,i=1,2,…,ti+t+1for5≤j≤8,i=1,2,…,ti+2(t+1)for9≤j≤12,i=1,2,…,t......i+(in−1)(t+1)for4n−7≤j≤4n−4,i=1,2,…,tħ−1for4n−3≤j≤4n,i=1ħfor4n−3≤j≤4n,i=2,3,…,t, |
γ(c0xi,1)=1fori=1,2,…,t |
γ(cSxi,4S)=3St−2S+3for1≤S≤n−1,i=1,2,…,t |
γ(cnxi,4n)={ħ−t+1fori=1ħ−t+i−1fori=2,3,…,t, |
γ(cSxi,4S+1)=3St−2S+2for1≤S≤n−2,i=1,2,…,t |
γ(cn−1xi,4n−3)={{(t+2)n−t−5fori=1(t+2)n−t+i−7fori=2,3,…,t,n=2,3{(t+1)n−t−1fori=1(t+1)n−t+i−3fori=2,3,…,t,n≠2,3 |
γ(xi,jxi,j+1)={{t+jfor1≤j≤33t+j−5for5≤j≤75t+j−10for9≤j≤11......(2n−3)t+j−5(n−2)for4n−7≤j≤4n−5,i=1,2,…tħ−4(t+n)+j+4for4n−3≤j≤4n−1,i=1ħ−4(t+n)+j+2ifor4n−3≤j≤4n−1,i=2,3,…,t |
We can see that ħ is the greatest label. For edges weights of θn(t,4), we have:
wγ(c0xi,1)=i+2fori=1,2,…,t |
wγ(c0xi,4S)=t(5S−1)+i+2for1≤S≤n−1,i=1,2,…,twγ(cnxi,4n)=3ħ−t+i−1for1≤S≤in−1,i=1,2,…,t |
wγ(cSxi,4S+1)=5St+i+2for1≤S≤n−1,i=1,2,…,t, |
wγ(cnxi,4n−3)={2nt−3n−2t+ħ+i−8forn=2,32nt+2n−2t+ħ+i−6forn≠2,3,i=1,2,…,t |
wγ(xi,jxi,j+1)={{t+j+2ifor1≤j≤35t+j+2i−4for5≤j≤79t+j+2i−6for9≤j≤11......(4n−5)t+j+2i−3n+8for4n−7≤j≤4n−5,i=1,2,…,t3ħ−4(t+n)+j+2for4n−3≤j≤3n−1,i=13ħ−4(t+n)+j+2ifor4n−3≤j≤4n−1,i=2,3,…,t |
It is obvious that the edges weights are distinct. So γ is the desired edge irregular total ħ− labeling, ħ=⌈5tn+23⌉. Hence
tes(θn(t,4))=⌈5tn+23⌉. |
The previous results lead us to introduce the following conjecture for a general case of a uniform theta snake graph θn(t,m).
The previous results lead us to introduce the following conjecture for a general case of a uniform theta snake graph θn(t,m).
Conjecture. For uniform theta snake graph θn(t,m), n≥2,t≥3,andm≥3 we have
tes(θn(t,m))=⌈(m+1)tn+23⌉. |
In the current paper, we have defined a new type of a family of graph called uniform theta snake graph, θn(t,m). Also, the exact i value of TEISs for θn(3,3), θn(3,m) and θn(t,3) has been determined. Finally, we have generalized for t, m and found TEIS of a uniform theta snake graph θn(t,m) for m≥3, t≥3.
tes(θn(3,3))=4n+1. |
tes(θn(3,im))=(im+1)in+1. |
tes(θn(t,3))=⌈4tn+23⌉ |
tes(θn(t,m))=⌈(m+1)tn+23⌉. |
All authors declare no conflict of interest in this paper.
We are so grateful to the reviewer for his many valuable suggestions and comments that significantly improved the paper.
[1] | A. Ahmad, M. K. Siddiqui, D. Afzal, On the total edge irregularity strength of zigzag graphs, Australas. J. Comb., 54 (2012), 141-149. |
[2] |
A. Ahmad, M. Arshad, G. Ižaríková, Irregular labelings of helm and sun graphs, AKCE Int. J. Graphs Combinatorics, 12 (2015), 161-168. doi: 10.1016/j.akcej.2015.11.010
![]() |
[3] |
A. Ahmad, M. Bača, M. K. Siddiqui, On edge irregular total labeling of categorical product of two cycles, Theory Comput. Syst., 54 (2014), 1-12. doi: 10.1007/s00224-013-9470-3
![]() |
[4] | A. Ahmad, M. Bača, Total edge irregularity strength of a categorical product of two paths, Ars Comb., 114 (2014), 203-212. |
[5] | A. Ahmad, O. B. S. Al-Mushayt, M. Bača, On edge irregularity strength of graphs, Appl. Math. Comput., 243 (2014), 607-610. |
[6] | A. Ahmad, M. K. Siddiqui, M. Ibrahim, M. Asif, On the total irregularity strength of generalized Petersen graph, Math. Rep., 18 (2016), 197-204. |
[7] | A. Ahmad, M. Bača, Edge irregular total labeling of certain family of graphs, AKCE Int. J. Graphs. Combinatorics, 6 (2009), 21-29. |
[8] | O. Al-Mushayt, A. Ahmad, M. K. Siddiqui, On the total edge irregularity strength of hexagonal grid graphs, Australas. J. Comb., 53 (2012), 263-271. |
[9] |
D. Amar, O. Togni, Irregularity strength of trees, Discrete Math., 190 (1998), 15-38. doi: 10.1016/S0012-365X(98)00112-5
![]() |
[10] |
M. Bača, S. Jendroî, M. Miller, J. Ryan, On irregular total labellings, Discrete Math., 307 (2007), 1378-1388. doi: 10.1016/j.disc.2005.11.075
![]() |
[11] | M. Bača, M. K. Siddiqui, Total edge irregularity strength of generalized prism, Appl. Math. Comput., 235 (2014), 168-173. |
[12] |
S. Brandt, J. Miškuf, D. Rautenbach, On a conjecture about edge irregular total labellings, J. Graph Theory, 57 (2008), 333-343. doi: 10.1002/jgt.20287
![]() |
[13] |
N. Hinding, N. Suardi, H. Basir, Total edge irregularity strength of subdivision of star, J. Discrete Math. Sci. Cryptography, 18 (2015), 869-875. doi: 10.1080/09720529.2015.1032716
![]() |
[14] |
D. Indriati, Widodo, I. E. Wijayanti, K. A. Sugeng, M. Bača, On total edge irregularity strength of generalized web graphs and related graphs, Math. Comput. Sci., 9 (2015), 161-167. doi: 10.1007/s11786-015-0221-5
![]() |
[15] |
J. Ivanĉo, S. Jendroî, Total edge irregularity strength of trees, Discussiones Math. Graph Theory, 26 (2006), 449-456. doi: 10.7151/dmgt.1337
![]() |
[16] |
S. Jendroî, J. Miŝkuf, R. Soták, Total edge irregularity strength of complete graph and complete bipartite graphs, Electron. Notes Discrete Math., 28 (2007), 281-285. doi: 10.1016/j.endm.2007.01.041
![]() |
[17] |
P. Jeyanthi, A. Sudha, Total edge irregularity strength of disjoint union of wheel graphs, Electron. Notes Discrete Math., 48 (2015), 175-182. doi: 10.1016/j.endm.2015.05.026
![]() |
[18] |
P. Majerski, J. Przybylo, On the irregularity strength of dense graphs, SIAM J. Discrete Math., 28 (2014), 197-205. doi: 10.1137/120886650
![]() |
[19] | J. Miškuf, S. Jendroî, On total edge irregularity strength of the grids, Tatra Mt. Math. Publ., 36 (2007), 147-151. |
[20] |
M. Naeem, M. K. Siddiqui, Total irregularity strength of disjoint union of isomorphic copies of generalized Petersen graph, Discrete Math. Algorithms Appl., 9 (2017), 1750071. doi: 10.1142/S1793830917500719
![]() |
[21] |
F. Pfender, Total edge irregularity strength of large graphs, Discrete Math., 312 (2012), 229-237. doi: 10.1016/j.disc.2011.08.027
![]() |
[22] |
R. W. Putra, Y. Susanti, On total edge irregularity strength of centralized uniform theta graphs, AKCE Int. J. Graphs Combinatorics, 15 (2018), 7-13. doi: 10.1016/j.akcej.2018.02.002
![]() |
[23] |
B. Rajan, I. Rajasingh, P. Venugopal, Metric dimension of uniform and quasi-uniform theta graphs, J. Comput. Math. Sci., 2 (2011), 37-46. doi: 10.22436/jmcs.002.01.05
![]() |
[24] | I. Rajasingh, S. T. Arockiamary, Total edge irregularity strength of series parallel graphs, Int. J. Pure Appl. Math., 99 (2015), 11-21. |
[25] | R. Ramdani, A. N. M. Salman, On the total irregularity strength of some Cartesian product graphs, AKCE Int. J. Graphs Combinatorics, 10 (2013), 199-209. |
[26] |
F. Salama, On total edge irregularity strength of polar grid graph, J. Taibah Univ. Sci., 13 (2019), 912-916. doi: 10.1080/16583655.2019.1660086
![]() |
[27] | F. Salama, Exact value of total edge irregularity strength for special families of graphs, An. Univ. Oradea, Fasc. Math., 26 (2020), 123-130. |
[28] | F. Salama, Computing the total edge irregularity strength for quintet snake graph and related graphs, J. Discrete Math. Sci. Cryptography, (2021), 1-14. Available from: https://doi.org/10.1080/09720529.2021.1878627. |
[29] | M. K. Siddiqui, On edge irregularity strength of subdivision of star Sn, Int. J. Math. Soft Comput., 2 (2012), 75-82. |
[30] |
I. Tarawneh, R. Hasni, A. Ahmad, M. A. Asim, On the edge irregularity strength for some classes of plane graphs, AIMS Math., 6 (2021), 2724-2731. doi: 10.3934/math.2021166
![]() |
[31] | M. I. Tilukay, A. N. M. Salman, E. R. Persulessy, On the total irregularity strength of fan, wheel, triangular book, and friendship graphs, Procedia Comput. Sci., 74 (2015), 124-131. |
[32] |
H. Yang, M. K. Siddiqui, M. Ibrahim, S. Ahmad, A. Ahmad, Computing the irregularity strength of planar graphs, Mathematics, 6 (2018), 150. doi: 10.3390/math6090150
![]() |
1. | F. Salama, Computing total edge irregularity strength for heptagonal snake graph and related graphs, 2022, 26, 1432-7643, 155, 10.1007/s00500-021-06364-2 | |
2. | Shuo Liu, Zhenzhong Liu, Jin Wang, STRENGTH TRAINING METHODS FOR SKIERS, 2023, 29, 1806-9940, 10.1590/1517-8692202329012022_0654 | |
3. | F. Salama, H. Rafat, H. Attiya, Total edge irregularity strength for special types of square snake graphs, 2024, 28, 1432-7643, 917, 10.1007/s00500-023-09447-4 |