This article is concerned to develop a novel generalized class of fractional impulsive delay differential equations. These equations are defined using newly discovered generalized conformable fractional operators which unify various previously-defined operators into a single form. The successive approximation method is employed and a sufficient criterion for the existence and uniqueness of the solution is developed. For the sake of illustration, three examples are provided at the end of the main results.
Citation: Hua Wang, Tahir Ullah Khan, Muhammad Adil Khan, Sajid Iqbal. New generalized conformable fractional impulsive delay differential equations with some illustrative examples[J]. AIMS Mathematics, 2021, 6(8): 8149-8172. doi: 10.3934/math.2021472
This article is concerned to develop a novel generalized class of fractional impulsive delay differential equations. These equations are defined using newly discovered generalized conformable fractional operators which unify various previously-defined operators into a single form. The successive approximation method is employed and a sufficient criterion for the existence and uniqueness of the solution is developed. For the sake of illustration, three examples are provided at the end of the main results.
[1] | A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and application of fractional differential equations, North Holland Mathematics Studies, 2006. |
[2] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993. |
[3] | I. Podlubny, Fractional differential equations, San Diego CA, Academic Press, 1999. |
[4] | S. O. Shah and A. Zada, Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales, Appl. Math. Comput., 359 (2019), 202–213. |
[5] | A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, 1995. |
[6] | V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, World Scientific, 1989. |
[7] | R. P. Agarwal, M. Benchohra, B. A. Slimani, Existence results for differential equations with fractional order and impulses, Mem. Differential Equations Math. Phys., 44 (2008) 1–21. |
[8] | J. Deng, H. Qu, New uniqueness results of solutions for fractional differential equations with infinite delay, Comput. Math. App., 60 (2010), 2253–2259. |
[9] | M. Oqielat, A. El-Ajou, Z. Al-Zhour, R. Alkhasawneh, H. Alrabaiah, Series solutions for nonlinear time-fractional Schrödinger equations: Comparisons between conformable and Caputo derivatives, Alex. Eng. J., 59 (2020), 2101–2114. doi: 10.1016/j.aej.2020.01.023 |
[10] | A. Zada, S. Ali, T. Li, Analysis of a new class of impulsive implicit sequential fractional differential equations, Int. J. Nonlin. Sci. Num., 21 (2020), 571–587. doi: 10.1515/ijnsns-2019-0030 |
[11] | B. Ahmad, M. Alghanmi, J. J. Nieto, Ahmed Alsaedi, On impulsive nonlocal integro-initial value problems involving multi-order Caputo-type generalized fractional derivatives and generalized fractional integrals, Adv. Differ. Equ., 2019 (2019), 1–20. doi: 10.1186/s13662-018-1939-6 |
[12] | Z. Ali, K. Shah, A. Zada, P. Kumam, Mathematical analysis of coupled systems with fractional order boundary conditions, Fractals, 28 (2020), 2040012. doi: 10.1142/S0218348X20400125 |
[13] | B. Ahmad, M. Alghanmi, A. Alsaedi, R. P. Agarwal, Nonlinear impulsive multi-order Caputo-Type generalized fractional differential equations with infinite delay, Mathematics, 7 (2019), 1–15. |
[14] | W. G. Glockle, T. F. Nonnenmacher, A fractional calculus approach to selfsimilar protein dynamics, Biophys. J., 68 (1995), 46–53. doi: 10.1016/S0006-3495(95)80157-8 |
[15] | Y. M. Chu, M. Adil Khan, T. U. Khan, T. Ali, Generalizations of Hermite-Hadamard type inequalities for MT-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 4305–4316. doi: 10.22436/jnsa.009.06.72 |
[16] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach, 1993. |
[17] | Z. Ali, A. Zada, K. Shah, On Ulam's stability for a coupled systems of nonlinear implicit fractional differential equations, B. Malays. Math. Sci. So., 42 (2019), 2681–2699. doi: 10.1007/s40840-018-0625-x |
[18] | Z. Ali, P. Kumam, K. Shah, A. Zada, Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations, Mathematics, 7 (2019), 1–26. |
[19] | J. P. Kharade, K. D. Kucche, On the impulsive implicit $\psi$-Hilfer fractional differential equations with delay, Math. Method. Appl. Sci., 43 (2020), 1938–1952. doi: 10.1002/mma.6017 |
[20] | S. S. Redhwan, S. L. Shaikh, M. S. Abdo, Implicit fractional differential equation with anti-periodic boundary condition involving Caputo-Katugampola type, AIMS Mathematics, 5 (2020), 3714–3730. doi: 10.3934/math.2020240 |
[21] | A. El-Ajou, M. Oqielat, Z. Al-Zhour, S. Kumar, S. Momani, Solitary solutions for time-fractional nonlinear dispersive PDEs in the sense of conformable fractional derivative, Chaos, 29 (2019), 093102. doi: 10.1063/1.5100234 |
[22] | A. El-Ajou, Z. Al-Zhour, M. Oqielat, S. Momani, T. Hayat, Series solutions of nonlinear conformable fractional KdV-Burgers equation with some applications, Eur. Phys. J. Plus, 134 (2019), 1–16. doi: 10.1140/epjp/i2019-12286-x |
[23] | T. U. Khan, M. Adil Khan, Generalized conformable fractional operators, J. Comput. Appl. Math., 346 (2019), 378–389. doi: 10.1016/j.cam.2018.07.018 |
[24] | R. Khalil, M. Al. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014) 65–70. |
[25] | M. Adil Khan, Y. M. Chu, , A. Kashuri, R. Liko, G. Ali, New Hermite-Hadamard inequalities for conformable fractional integrals, J. Funct. Spaces, 2018 (2018), 6928130. |
[26] | M. Adil Khan, T. U. Khan, Y. M. Chu, Generalized Hermite-Hadamard type inequalities for quasi-convex functions with applications, JIASF, 11 (2020), 24–42. |
[27] | A. Iqbal, M. Adil Khan, Sana Ullah, A. Kashuri, Y. M. Chu, Hermite-Hadamard type inequalities pertaining conformable fractional integrals and their applications, AIP Adv., 8 (2018), 075101. doi: 10.1063/1.5031954 |
[28] | A. Iqbal, M. Adil Khan, M. Suleman, Y. M. Chu, The right Riemann-Liouville fractional Hermite-Hadamard type inequalities derived from Green's function, AIP Adv., 10 (2020), 045032. doi: 10.1063/1.5143908 |
[29] | M. Adil Khan, T. Ali, T. U. Khan, Hermite-Hadamard type inequalities with applications, Fasc. Math., 59 (2017), 57–74. |
[30] | M. Adil Khan, S. Begum, Y. Khurshid, Y. M. Chu, Ostrowski type inequalities involving conformable fractional integrals, J. Inequal. Appl., 2018 (2018), 1–14. doi: 10.1186/s13660-017-1594-6 |
[31] | Y. M. Chu, M. Adil Khan, T. U. Khan, J. Khan, Some new inequalities of Hermite-Hadamard type for $s$-convex functions with applications, Open Math., 15 (2017), 1414–1430. doi: 10.1515/math-2017-0121 |
[32] | Y. Khurshid, M. Adil Khan, Y. M. Chu, Hermite-Hadamard-Fejer inequalities for conformable fractional integrals via Preinvex functions, J. Funct. Spaces, 2019 (2019), 1–9. |
[33] | A. Iqbal, M. Adil Khan, Sana Ullah, Y. M. Chu, Some new Hermite-Hadamard type inequalities associated with conformable fractional integrals and their applications, J. Funct. Spaces, 2020 (2020), 1–18. |
[34] | Z. Al-Zhour, N. Al-Mutairi, F. Alrawajeh, R. Alkhasawneh, Series solutions for the Laguerre and Lane-Emden fractional differential equations in the sense of conformable fractional derivative, Alex. Eng. J., 58 (2019), 1413–1420. doi: 10.1016/j.aej.2019.11.012 |
[35] | Z. Al-Zhour, N. Al-Mutairi, F. Alrawajeh and R. Alkhasawneh, New theoretical results and applications on conformable fractional natural transform, Ain Shams Eng. J., 12 (2021), 927–933. doi: 10.1016/j.asej.2020.07.006 |
[36] | Z. Al-Zhour, Fundamental fractional exponential matrix: new computational formulae and electrical applications, (AEU-Int. J. Electron. C., 129 (2021), 153557. doi: 10.1016/j.aeue.2020.153557 |
[37] | U. N. Katugampola, A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl., 4 (2014), 1–15. |
[38] | H. L. Royden, Real analysis, Pearson Education, New Delhi, 2003. |