Research article Special Issues

A political concept for the Gragnano Valley of Mills (Valle dei Mulini). Urban redevelopment of cultural-industrial heritage

  • Received: 31 October 2023 Revised: 17 December 2023 Accepted: 21 December 2023 Published: 31 December 2023
  • The scholarly community has been paying more attention to the issue of the revitalization of the historical conservation of cities and their alteration in the wake of Southern Italy's growing urbanization. Experts and scholars are beginning to understand the need for collaborative urban regeneration initiatives, protecting historical and cultural elements, upholding cultural identities, and establishing development districts. The Valley of the Mills of Gragnano, the subject of the proposed case study, is a complex issue that requires the consideration of several factors in addition to urban regeneration. These factors include the need to identify a system of multiple actions to regenerate the area, considering the current requirements for mitigating environmental risk in areas with cultural heritage, and suggesting monitoring and public participation actions for preservation. The complexity of the Valley of the Mills renovation is understood; it goes beyond the simple structural and architectural restoration of the buildings. In other cities similar to Gragnano where industrial, historical archeology and naturalistic significance run the risk of adversely affecting an extremely significant area from a historical and cultural perspective due to naturalistic and anthropogenic impacts, the article's goal is to present the case study of Gragnano as an example of a sustainable and moral urban renewal strategy. This research work aims to be proposed as a policy development guide for policy makers at local and regional levels for the development of the area.

    Citation: Irina Di Ruocco. A political concept for the Gragnano Valley of Mills (Valle dei Mulini). Urban redevelopment of cultural-industrial heritage[J]. Urban Resilience and Sustainability, 2023, 1(4): 278-308. doi: 10.3934/urs.2023018

    Related Papers:

    [1] Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,hm)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521
    [2] Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096
    [3] Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460
    [4] Atiq Ur Rehman, Ghulam Farid, Sidra Bibi, Chahn Yong Jung, Shin Min Kang . k-fractional integral inequalities of Hadamard type for exponentially (s,m)-convex functions. AIMS Mathematics, 2021, 6(1): 882-892. doi: 10.3934/math.2021052
    [5] Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115
    [6] Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379
    [7] Nassima Nasri, Badreddine Meftah, Abdelkader Moumen, Hicham Saber . Fractional 3/8-Simpson type inequalities for differentiable convex functions. AIMS Mathematics, 2024, 9(3): 5349-5375. doi: 10.3934/math.2024258
    [8] Yonghong Liu, Ghulam Farid, Dina Abuzaid, Hafsa Yasmeen . On boundedness of fractional integral operators via several kinds of convex functions. AIMS Mathematics, 2022, 7(10): 19167-19179. doi: 10.3934/math.20221052
    [9] Shuang-Shuang Zhou, Ghulam Farid, Chahn Yong Jung . Convexity with respect to strictly monotone function and Riemann-Liouville fractional Fejér-Hadamard inequalities. AIMS Mathematics, 2021, 6(7): 6975-6985. doi: 10.3934/math.2021409
    [10] Manar A. Alqudah, Artion Kashuri, Pshtiwan Othman Mohammed, Muhammad Raees, Thabet Abdeljawad, Matloob Anwar, Y. S. Hamed . On modified convex interval valued functions and related inclusions via the interval valued generalized fractional integrals in extended interval space. AIMS Mathematics, 2021, 6(5): 4638-4663. doi: 10.3934/math.2021273
  • The scholarly community has been paying more attention to the issue of the revitalization of the historical conservation of cities and their alteration in the wake of Southern Italy's growing urbanization. Experts and scholars are beginning to understand the need for collaborative urban regeneration initiatives, protecting historical and cultural elements, upholding cultural identities, and establishing development districts. The Valley of the Mills of Gragnano, the subject of the proposed case study, is a complex issue that requires the consideration of several factors in addition to urban regeneration. These factors include the need to identify a system of multiple actions to regenerate the area, considering the current requirements for mitigating environmental risk in areas with cultural heritage, and suggesting monitoring and public participation actions for preservation. The complexity of the Valley of the Mills renovation is understood; it goes beyond the simple structural and architectural restoration of the buildings. In other cities similar to Gragnano where industrial, historical archeology and naturalistic significance run the risk of adversely affecting an extremely significant area from a historical and cultural perspective due to naturalistic and anthropogenic impacts, the article's goal is to present the case study of Gragnano as an example of a sustainable and moral urban renewal strategy. This research work aims to be proposed as a policy development guide for policy makers at local and regional levels for the development of the area.



    Fractional calculus deals with the equations which involve integrals and derivatives of fractional orders. The history of fractional calculus begins from the history of calculus. The role of fractional integral operators is very vital in the applications of this subject in other fields. Several well known phenomenas and their solutions are presented in fractional calculus which can not be studied in ordinary calculus. Inequalities are useful tools in mathematical modelling of real world problems, they also appear as constraints to initial/boundary value problems. Fractional integral/derivative inequalities are of great importance in the study of fractional differential models and fractional dynamical systems. In recent years study of fractional integral/derivative inequalities accelerate very fastly. Many well known classical inequalities have been generalized by using classical and newly defined integral operators in fractional calculus. For some recent work on fractional integral inequalities we refer the readers to [1,2,3,4,5,6] and references therein.

    Our goal in this paper is to apply generalize Riemann-Liouville fractional integrals using a monotonically increasing function. The Hadamard inequalities are proved for these integral operators using strongly (α,m)-convex functions. Also error bounds of well known Hadamard inequalities are obtained by using two fractional integral identities. In connection with the results of this paper, we give generalizations and refinements of some well known results added recently in the literature of mathematical inequalities.

    Next, we like to give some definitions and established results which are necessary and directly associated with the findings of this paper.

    Definition 1. [7] A function f:[0,+)R is said to be strongly (α,m)-convex function with modulus c0, where (α,m)[0,1]2, if

    f(xt+m(1t)y)tαf(x)+m(1tα)f(y)cmtα(1tα)|yx|2, (1.1)

    holds x,y[0,+) and t[0,1].

    The well-known Hadamard inequality is a very nice geometrical interpretation of convex functions defined on the real line, it is stated as follows:

    Theorem 1. The following inequality holds:

    f(x+y2)1yxyxf(v)dvf(x)+f(y)2, (1.2)

    for convex function f:IR, where I is an interval and x,yI, x<y.

    The definition of Riemann-Liouville fractional integrals is given as follows:

    Definition 2. Let fL1[a,b]. Then left-sided and right-sided Riemann-Liouville fractional integrals of a function f of order μ where (μ)>0 are defined by

    Iμa+f(x)=1Γ(μ)xa(xt)μ1f(t)dt,x>a, (1.3)

    and

    Iμbf(x)=1Γ(μ)bx(tx)μ1f(t)dt,x<b. (1.4)

    The following theorems provide two Riemann-Liouville fractional versions of the Hadamard inequality for convex functions.

    Theorem 2. [8] Let f:[a,b]R be a positive function with 0a<b and fL1[a,b]. If f is a convex function on [a,b], then the following fractional integral inequality holds:

    f(a+b2)Γ(μ+1)2(ba)μ[Iμa+f(b)+Iμbf(a)]f(a)+f(b)2, (1.5)

    with μ>0.

    Theorem 3. [9] Under the assumption of Theorem 2, the following fractional integral inequality holds:

    f(a+b2)2μ1Γ(μ+1)(ba)μ[Iμ(a+b2)+f(b)+Iμ(a+b2)f(a)]f(a)+f(b)2, (1.6)

    with μ>0.

    Theorem 4. [8] Let f:[a,b]R be a differentiable mapping on (a,b) with a<b. If |f| is convex on [a,b], then the following fractional integral inequality holds:

    |f(a)+f(b)2Γ(μ+1)2(ba)μ[Iμa+f(b)+Iμbf(a)]|ba2(μ+1)(112μ)[|f(a)|+|f(b)|]. (1.7)

    The k-analogue of Riemann-Liouville fractional integrals is defined as follows:

    Definition 3. [10] Let fL1[a,b]. Then k-fractional Riemann-Liouville integrals of order μ where (μ)>0, k>0, are defined by

    kIμa+f(x)=1kΓk(μ)xa(xt)μk1f(t)dt,x>a, (1.8)

    and

    kIμbf(x)=1kΓk(μ)bx(tx)μk1f(t)dt,x<b, (1.9)

    where Γk(.) is defined as [11]

    Γk(μ)=0tμ1etkkdt.

    The k-fractional versions of Hadamard type inequalities (1.5)–(1.7) are given in the following theorems.

    Theorem 5. [12] Let f:[a,b]R be a positive function with 0a<b. If f is a convex function on [a,b], then the following inequalities for k-fractional integrals hold:

    f(a+b2)Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]f(a)+f(b)2. (1.10)

    Theorem 6. [13] Under the assumption of Theorem 5, the following fractional integral inequality holds:

    f(a+b2)2μk1Γk(μ+k)(ba)μk[kIμ(a+b2)+f(b)+kIμ(a+b2)f(a)]f(a)+f(b)2. (1.11)

    Theorem 7. [12] Let f:[a,b]R be a differentiable mapping on (a,b) with 0a<b. If |f| is convex on [a,b], then the following inequality for k-fractional integrals holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]|ba2(μk+1)(112μk)[|f(a)|+|f(b)|]. (1.12)

    In the following, we give the definition of generalized Riemann-Liouville fractional integrals by a monotonically increasing function.

    Definition 4. [14] Let fL1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where (μ)>0 are defined by

    Iμ,ψa+f(x)=1Γ(μ)xaψ(t)(ψ(x)ψ(t))μ1f(t)dt,x>a, (1.13)

    and

    Iμ,ψbf(x)=1Γ(μ)bxψ(t)(ψ(t)ψ(x))μ1f(t)dt,x<b. (1.14)

    The k-analogue of generalized Riemann-Liouville fractional integrals is defined as follows:

    Definition 5 [4] Let fL1[a,b]. Also let ψ be an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function ψ on [a,b] of order μ where (μ)>0, k>0, are defined by

    kIμ,ψa+f(x)=1kΓk(μ)xaψ(t)(ψ(x)ψ(t))μk1f(t)dt,x>a, (1.15)

    and

    kIμ,ψbf(x)=1kΓk(μ)bxψ(t)(ψ(t)ψ(x))μk1f(t)dt,x<b. (1.16)

    For more details of above defined fractional integrals, we refer the readers to see [15,16].

    Rest of the paper is organized as follows: In Section 2, we find Hadamard type inequalities for generalized Riemann-Liouville fractional integrals with the help of strongly (α,m)-convex functions. The consequences of these inequalities are listed in remarks. Also some new fractional integral inequalities for convex functions, strongly convex functions and strongly m-convex functions are deduced in the form of corollaries. In Section 3, the error bounds of Hadamard type fractional inequalities are established via two fractional integral identities.

    Theorem 8. Let f:[a,b]R be a positive function with 0a<mb and fL1[a,b]. Also suppose that f is strongly (α,m)-convex function on [a,b] with modulus c0, ψ is positive strictly increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    f(a+mb2)+cm(2α1)22α(μ+k)(μ+2k)[μ(μ+k)(ba)2+2k2(ammb)2+2μk(ba)(ammb)]Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμk+1kIμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α1)f(am2))2α(μ2+μαk)cmkαμ[(ba)2+m(2α1)(bam2)2]2α(μ+αk)(μ+2αk), (2.1)

    with μ>0.

    Proof. Since f is strongly (α,m)-convex function, for x,y[a,b] we have

    f(x+my2)f(x)+m(2α1)f(y)2αcm(2α1)|yx|222α. (2.2)

    By setting x=at+m(1t)b, y=am(1t)+bt and integrating the resulting inequality after multiplying with tμk1, we get

    kμf(a+mb2)12α[10f(at+m(1t)b)tμk1dt+m(2α1)10f(am(1t)+bt)tμk1dt]cm(2α1)22αμ(μ+k)(μ+2k)[μk(μ+k)(ba)2+2k3(ammb)2+2k2μ(ba)(ammb)]. (2.3)

    Now, let u[a,b] such that ψ(u)=at+m(1t)b, that is, t=mbψ(u)mba and let v[a,b] such that ψ(v)=am(1t)+bt, that is, t=ψ(v)ambam in (2.3), then multiplying μk after applying Definition 5, we get the following inequality:

    f(a+mb2)Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(b)(fψ)(ψ1(am))]cm(2α1)22α(μ+k)(μ+2k)[μ(ba)2+2k2(ammb)2+2μk(ba)(ammb)]. (2.4)

    Hence by rearranging the terms, the first inequality is established. On the other hand, f is strongly (α,m)-convex function, for t[0,1], we have the following inequality:

    f(at+m(1t)b)+m(2α1)f(am(1t)+bt)tα[f(a)+m(2α1)f(b)]+m(1tα)[f(b)+m(2α1)f(am2)]cmtα(1tα)[(ba)2+m(2α1)(bam2)2]. (2.5)

    Multiplying inequality (2.5) with tμk1 on both sides and then integrating over the interval [0,1], we get

    10tμk1f(ta+m(1t)b)dt+m(2α1)10tμk1f(am(1t)+tb)dt(f(a)+m(2α1)f(b))(kμ+kα)+m(f(b)+m(2α1)f(am2))k2αμ2+μαkcmαk2[(ba)2+m(2α1)(bam2)2](μ+αk)(μ+2αk). (2.6)

    Again taking ψ(u)=at+m(1t)b that is t=mbψ(u)mba and ψ(v)=am(1t)+bt that is t=ψ(v)ambam in (2.6), then by applying Definition 5, the second inequality can be obtained.

    Remark 1. Under the assumption of Theorem 8, by fixing parameters one can achieve the following outcomes:

    (i) If α=m=1 in (2.1), then the inequality stated in [17,Theorem 9] can be obtained.

    (ii) If α=m=1, ψ=I and c=0 in (2.1), then Theorem 5 can be obtained.

    (iii) If α=k=m=1, ψ=I and c=0 in (2.1), then Theorem 2 can be obtained.

    (iv) If α=k=m=1 and ψ=I in (2.1), then the inequality stated in [18,Theorem 2.1] can be obtained.

    (v) If α=μ=k=m=1, ψ=I and c=0 in (2.1), then the Hadamard inequality can be obtained.

    (vi) If α=m=1 and c=0 in (2.1), then the inequality stated in [19,Theorem 1] can be obtained.

    (vii) If α=m=k=1 and c=0 in (2.1), then the inequality stated in [20,Theorem 2.1] can be obtained.

    (viii) If α=k=1 and ψ=I in (2.1), then the inequality stated in [21,Theorem 6] can be obtained.

    (ix) If α=μ=m=k=1 and ψ=I in (2.1), then the inequality stated in [22,Theorem 6] can be obtained.

    (x) If α=k=1, ψ=I and c=0 in (2.1), then the inequality stated in [23,Theorem 2.1] can be obtained.

    (xi) If k=1 and ψ=I in (2.1), then the inequality stated in [24,Theorem 4] can be obtained.

    Corollary 1. Under the assumption of Theorem 8 with c=0 in (2.1), the following fractional integral inequality holds:

    f(a+mb2)Γk(μ+k)2α(mba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμk+1kIμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mμαk(f(b)+m(2α1)f(am2))2α(μ2+μαk).

    Corollary 2. Under the assumption of Theorem 8 with k=1 in (2.1), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22αμ(μ+1)(μ+2)[μ(μ+1)(ba)2+2(ammb)2+2μ(ba)(ammb)]Γ(μ+1)2α(mba)μ[Iμ,ψψ1(a)+(fψ)(ψ1(mb))+(2α1)mμ+1Iμ,ψψ1(b)(fψ)(ψ1(am))][f(a)+m(2α1)f(b)]μ2α(μ+α)+m(f(b)+m(2α1)f(am2))αμ2α(μ2+μα)cmαμ[(ba)2+m(2α1)(bam2)2]2α(μ+α)(μ+2α).

    Corollary 3. Under the assumption of Theorem 8 with ψ=I in (2.1), the following fractional integral inequality holds:

    f(a+mb2)+cm(2α1)22α(μ+k)(μ+2k)[μ(μ+k)(ba)2+2k2(ammb)2+2μk(ba)(ammb)]Γk(μ+k)2α(mba)μk[kIμa+f(mb)+(2α1)mμk+1kIμbf(am)][f(a)+m(2α1)f(b)]μ2α(μ+kα)+mkαμ(f(b)+m(2α1)f(am2))2α(μ2+μαk)cmkαμ[(ba)2+m(2α1)(bam2)2]2α(μ+αk)(μ+2αk).

    Theorem 9. Under the assumption of Theorem 8, the following k-fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(μ+3k)(ba)×(ammb)]2μkαΓk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2))cmμ[2α(μ+2αk)(μ+αk)]23α(μ+αk)(μ+2αk)((ba)2+m(bam2)2), (2.7)

    with μ>0.

    Proof. Let x=at2+m(2t2)b, y=am(2t2)+bt2 in (2.2) and integrating the resulting inequality over [0,1] after multiplying with tμk1, we get

    kμf(a+mb2)12α[10f(at2+m(2t2)b)tμk1dt+m(2α1)10f(am(2t2)+bt2)tμk1dt]cm(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2k+k(ammb)2(μ2+5kμ+8k2)+2μ(ba)(ammb)(μ+3k)k]. (2.8)

    Let u[a,b], so that ψ(u)=at2+m(2t2)b, that is, t=2(mbψ(u))mba and v[a,b], so that ψ(v)=am(2t2)+bt2, that is, t=2(ψ(v)am)bam in (2.8), then by applying Definition 5, we get

    f(a+mb2)2μkΓk(μ+k)2α(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]cmμ(2α1)22α4(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(ba)(ammb)(μ+3k)]. (2.9)

    Hence by rearranging terms, the first inequality is established. Since f is strongly (α,m)-convex function with modulus c0, for t[0,1], we have following inequality

    f(at2+m(2t2)b)+m(2α1)f(am(2t2)+bt2)(t2)α[f(a)+m(2α1)f(b)]+m(2αtα2α)[f(b)+m(2α1)f(am2)]cmtα(2αtα)[(ba)2+m(bam2)2]22α. (2.10)

    Multiplying (2.10) with tμk1 on both sides and integrating over [0,1], we get

    10f(at2+m(2t2)b)tμk1dt+m(2α1)10f(am(2t2)+bt2)tμk1dtk[f(a)+m(2α1)f(b)]2α(αk+μ)+mk(2α(μ+αk)μ)2αμ(μ+αk)(f(b)+m(2α1)f(am2))cmk(2α(μ+2αk)(μ+αk))22α((ba)2+m(bam2)2). (2.11)

    Again taking ψ(u)=at2+m(2t2)b, that is, t=2(mbψ(v))mba and so that ψ(v)=am(2t2)+bt2, that is, t=2(ψ(v)am)bam in (2.11), then by applying Definition 5, the second inequality can be obtained.

    Remark 2. Under the assumption of Theorem 9, one can achieve the following outcomes:

    (i) If α=m=1 in (2.7), then the inequality stated in [17,Theorem 10] can be obtained.

    (ii) If α=m=k=1, ψ=I and c=0 in (2.7), then Theorem 3 can be obtained.

    (iii) If α=μ=m=k=1, ψ=I and c=0 in (2.7), then Hadamard inequality can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (2.7), then the inequality stated in [13,Theorem 2.1] can be obtained.

    (v) If α=m=1 and c=0 in (2.7), then the inequality stated in [17,corrollary 5] can be obtained.

    (vi) If α=k=1 and ψ=I in (2.7), then the inequality stated in [21,Theorem 7] can be obtained.

    (vii) If k=1 and ψ=I in (2.7), then the inequality stated in [24,Theorem 5] can be obtained.

    (viii) If α=m=k=1 and c=0 in (2.7), then the inequality stated in [25,Lemma 1] can be obtained.

    Corollary 4. Under the assumption of Theorem 9 with c=0 in (2.7), the following fractional integral inequality holds:

    f(a+mb2)2μkαΓk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1(2α1)kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2)).

    Corollary 5. Under the assumption of Theorem 9 with k=1 in (2.7), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+1)(μ+2)[μ(μ+1)(ba)2+(ammb)2(μ2+5μ+8)+2μ(μ+3)(ba)(ammb)]2μαΓ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1(2α1)Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]μ[f(a)+m(2α1)f(b)]22α(α+μ)+m[2α(μ+α)μ]22α(μ+α)(f(b)+m(2α1)f(am2))cmμ(2α(μ+2α)(μ+α))23α(μ+α)(μ+2α)×[(ba)2+m(bam2)2].

    Corollary 6. Under the assumption of Theorem 9 with ψ=I in (2.7), the following fractional integral inequality holds:

    f(a+mb2)+cmμ(2α1)22α+2(μ+2k)[μ(μ+k)(ba)2+(ammb)2(μ2+5kμ+8k2)+2μ(ba)(μ+3k)(ammb)]2μkαΓk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb))+mμk+1(2α1)kIμ(a+mb2m)f(am)]μ[f(a)+m(2α1)f(b)]22α(αk+μ)+m(2α(μ+αk)μ)22α(μ+αk)(f(b)+m(2α1)f(am2))cmμ[2α(μ+2αk)(μ+αk)]23α(μ+αk)(μ+2αk)((ba)2+m(bam2)2).

    In this section, we find the error estimations of Hadamard type fractional inequalities for strongly (α,m)-convex functions by using (1.15) and (1.16) that gives the refinements of already proved estimations. The following lemma is useful to prove the next results.

    Lemma 1. Let a<b and f:[a,b]R be a differentiable mapping on (a,b). Also, suppose that fL[a,b], ψ is positive strictly increasing function, having a continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0, then the following identity holds for generalized fractional integral operators:

    f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a)]=ba210[(1t)μktμk]f(ta+(1t)b)dt. (3.1)

    Proof. We cosider the right hand side of (3.1) as follows:

    10((1t)αktμk)f(ta+(1t)b)dt=10(1t)μk1f(ta+(1t)b)dt10tμk1f(ta+(1t)b)dt=I1I2 (3.2)

    Integrating by parts we get

    I1=10(1t)μk1f(ta+(1t)b)dt=f(b)baμk(ba)10(1t)μk1f(ta+(1t)b)dt

    We have v[a,b] such that ψ(v)=ta+(1t)b, with this substitution one can have

    I1=f(b)baμk(ba)ψ1(b)ψ1(a)(ψ(v)aba)μk1(fψ(v))baψ(v)dv=f(b)baΓk(μ+k)(ba)μk+1Iμ,ψψ1(b)(fψ)(ψ1(a)). (3.3)

    Similarly one can get after a little computation

    I2=f(a)ba+Γk(μ+k)(ba)μk+1Iμ,ψψ1(a)+(fψ)(ψ1(b)). (3.4)

    Using (3.3) and (3.4) in (3.2), (3.1) can be obtained.

    Remark 3. (i) If k=1 and ψ=I in (3.1), then the equality stated in [8,Lemma 2] can be obtained.

    (ii) For μ=k=1 and ψ=I in (3.1), then the equality stated in [28,Lemma 2.1] can be obtained.

    Theorem 10. Let f:[a,b]R be a differentiable mapping on (a,b) with 0a<b. Also suppose that |f| is strongly (α,m)-convex with modulus c0, ψ is positive strictly increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|×(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))cm(bma)22(2B(12;α+1,μk+1)2α4α2˜F1(1+2α,μk,2(1+α);12)+1(12)μk+αμk+1+αB(α+1,μk+1)1(12)μk+2αμk+1+2α+B(2α+1,μk+1))], (3.5)

    with μ>0 and 2˜F1(1+2α,μk,2(1+α);12) is regularized hypergeometric function.

    Proof. By Lemma 1, it follows that

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(b)]|ba210|(1t)μktμk||f(ta+(1t)b|)dt. (3.6)

    Since |f| is strongly (α,m)-convex function on [a,b] and t[0,1], we have

    |f(ta+(1t)b)|tα|f(a)|+m(1tα)|f(bm)|cmtα(1tα)(bma)2. (3.7)

    Therefore (3.6) implies the following inequality

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(b)]|ba210|(1t)μktμk|(tα|f(a)|+m(1tα)|f(bm)|cmtα(1tα)(bma)2]dtba2[|f(a)|(120tα((1t)μktμk)dt+112tα(tμk(1t)μk)dt)+m|f(bm)|(120(1tα)((1t)μktμk)dt+112(1tα)(tμk(1t)μk)dt)cm(bma)2(120tα(1tα)((1t)μktμk)dt+112tα(1tα)(tμk(1t)μk)dt)]. (3.8)

    In the following, we compute integrals appearing on the right side of the above inequality

    120tα((1t)μktμk)dt+112tα(tμk(1t)μk)dt=2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1). (3.9)
    120(1tα)((1t)μktμk)dt+112(1tα)(tμk(1t)μk)dt.=2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1). (3.10)
    112tα(1tα)((1t)μktμk)dt+112tα(1tα)(tμk(1t)μk)dt=2B(12;α+1,μk+1)(12)1+μk+αμk+1+α2α4α2˜F1(1+2α,μk,2(1+α);12)+(12)1+μk+2αμk+1+2α+1(12)1+μk+αμk+1+αB(α+1,μk+1)1(12)1+μk+2αμk+1+2α+B(2α+1,μk+1). (3.11)

    Using (3.9), (3.10) and (3.11) in (3.8), we get the required inequality (3.5).

    Remark 4. Under the assumption of Theorem 10, one can achieve the following outcomes:

    (i) If α=m=1 in (3.5), then the inequality stated in [17,Theorem 11] can be obtained.

    (ii) If α=m=1 and c=0 in (3.5), then the inequality stated in [17,Corollary 10] can be obtained.

    (iii) If α=m=1, ψ=I and c=0 in (3.5), then Theorem 7 can be obtained.

    (iv) If α=m=k=1, ψ=I and c=0 in (3.5), then Theorem 4 can be obtained.

    (v) If α=k=1 and ψ=I in (3.5), then the inequality stated in [21,Theorem 8] can be obtained.

    (vi) If α=μ=m=k=1 and ψ=I in (3.5), then the inequality stated in [26,Corollary 6] can be obtained.

    Corollary 7. Under the assumption of Theorem 10 with c=0 in (3.5), the following inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμ,ψψ1(a)+(fψ)(ψ1(b))+kIμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|×(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))].

    Corollary 8. Under the assumption of Theorem 10 with k=m=1 and c=0 in (3.5), the following inequality holds:

    |f(a)+f(b)2Γ(μ+1)2(ba)μ[Iμ,ψψ1(a)+(fψ)(ψ1(b))+Iμ,ψψ1(b)(fψ)(ψ1(a))]|ba2[|f(a)|(2B(12;α+1,μ+1)+1(12)α+μα+μ+1B(α+1,μ+1))+|f(b)|×(2(1(12)μ)μ+1+(12)1+μ+αμ+1+α2B(12;α+1,μ+1)1(12)1+μ+αμ+1+α+B(α+1,μ+1))].

    Corollary 9. Under the assumption of Theorem 10 with ψ=I in (3.5), the following inequality holds:

    |f(a)+f(b)2Γk(μ+k)2(ba)μk[kIμa+f(b)+kIμbf(a)]|ba2[|f(a)|(2B(12;α+1,μk+1)+1(12)α+μkα+μk+1B(α+1,μk+1))+m|f(bm)|(2(1(12)μk)μk+1+(12)1+μk+αμk+1+α2B(12;α+1,μk+1)1(12)1+μk+αμk+1+α+B(α+1,μk+1))]c(ba)3(2B(12;α+1,μk+1)2α4α2˜F1(1+2α,μk,2(1+α);12)+1(12)μk+αμk+1+αB(α+1,μk+1)1(12)μk+2αμk+1+2α+B(2α+1,μk+1))].

    For next two results, we need the following lemma.

    Lemma 2. [26] Let f:[a,b]R be a differentiable mapping on (a,b) such that fL[a,b], ψ is positive increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and m(0,1], then the following integral identity for fractional integral holds:

    2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]=mba4[10tμkf(at2+m(2t2)b)dt10tμkf(am(2t2)+bt2)dt]. (3.12)

    Theorem 11. Let f:[a,b]R be a differentiable mapping on (a,b) such that fŁ[a,b]. Also suppose that |f|q is strongly (α,m)-convex function on [a,b] for q1, ψ is an increasing and positive monotone function on (a,b], having a continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following k-fractional integral inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)×(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k212αcm(μk+1)(μk+2)(bam2)2(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q], (3.13)

    with μ>0.

    Proof. Applying Lemma 2 and strongly (α,m)-convexity of |f|, (for q=1), we have

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4[10|tμkf(at2+m(2t2)b)|dt+10|tμkf(am(2t2)+bt2)dt|]mba4[(|f(a)|+|f(b)|2α)10tμk+αdt+m(|f(b)|+|f(am2)|)2α10(2αtα)tμkdtcm((ba)2+(bam2)2)22α10tμk+α(2αtα)dt]mba4[k[|f(a)|+|f(b)|]2α(μ+αk+k)+mk[2α(αk+μ+k)(μ+k)](μ+k)(αk+μ+k)×(|f(b)|+|f(am2)|)cmk[2α(2αk+μ+k)(αk+μ+k)]22α(αk+μ+k)(2αk+μ+k)((ba)2+(bam2)2)].

    Now for q>1, we proceed as follows: From Lemma 2 and using power mean inequality, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(10tμkdt)11q[(10tμk|f(at2+m(2t2)b)|qdt)1q+(10tμk|f(am(2t2)+bt2)|qdt)1q]mba4(μk+1)1p[(|f(a)|q2α10tα+μkdt+m|f(b)|q2α10(2αtα)tμkdtcm(ba)222α10(2αtα)tμk+αdt)1q+(m|f(am2)|2α10(2αtα)tμkdt+|f(b)|q2α10tα+μkdtcm(bam2)222α10(2αtα)tμk+αdt)1q]mba4(μk+1)1p[(k|f(a)|q2α(αk+μ+k)+mk|f(b)|q[2α(αk+μ+k)(μ+k)]2α(μ+k)(αk+μ+k)cmk(ba)2[2α(2αk+μ+k)(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q+(mk|f(am2)|q[2α(αk+μ+k)(μ+k)]2α(μ+k)(αk+μ+k)+k|f(b)|q2α(kα+μ+k)cmk(bam2)2[2α(2αk+μ+k)(αk+μ+k)]22α(kα+μ+k)(2αk+μ+k))1q]mba22+1q(μk+1)(μk+2)1q[(2k|f(a)|q(μk+1)(μk+2)2α(αk+μ+k)+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k)+2k(μk+1)(μk+2)|f(b)|q2α(αk+μ+k)2cm(μk+1)(μk+2)(bam2)222α2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k))1q].

    This completes the proof.

    Remark 5. Under the assumption of Theorem 11, one can achieve the following outcomes:

    (i) If α=m=1 in (3.13), then the inequality stated in [17,Theorem 12] can be obtained.

    (ii) If α=k=1 and ψ=I in (3.13), then the inequality stated in [21,Theorem 10] can be obtained.

    (iii) If α=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [27,Theorem 2.4] can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (3.13), then the inequality stated in [13,Theorem 3.1] can be obtained.

    (v) If α=m=k=1, ψ=I and c=0 in (3.13), then the inequality stated in [9,Theorem 5] can be obtained.

    (vi) If α=μ=k=m=q=1 and ψ=I in (3.13), then the inequality stated in [26,Corollary 8] can be obtained.

    (vii) If α=μ=k=m=q=1, ψ=I and c=0 in (3.13), then the inequality stated in [28,Theorem 2.2] can be obtained.

    Corollary 10. Under the assumption of Theorem 11 with c=0 in (3.13), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)×(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k)1q].

    Corollary 11. Under the assumption of Theorem 11 with k=1 in (3.13), the following inequality holds:

    |2μ1Γ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μ+1)(μ+2)1q[(21α|f(a)|q(μ+1)(μ+2)α+μ+1+21αm|f(b)|q(μ+1)(μ+2)×(2α(α+μ+1)(μ+1)(μ+1)(α+μ+1))212αcm(ba)2(μ+1)(μ+2)(2α(2α+μ+1)(α+μ+1)(α+μ+1)(2α+μ+1)))1q+(21αm|f(am2)|q(μ+1)(μ+2)(2α(α+μ+1)(μ+1)(μ+1)(α+μ+1))+21α(μ+1)(μ+2)|f(b)|qα+μ+1212αcm(μ+1)(μ+2)(bam2)2(2α(2α+μ+1)(α+μ+1)(α+μ+1)(2α+μ+1)))1q].

    Corollary 12. Under the assumption of Theorem 11 with ψ=I in (3.13), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)f(am)]12[f(a+mb2)+mf(a+mb2m)]|mba22+1q(μk+1)(μk+2)1q[(21αk|f(a)|q(μk+1)(μk+2)αk+μ+k+21αmk|f(b)|q(μk+1)(μk+2)×(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))212αcm(ba)2(μk+1)(μk+2)(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q+(21αkm|f(am2)|q(μk+1)(μk+2)(2α(αk+μ+k)(μ+k)(μ+k)(αk+μ+k))+21αk(μk+1)(μk+2)|f(b)|qαk+μ+k212αcm(μk+1)(μk+2)(bam2)2(2α(2αk+μ+k)(αk+μ+k)(kα+μ+k)(2αk+μ+k)))1q].

    Theorem 12. Let f:IR be a differentiable mapping on (a,b) with a<b. Also suppose that |f|q is strongly (α,m)-convex function for q>1, ψ is positive increasing function having continuous derivative ψ on (a,b). If [a,b]Range(ψ), k>0 and (α,m)(0,1]2, then the following fractional integral inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(2αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q], (3.14)

    with μ>0 and 1p+1q=1.

    Proof. By applying Lemma 2 and using the property of modulus, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4[10|tμkf(at2+m(2t2)b)|dt+10|tμkf(am(2t2)+bt2)|dt].

    Now applying Hölder's inequality for integrals, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(μpk+1)1p[(10|f(at2+m(2t2)b)|qdt)1q+(10|f(am(2t2)+bt2)|qdt)1q].

    Using strongly (α,m)-convexity of |f|q, we get

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba4(μpk+1)1p[(|f(a)|q2α10tαdt+m|f(b)|q2α10(2αtα)dtcm(ba)222α10tα(2αtα)dt)1q+(m|f(am2)|q2α10(2αtα)dt+|f(b)|q2α10tαdtcm(bam2)222α10tα(2αtα)dt)1q]=mba4(μpk+1)1p[(|f(a)|q2α(α+1)+m|f(b)|q[2α(1+α)1]2α(1+α)cm(ba)222α(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q+(m|f(am2)|q[2α(1+α)1]2α(1+α)+|f(b)|q2α(α+1)cm(bam2)222α(1α+2α(1+2α)(1+α)(1+2α)))1q]mba421p(μpk+1)1p[(22α|f(a)|q(α+1)+22αm|f(b)|q[2α(1+α)1]1+α222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+(22αm|f(am2)|q[2α(1+α)1](1+α)+22α|f(b)|qα+1222αcm(bam2)2(1α+2α(1+2α)(1+α)(1+2α)))1q]mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|×(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Here, we have used the fact aq+bq(a+b)q, for q>1, a,b0. This completes the proof.

    Remark 6. Under the assumption of Theorem 12, one can achieve the following outcomes:

    (i) If α=m=1 in (3.14), then the inequality stated in [17,Theorem 13] can be obtained.

    (ii) If α=k=1 and ψ=I in (3.14), then the inequality stated in [21,Theorem 10] can be obtained.

    (iii) If α=k=1, ψ=I and c=0 in (3.14), then the inequality stated in [27,Theorem 2.7] can be obtained.

    (iv) If α=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [13,Theorem 2.7] can be obtained.

    (v) If α=μ=k=m=1, ψ=I and c=0 in (3.14), then the inequality stated in [29,Theorem 2.4] can be obtained.

    Corollary 13. Under the assumption of Theorem 12 with c=0 in 3.14, the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμk+1kIμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q+(|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)].

    Corollary 14. Under the assumption of Theorem 12 with k=1 in (3.14), the following inequality holds:

    |2μ1Γ(μ+1)(mba)μ[Iμ,ψψ1(a+mb2)+(fψ)(ψ1(mb))+mμ+1Iμ,ψψ1(a+mb2m)(fψ)(ψ1(am))]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μp+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(2αm[2α(1+α)1]1+α)1q)q222αcm(ba)2(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Corollary 15. Under the assumption of Theorem 12 with ψ=I in (3.14), the following inequality holds:

    |2μk1Γk(μ+k)(mba)μk[kIμ(a+mb2)+f(mb)+mμk+1kIμ(a+mb2m)f(am)]12[f(a+mb2)+mf(a+mb2m)]|mba421p(μpk+1)1p[((|f(a)|(22αα+1)1q+|f(b)|(22αm[2α(1+α)1]1+α)1q)q222αcm(ba)2×(1α+2α(1+2α)(1+α)(1+2α)))1q+((|f(am2)|(22αm[2α(1+α)1]1+α)1q+(22αα+1)1q|f(b)|)q222αcm(bam2)2(1(1+α)+2α(1+2α)(1+α)(1+2α)))1q].

    Some new versions of the Hadamard type inequalities are established for strongly (α,m)-convex functions via the generalized Riemann-Liouville fractional integrals. We have obtained new generalizations as well as proved estimations of such inequalities for strongly (α,m)-convex functions. We conclude that findings of this study give the refinements as well as generalization of several fractional inequalities for convex, strongly convex and strongly m-convex functions. The reader can further deduce inequalities for Riemann-Liouville fractional integrals.

    Authors do not have conflict of interest.



    [1] European Commission (2019) A European green deal, striving to be the first climate-neutral continent. Available from: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.
    [2] United Nations (2015) United Nations (UN) Paris Climate Agreement, Paris, France.
    [3] European Commission (2020) A renovation wave for Europe—Greening our buildings, creating jobs, improving lives. COM/2020/662 Final. Available from: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficient-buildings/renovation-wave_en.
    [4] European Commission (2020) New European Bauhaus. Available from: https://europa.eu/new-european-bauhaus/index_en.
    [5] European Parliament (2010) Directive 2010/31/EU of the European parliament and of the council of 19 May 2010 on the energy performance of buildings. Available from: https://eur-lex.europa.eu/legal-content/EN/ALL/; ELX_SESSIONID = FZMjThLLzfxmmMCQGp2Y1s2d3TjwtD8QS3pqdkhXZbwqGwlgY9KN!2064651424?uri = CELEX: 32010L0031.
    [6] European Parliament (2018) Directive 2018/844 of the European parliament and of the council of 30 May 2018 amending directive 2010/31/EU on the energy performance of buildings and directive 2012/27/EU on energy efficiency. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri = uriserv%3AOJ.L_.2018.156.01.0075.01.ENG.
    [7] European Parliament (2018) Directive (EU) 2018/2002 of the European parliament and of the council of 11 December 2018 amending directive 2012/27/EU on energy efficiency. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri = uriserv: OJ.L_.2018.328.01.0210.01.ENG.
    [8] European Parliament (2018) Directive 2012/27/EU of the European parliament and of the council of 25 October 2012 on energy efficiency, amending directives 2009/125/EC and 2010/30/EU and repealing directives 2004/8/EC and 2006/32/EC. Available from: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid = 1399375464230 & uri = CELEX: 32012L0027.
    [9] United Nations. The sustainable development agenda. Available from: https://www.un.org/sustainabledevelopment/development-agenda/.
    [10] International Centre for the Study of Preservation and Restoration of Cultural Property (ICCROM) (2016) A Guide to Risk Management of Cultural Heritage. Sharjah, United Arab Emirates. Available from: https://www.iccrom.org/sites/default/files/Guide-to-Risk-Managment_English.pdf.
    [11] United Nations. Transforming our world: The 2030 agenda for sustainable development. Available from: https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20for%20Sustainable%20Development%20web.pdf.
    [12] Standard EN 16883-2017, Conservation of cultural heritage—Guidelines for improving the energy performance of historic buildings. Comitè Européen de Normalization (CEN): Bruxelles, Belgium, 2017. Available from: https://standards.iteh.ai/catalog/standards/cen/189eac8d-14e1-4810-8ebd-1e852b3effa3/en-16883-2017.
    [13] European Commission (2015) In-Depth report: Indicators for sustainable cities. Available from: https://op.europa.eu/en/publication-detail/-/publication/eb3235cf-8f50-11e5-983e-01aa75ed71a1.
    [14] Steinberg F (1996) Conservation and rehabilitation of urban heritage in developing countries. Habitat Int 20: 463–475. https://doi.org/10.1016/0197-3975(96)00012-4 doi: 10.1016/0197-3975(96)00012-4
    [15] Di Ruocco G, Sicignano E, Galizia I (2017) Strategy of sustainable development of an industrial archaeology. Procedia Eng 180: 1664–1674. https://doi.org/10.1016/j.proeng.2017.04.329 doi: 10.1016/j.proeng.2017.04.329
    [16] Di Ruocco G, Sicignano E, Fiore P, et al. (2017) Sustainable reuse of disused railway. Procedia Eng 180: 1643–1652. https://doi.org/10.1016/j.proeng.2017.04.327 doi: 10.1016/j.proeng.2017.04.327
    [17] Ricci L, Mariano C (2023) Territorial governance and climate adaptation. Towards an environmental perspective of urban regeneration. World Heritage and Dwelling on Earth Le Vie dei Mercanti_XXI International Forum, Gangemi editore, 439–449. Available from: https://iris.uniroma1.it/handle/11573/1680704.
    [18] Camera dei deputati, istituto di ricerca CRESME (2022) Le politiche di rigenerazione urbana, Prospettive E Possibili Impatti. (Italian) Available from: https://documenti.camera.it/leg18/dossier/pdf/am0036d.pdf?_1659609150626.
    [19] Italian Government (2021) The national recovery and resilience plan. Available from: https://www.mef.gov.it/en/focus/The-National-Recovery-and-Resilience-Plan-NRRP/.
    [20] Ricci L, Mariano C (2022) Urban regeneration, climate adaptation and territorial governance. Integrating urbanism and ecology in the plan. In: Abitare La Terra., ISSN 1592-8608, 78: 11–14. Available from: https://iris.uniroma1.it/handle/11573/1656178.
    [21] The Valley of Mills. Available from: https://www.valledeimulinigragnano.it/.
    [22] Xia X, Zhang Y, Zhang Y, et al. (2022) The spatial pattern and influence mechanism of urban vitality: A case study of Changsha, China. Front Env Sci 10: 942577. https://doi.org/10.3389/fenvs.2022.942577 doi: 10.3389/fenvs.2022.942577
    [23] Xie J, Heath T (2017) Heritage-led Urban Regeneration in China. UK: Routledge. Available from: https://sc.panda985.com/#v = onepage & q = Xie%20J%2C%20Heath%20T%20(2017)%20Heritage-led%20urban%20regeneration%20in%20China.%20England%2C%20UK%3A%20Routledge. & f = false.
    [24] Xie S, Gu K, Zhang X (2020) Urban conservation in China in an international context: Retrospect and prospects. Habitat Int 95: 102098. https://doi.org/10.1016/j.habitatint.2019.102098 doi: 10.1016/j.habitatint.2019.102098
    [25] Calabrò F, Iannone L, Pellicanò R (2021) The historical and environmental heritage for the attractiveness of cities. The case of the Umbertine Forts of Pentimele in Reggio Calabria, Italy. In: Bevilacqua, C., Calabrò, F., Della Spina, L., Smart Innovation, Systems and Technologies, 178. Springer, Cham. https://doi.org/10.1007/978-3-030-48279-4_188
    [26] Chen X, Zhu H, Yuan Z (2020) Contested memory amidst rapid urban transition: The cultural politics of urban regeneration in Guangzhou, China. Cities 102: 102755. https://doi.org/10.1016/j.cities.2020.102755 doi: 10.1016/j.cities.2020.102755
    [27] Chen J, Judd B, Hawken S (2016) Adaptive reuse of industrial heritage for cultural purposes in Beijing, Shanghai and Chongqing. Struct Surv 34: 331–350. https://doi.org/10.1108/SS-11-2015-0052 doi: 10.1108/SS-11-2015-0052
    [28] Martone M (2023) Vanished landscapes. New scenarios for dwelling on earth with the awareness of the past for a sustainable future. The ancient Vallis regia, now Lake Barrea. Intervento presentato al convegno XXI International Forum. World heritage and dwelling on earth, 56–62. Available from: https://iris.uniroma1.it/retrieve/f00e45cc-2011-4893-a3d3-5cd2436e780b/Martone_Vanished-landscapes._2023.pdf.
    [29] Messina B, Giordano C (2023) BIM methodologies to support the regeneration of the existing building heritage. Architecture Heritage and Design 12: 377–384.
    [30] Sacco F, Conz E (2023) Corporate heritage communication strategies of iconic Italian brands: A multiple case study. Corp Commun: An Int J 28: 19–43. https://doi.org/10.1108/CCIJ-12-2021-0136 doi: 10.1108/CCIJ-12-2021-0136
    [31] Spieler M (2023) Taste of Naples: Neapolitan Culture, Cuisine, and Cooking. Now York: Rowman & Littlefield. Available from: https://sc.panda985.com/#v = onepage & q = Spieler%20M%20(2023)%20Taste%20of%20Naples%3A%20Neapolitan%20culture%2C%20cuisine%2C%20and%20cooking.%20Rowman%20%26%20Littlefield & f = false.
    [32] Luino F, Gizzi FT, Palmieri W, et al. (2023) Historical memory as an effective and useful tool for proper land use planning: Lessons learnt from some Italian cases. Land 12: 1751. https://doi.org/10.3390/land12091751 doi: 10.3390/land12091751
    [33] Ceniccola G (2017) 'Architetture dell'acqua' e identità culturale. La Valle dei Mulini di Gragnano (Napoli)/'Water architectures' and cultural identity. The Valley of the mills in Gragnano (Naples) 2017. In: Aveta, A., Marino, B.G., Amore, R., La Baia di Napoli. Strategie Per la Conservazione e la Fruizione del Paesaggio Culturale, Napoli: Artstudio Paparo, 214–218. (Italian) Available from: https://www.academia.edu/35741315/_Architetture_dell_acqua_e_identit%C3%A0_culturale_La_Valle_dei_mulini_di_Gragnano_Napoli_Water_architectures_and_cultural_identity_The_Valley_of_the_mills_in_Gragnano_Naples_.
    [34] Quaranta E, Pujol T, Grano MC (2023) The repowering of vertical axis water mills preserving their cultural heritage: Techno-economic analysis with water wheels and Turgo turbines. J Cult Herit Manag S 13: 269–287. https://doi.org/10.1108/JCHMSD-03-2021-0040 doi: 10.1108/JCHMSD-03-2021-0040
    [35] Rey A, Landi GC, Agliata F, et al. (2023) Managing the tradition and innovation paradox of the agribusiness industry: The impact of the network on operating, financial and social performance. J Intellect Cap 24: 1447–1463. https://doi.org/10.1108/JIC-04-2023-0087 doi: 10.1108/JIC-04-2023-0087
    [36] Building Research Establishment (2023) BREAM communities. Available from: https://www.breeam.com/discover/technical-standards/communities.
    [37] Building Research Establishment, BREAM. Available from: https://bregroup.com/products/breeam/.
    [38] Building Research Establishment (2017) BREEAM communities. https://tools.breeam.com/filelibrary/BREEAM%20Communities/Introduction_to_BREEAM_Communities.pdf.
    [39] Barton H, Grant M, Guise R (2002) Shaping Neighbourhoods: For Local Health and Global Sustainability. London: Routledge. https://doi.org/10.4324/9780203986882
    [40] Lerario A (2022) The role of built heritage for sustainable development goals: From statement to action. Heritage 5: 2444–2464. https://doi.org/10.3390/heritage5030127 doi: 10.3390/heritage5030127
    [41] Shetabi L (2015) Heritage conservation and environmental sustainability: Revisiting the evaluation criteria for built heritage. Australia ICOMOS Conference: Threads of Conservation, Australia ICOMOS, Adelaide, Australia, 2–21. https://doi.org/10.13140/RG.2.1.4265.6086
    [42] Serraino M, Lucchi E (2017) Energy efficiency, heritage conservation, and landscape integration: The case study of the San Martino Castle in Parella (Turin, Italy). Energy Procedia 133: 424–434. https://doi.org/10.1016/j.egypro.2017.09.387 doi: 10.1016/j.egypro.2017.09.387
    [43] Rząsa K, Ogryzek M, Kulawiak M (2016) Cultural heritage in spatial planning. 2016 Baltic Geodetic Congress (Geomatics), IEEE, Gdansk, Poland, 85–89. https://doi.org/10.1109/BGC.Geomatics.2016.24
    [44] International Council on Monuments and Sites (2011) The Paris declaration on heritage as a driver of development. Paris, France. Available from: https://www.icomos.org/images/DOCUMENTS/Charters/GA2011_Declaration_de_Paris_EN_20120109.pdf.
    [45] Mang P, Reed B (2013) Regenerative development and design. In: Loftness, V., Haase, D., Sustainable Built Environments, Springer, New York. http://dx.doi.org/10.1007/978-1-4614-5828-9_303
    [46] Zhao Y, Ponzini D, Zhang R (2020) The policy networks of heritage-led development in Chinese historic cities: The case of Xi'an's Big Wild Goose Pagoda area. Habitat Int 96: 102106. https://doi.org/10.1016/j.habitatint.2019.102106 doi: 10.1016/j.habitatint.2019.102106
    [47] Magdi SA, Ibrahim ME (2023) Towards a compatible methodology for urban heritage sustainable development: A case study of Cairo historical center—Egypt. Int J Adv Eng Bus Sci 4: 144–170. https://doi.org/10.21608/IJAEBS.2023.171887.1066 doi: 10.21608/IJAEBS.2023.171887.1066
    [48] Macchi Cassia C (1991) Il Grande Progetto Urbano. La Forma Della Città e i Desideri Dei Cittadini. Carocci. (Italian) Available from: https://www.ibs.it/grande-progetto-urbano-forma-della-libro-cesare-macchi-cassia/e/9788843008247.
    [49] Lucchi E (2016) Multidisciplinary risk-based analysis for supporting the decision-making process on conservation, energy efficiency, and human comfort in museum buildings. J Cult Herit 22: 1079–1089. https://doi.org/10.1016/j.culher.2016.06.001 doi: 10.1016/j.culher.2016.06.001
    [50] Monclús J (2018) Urban renewal and urban regeneration. In: Díez Medina, C., Monclús, J., Urban Visions, Springer, Cham. https://doi.org/10.1007/978-3-319-59047-9_12
    [51] Cizler J (2012) Urban regeneration effects on industrial heritage and local community—Case study: Leeds, UK. Sociologija i prostor 50: 223–236. https://doi.org/10.5673/sip.50.2.5 doi: 10.5673/sip.50.2.5
    [52] Camarda D (2018) Building sustainable futures for post-industrial regeneration: The case of Taranto, Italy. Urban Res Pract 11: 275–283. https://doi.org/10.1080/17535069.2018.1498196 doi: 10.1080/17535069.2018.1498196
    [53] Lucchi E (2023) Regenerative design of archaeological sites: A pedagogical approach to boost environmental sustainability and social engagement. Sustainability 15: 3783. https://doi.org/10.3390/su15043783 doi: 10.3390/su15043783
    [54] Whole Building Design Guide (WBDG) WDBG historic preservation subcommittee. Available from: www.wdbg.org.
    [55] Aveta A, Marino BG, Amore R, et al. (2018) La Baia di Napoli: Strategie integrate per la conservazione e la fruizione del paesaggio culturale. (Italian) Available from: https://www.researchgate.net/publication/322274165_La_Baia_di_Napoli_STRATEGIE_INTEGRATE_PER_LA_CONSERVAZIONE_E_LA_FRUIZIONE_DEL_PAESAGGIO_CULTURALE_a_cura_di_Aldo_Aveta_Bianca_Gioia_Marino_Raffaele_Amore.
    [56] Verazzo C, Ruocco G (2017) Il paesaggio culturale della valle dei mulini di Gragnano. Temi distoria e restauro. (Italian) Available from: https://ricerca.unich.it/handle/11564/683717.
    [57] Camardo D, Irollo G, Notomista M (2016) Map of the archaeological potential and historical building heritage of the Municipality of Gragnano (NA), Amalfi 2016. Available from: https://www.academia.edu/65349038/D_Camardo_G_Irollo_M_Notomista_Carta_del_potenziale_archeologico_e_del_patrimonio_edilizio_storico_del_Comune_di_Gragnano_NA_Amalfi_2016.
    [58] De Majo S, Camardo D, Notomista M, et al. (2018) Gragnano da città dei molini a città dei pastifici. Secoli XVI-XX. In: Fontana, G.L., Stati Generali del Patrimonio Industriale 2018, 5–23. (Italian) Available from: https://www.academia.edu/108811848/F_Caiazzo_D_Camardo_S_De_Majo_M_Notomista_Gragnano_da_citt%C3%A0_dei_mulini_a_citt%C3%A0_dei_pastifici_Secoli_XVI_XXI_in_Giovanni_Luigi_Fontana_a_cura_di_Stati_Generali_del_Patrimonio_Industriale_2018_Venezia_2018_pp_5_23.
    [59] Camardo D, Notomista M (2015) Gragnano città della pasta. Lo sviluppo dell'arte bianca e il nuovo assetto urbanistico di Gragnano nel XIX secolo. Rassegna del Centro di Cultura e Storia Amalfitana, 49-50/2015,171–200. (Italian) Available from: https://www.academia.edu/27174701/D_Camardo_M_Notomista_Gragnano_citt%C3%A0_della_pasta_Lo_sviluppo_dellarte_bianca_e_il_nuovo_assetto_urbanistico_di_Gragnano_nel_XIX_secolo_in_Rassegna_del_Centro_di_Cultura_e_Storia_Amlfitana_49_50_2015_pp_171_200.
    [60] Magni F (2019) Climate proof planning: L'adattamento in Italia tra sperimentazioni e innovazioni. (Italian) Available from: https://air.iuav.it/handle/11578/279854.
    [61] Maarleveld TJ, Guérin U, Egger B (2013) Manual for Activities Directed at Underwater Cultural Heritage: Guidelines to the Annex of the UNESCO 2001 Convention. Unesco. Available from: https://unesdoc.unesco.org/ark: /48223/pf0000220708.
    [62] Zanchini E, Musco F (2014) Il clima cambia le città. Strategie di adattamento e mitigazione nella pianificazione urbanistica. (Italian) Available from: https://www.francoangeli.it/Libro/Il-clima-cambia-le-citt%C3%A0-Strategie-di-adattamento-e-mitigazione-nella-pianificazione-urbanistica?Id = 21883.
    [63] Baliestreri M (2021) Pianificazione e clima. (Italian) Available from: https://www.francoangeli.it/libro?id = 26144.
    [64] Pavia R (2019) Tra suolo e clima. La terra come infrastruttura ambientale. (Italian) Available from: https://www.donzelli.it/libro/9788868438890.
    [65] Fazia C, Bellamacina D, Catania GFG, et al. (2023) Urban regeneration in the age of transitions. In: Gervasi, O., Murgante, B., Rocha, A.M.A.C., Garau, C., Scorza, F., Karaca, Y., Torre, C.M., Computational Science and Its Applications—ICCSA 2023 Workshops, ICCSA 2023, Lecture Notes in Computer Science, Springer, Cham, 14107. https://doi.org/10.1007/978-3-031-37114-1_34
    [66] Brundtland GH (1987) Our common future—Call for action. Environ Conserv 14: 291–294. https://doi.org/10.1017/S0376892900016805 doi: 10.1017/S0376892900016805
  • This article has been cited by:

    1. Ghulam Farid, Young Chel Kwun, Hafsa Yasmeen, Abdullah Akkurt, Shin Min Kang, Inequalities for generalized Riemann–Liouville fractional integrals of generalized strongly convex functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03548-w
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1840) PDF downloads(29) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog