Research article Special Issues

A non-local traffic flow model for 1-to-1 junctions with buffer

  • Received: 18 July 2023 Revised: 31 January 2024 Accepted: 02 April 2024 Published: 08 April 2024
  • In this paper, we introduce a non-local PDE-ODE traffic model devoted to the description of a 1-to-1 junction with buffer. We present an existence result in the free flow case as well as a numerical method to approximate weak solutions in the general case. In addition, we show a maximum principle, which is uniform in the non-local interaction range. Further, we exploit the limit models as the support of the kernel tends to zero and to infinity. We compare them with other already existing models for traffic and production flow and presented numerical examples.

    Citation: F. A. Chiarello, J. Friedrich, S. Göttlich. A non-local traffic flow model for 1-to-1 junctions with buffer[J]. Networks and Heterogeneous Media, 2024, 19(1): 405-429. doi: 10.3934/nhm.2024018

    Related Papers:

  • In this paper, we introduce a non-local PDE-ODE traffic model devoted to the description of a 1-to-1 junction with buffer. We present an existence result in the free flow case as well as a numerical method to approximate weak solutions in the general case. In addition, we show a maximum principle, which is uniform in the non-local interaction range. Further, we exploit the limit models as the support of the kernel tends to zero and to infinity. We compare them with other already existing models for traffic and production flow and presented numerical examples.



    加载中


    [1] A. Adimurthi, S. Mishra, G. D. V. Gowda, Optimal entropy solutions for conservation laws with discontinuous flux-functions, J. Hyperbolic Differ. Equ., 2 (2005), 783–837. https://doi.org/10.1142/S0219891605000622 doi: 10.1142/S0219891605000622
    [2] A. Aggarwal, R. M. Colombo, P. Goatin, Nonlocal systems of conservation laws in several space dimensions, SIAM J. Numer. Anal., 53 (2015), 963–983. https://doi.org/10.1137/140975255 doi: 10.1137/140975255
    [3] P. Amorim, R. Colombo, A. Teixeira, On the numerical integration of scalar nonlocal conservation laws, Esaim Math Model Numer Anal, 49 (2015), 19–37. https://doi.org/10.1051/m2an/2014023 doi: 10.1051/m2an/2014023
    [4] D. Armbruster, P. Degond, C. Ringhofer, A model for the dynamics of large queuing networks and supply chains, SIAM J. Appl. Math., 66 (2006), 896–920. https://doi.org/10.1137/040604625 doi: 10.1137/040604625
    [5] S. Blandin, P. Goatin, Well-posedness of a conservation law with non-local flux arising in traffic flow modeling, Numer. Math., 132 (2016), 217–241. https://doi.org/10.1007/s00211-015-0717-6 doi: 10.1007/s00211-015-0717-6
    [6] A. Bressan, W. Shen, On traffic flow with nonlocal flux: a relaxation representation, Arch Ration Mech Anal, 237 (2020), 1213-1236.
    [7] A. Bressan, W. Shen, Entropy admissibility of the limit solution for a nonlocal model of traffic flow, Commun. Math. Sci., 19 (2021), 1447–1450. https://doi.org/10.4310/CMS.2021.v19.n5.a12 doi: 10.4310/CMS.2021.v19.n5.a12
    [8] F. Camilli, R. De Maio, A. Tosin, Measure-valued solutions to nonlocal transport equations on networks, J. Differ. Equ., 264 (2018), 7213–7241. https://doi.org/10.1016/j.jde.2018.02.015 doi: 10.1016/j.jde.2018.02.015
    [9] F. Chiarello, G. Coclite, Nonlocal scalar conservation laws with discontinuous flux, Netw. Heterog. Media, 18 (2023), 380–398. https://doi.org/10.3934/nhm.2023015 doi: 10.3934/nhm.2023015
    [10] F. A. Chiarello, J. Friedrich, P. Goatin, S. Göttlich, O. Kolb, A non-local traffic flow model for 1-to-1 junctions, European J. Appl. Math., 31 (2020), 1029–1049. https://doi.org/10.1017/S095679251900038X doi: 10.1017/S095679251900038X
    [11] F. A. Chiarello, P. Goatin, Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel, ESAIM Math. Model. Numer. Anal., 52 (2018), 163–180. https://doi.org/10.1051/m2an/2017066 doi: 10.1051/m2an/2017066
    [12] F. A. Chiarello, A. Keimer, On the singular limit problem of nonlocal balance laws— applications to nonlocal lane-changing traffic flow models, J Math Anal Appl, (2024), 128358. https://doi.org/10.1016/j.jmaa.2024.128358 doi: 10.1016/j.jmaa.2024.128358
    [13] J. Chien, W. Shen, Stationary wave profiles for nonlocal particle models of traffic flow on rough roads, Nodea-nonlinear Diff, 26 (2019), 53. https://doi.org/10.1007/s00030-019-0601-7 doi: 10.1007/s00030-019-0601-7
    [14] G. M. Coclite, N. De Nitti, A. Keimer, L. Pflug, Singular limits with vanishing viscosity for nonlocal conservation laws, Nonlinear Anal., 211 (2021), 112370. https://doi.org/10.1016/j.na.2021.112370 doi: 10.1016/j.na.2021.112370
    [15] M. Colombo, G. Crippa, M. Graffe, L. V. Spinolo, Recent results on the singular local limit for nonlocal conservation laws, arXiv: 1902.06970 [Preprint], (2019), [cited 2024 April 08]. Available from: https://doi.org/10.48550/arXiv.1902.06970
    [16] M. Colombo, G. Crippa, E. Marconi, L. Spinolo, Nonlocal traffic models with general kernels: singular limit, entropy admissibility, and convergence rate, Arch. Rational. Mech. Anal., 247 (2023), 18. https://doi.org/10.1007/s00205-023-01845-0 doi: 10.1007/s00205-023-01845-0
    [17] M. Colombo, G. Crippa, L. V. Spinolo, On the singular local limit for conservation laws with nonlocal fluxes, Arch. Rational. Mech. Anal., 233 (2019), 1131–1167. https://doi.org/10.1007/s00205-019-01375-8 doi: 10.1007/s00205-019-01375-8
    [18] R. M. Colombo, M. Herty, M. Mercier, Control of the continuity equation with a non local flow, ESAIM Control Optim. Calc. Var., 17 (2011), 353–379. https://doi.org/10.1051/cocv/2010007 doi: 10.1051/cocv/2010007
    [19] C. D'Apice, S. Göttlich, M. Herty, B. Piccoli, Modeling, Simulation, and Optimization of Supply Chains: A Continuous Approach, Philadelphia: Society for Industrial and Applied Mathematics (SIAM), 2010.
    [20] M. Delle Monache, P. Goatin, Scalar conservation laws with moving constraints arising in traffic flow modeling: An existence result, J. Differ. Equ., 257 (2014), 4015–4029. https://doi.org/10.1016/j.jde.2014.07.014 doi: 10.1016/j.jde.2014.07.014
    [21] M. L. Delle Monache, J. Reilly, S. Samaranayake, W. Krichene, P. Goatin, A. M. Bayen, A PDE-ODE model for a junction with ramp buffer, SIAM J. Appl. Math., 74 (2014), 22–39. https://doi.org/10.1137/130908993 doi: 10.1137/130908993
    [22] J. Friedrich, S. Göttlich, A. Keimer, L. Pflug, Conservation laws with nonlocal velocity–the singular limit problem, SIAM J Appl Math, 84 (2024), 497–522. https://doi.org/10.1137/22M1530471 doi: 10.1137/22M1530471
    [23] J. Friedrich, S. Göttlich, A. Keimer, L. Pflug, Conservation laws with nonlocality in density and velocity and their applicability in traffic flow modelling, arXiv: 2302.12797 [Preprint], (2023), [cited 2024 April 08]. Available from: https://doi.org/10.48550/arXiv.2302.12797
    [24] J. Friedrich, S. Göttlich, M. Osztfalk, Network models for nonlocal traffic flow, Esaim Math Model Numer Anal, 56 (2022), 213–235. https://doi.org/10.1051/m2an/2022002 doi: 10.1051/m2an/2022002
    [25] J. Friedrich, O. Kolb, S. Göttlich, A Godunov type scheme for a class of LWR traffic flow models with non-local flux, Netw. Heterog. Media, 13 (2018), 531–547. http://dx.doi.org/10.3934/nhm.2018024 doi: 10.3934/nhm.2018024
    [26] J. Friedrich, S. Sudha, S. Rathan, Numerical schemes for a class of nonlocal conservation laws: a general approach, Netw. Heterog. Media, 18 (2023), 1335–1354. http://dx.doi.org/10.3934/nhm.2023058 doi: 10.3934/nhm.2023058
    [27] K. Hameister, A Dual Tailored Branch-and-Bound Algorithm for Quadratic Mixed-Integer Problems Applied to Production Models With Buffers, München: Verlag Dr. Hut, 2018.
    [28] M. Herty, J. P. Lebacque, S. Moutari, A novel model for intersections of vehicular traffic flow, Netw. Heterog. Media, 4 (2009), 813–826. https://doi.org/10.3934/nhm.2009.4.813 doi: 10.3934/nhm.2009.4.813
    [29] A. Keimer, L. Pflug, Existence, uniqueness and regularity results on nonlocal balance laws, J. Differ. Equ., 263 (2017), 4023–4069. https://doi.org/10.1016/j.jde.2017.05.015 doi: 10.1016/j.jde.2017.05.015
    [30] A. Keimer, L. Pflug, On approximation of local conservation laws by nonlocal conservation laws, J. Appl. Math. Anal. Appl., 475 (2019), 1927–1955. https://doi.org/10.1016/j.jmaa.2019.03.063 doi: 10.1016/j.jmaa.2019.03.063
    [31] A. Keimer, L. Pflug, M. Spinola, Existence, uniqueness and regularity of multi-dimensional nonlocal balance laws with damping, J. Math. Anal. Appl., 466 (2018), 18–55. https://doi.org/10.1016/j.jmaa.2018.05.013 doi: 10.1016/j.jmaa.2018.05.013
    [32] A. Keimer, L. Pflug, M. Spinola, Nonlocal scalar conservation laws on bounded domains and applications in traffic flow, SIAM J. Math. Anal., 50 (2018), 6271–6306. https://doi.org/10.1137/18M119817X doi: 10.1137/18M119817X
    [33] J. P. Lebacque. The Godunov scheme and what it means for first order traffic flow models, Transportation and Traffic Theory. Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon, France, 24–26 July, 1996,
    [34] M. Lighthill, G. Whitham, On kinematic waves Ⅰ. Flood movement in long rivers, Proc. Math. Phys. Eng. Sci., 229 (1955), 281–316. https://doi.org/10.1098/rspa.1955.0088 doi: 10.1098/rspa.1955.0088
    [35] P. Richards, Shock waves on the highway, Oper Res, 4 (1956), 42–51. https://doi.org/10.1287/opre.4.1.42 doi: 10.1287/opre.4.1.42
    [36] W. Shen, Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads, Netw. Heterog. Media, 14 (2019), 709–732. https://doi.org/10.3934/nhm.2019028 doi: 10.3934/nhm.2019028
    [37] K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions, Quart. Appl. Math., 57 (1999), 573–600. https://doi.org/10.1090/qam/1704419 doi: 10.1090/qam/1704419
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(681) PDF downloads(66) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog