Research article Special Issues

A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation

  • † These authors contributed equally to this work
  • Received: 24 December 2022 Revised: 21 February 2023 Accepted: 22 February 2023 Published: 13 March 2023
  • In this paper, a two-grid alternating direction implicit (ADI) finite element (FE) method based on the weighted and shifted Grünwald difference (WSGD) operator is proposed for solving a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation. The stability and optimal error estimates with second-order convergence rate in spatial direction are obtained. The storage space can be reduced and computing efficiency can be improved in this method. Two numerical examples are provided to verify the theoretical results.

    Citation: Yaxin Hou, Cao Wen, Yang Liu, Hong Li. A two-grid ADI finite element approximation for a nonlinear distributed-order fractional sub-diffusion equation[J]. Networks and Heterogeneous Media, 2023, 18(2): 855-876. doi: 10.3934/nhm.2023037

    Related Papers:

  • In this paper, a two-grid alternating direction implicit (ADI) finite element (FE) method based on the weighted and shifted Grünwald difference (WSGD) operator is proposed for solving a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation. The stability and optimal error estimates with second-order convergence rate in spatial direction are obtained. The storage space can be reduced and computing efficiency can be improved in this method. Two numerical examples are provided to verify the theoretical results.



    加载中


    [1] C. J. Chen, H. Liu, X. C. Zheng, H. Wang, A two-grid MMOC finite element method for nonlinear variable-order time-fractional mobile/immobile advection-diffusion equations, Comput. Math. Appl., 79 (2019), 2771–2783. https://doi.org/10.1016/j.camwa.2019.12.008 doi: 10.1016/j.camwa.2019.12.008
    [2] A. Chen, Crank-Nicolson ADI Galerkin finite element methods for two classes of Riesz space fractional partial differential equations, Comp. Model. Eng. Sci., 123 (2020), 916–938. https://doi.org/10.32604/cmes.2020.09224 doi: 10.32604/cmes.2020.09224
    [3] A. Chen, C. P. Li, An alternating direction Galerkin method for a time-fractional partial differential equation with damping in two space dimensions, Adv. Differ. Equ., 356 (2017), 1687–1847. https://doi.org/10.1186/s13662-017-1414-9 doi: 10.1186/s13662-017-1414-9
    [4] K. Diethelm, N. J. Ford, Numerical analysis for distributed-order differential equations, J. Comput. Appl. Math., 225 (2009), 96–104. https://doi.org/10.1016/j.cam.2008.07.018 doi: 10.1016/j.cam.2008.07.018
    [5] A. V. Chechkin, R. Gorenflo, I. M. Sokolov, Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations, Phys. Rev. E., 66 (2002), 046129. https://doi.org/10.1103/physreve.66.046129 doi: 10.1103/physreve.66.046129
    [6] J. E. Dendy, G. Fairweather, Alternating-direction Galerkin methods for parabolic and hyperbolic problems on rectangular polygons, SIAM J. Numer. Anal., 12 (1975), 144–163. https://doi.org/10.1137/0712014 doi: 10.1137/0712014
    [7] J. E. Dendy, An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems, SIAM J. Numer. Anal., 12 (1975), 541–565. https://doi.org/10.1137/0712042 doi: 10.1137/0712042
    [8] J. J. Douglas, T. Dupont, Alternating direction Galerkin methods on rectangles, in Numerical Solution of Partial Differential Equations–II, New York: Academic Press, (1971), 133–214. https://doi.org/10.1016/B978-0-12-358502-8.50009-8
    [9] R. I. Fernandes, G. Fairweather, An alternating direction Galerkin method for a class of second-order hyperbolic equations in two space variables, SIAM J. Numer. Anal., 28 (1991), 1265–1281. https://doi.org/10.1137/0728067 doi: 10.1137/0728067
    [10] J. C. Ren, H. Chen, A numerical method for distributed order time fractional diffusion equation with weakly singular solutions, Appl. Math. Lett., 96 (2019), 159–165. https://doi.org/10.1016/j.aml.2019.04.030 doi: 10.1016/j.aml.2019.04.030
    [11] M. H. Ran, C. J. Zhang, New compact difference scheme for solving the fourth-order time fractional sub-diffusion equation of the distributed order, Appl. Numer. Math., 129 (2018), 58–70. https://doi.org/10.1016/j.apnum.2018.03.005 doi: 10.1016/j.apnum.2018.03.005
    [12] H. Y. Jian, T. Z. Huang, X. M. Gu, X. L. Zhao, Y. L. Zhao, Fast second-order implicit difference schemes for time distributed-order and Riesz space fractional diffusion-wave equations, Comput. Math. Appl., 94 (2021), 136–154. https://doi.org/10.1016/j.camwa.2021.05.003 doi: 10.1016/j.camwa.2021.05.003
    [13] B. L. Yin, Y. Liu, H. Li, Z. M. Zhang, Approximation methods for the distributed order calculus using the convolution quadrature, Discrete Contin. Dyn. Syst. Ser. B., 26 (2021), 1447–1468. https://doi.org/10.3934/dcdsb.2020168 doi: 10.3934/dcdsb.2020168
    [14] W. P. Bu, A. G. Xiao, W. Zeng, Finite difference/finite element methods for distributed-order time fractional diffusion equations, J. Sci. Comput., 72 (2017), 422–441. https://doi.org/10.1007/s10915-017-0360-8 doi: 10.1007/s10915-017-0360-8
    [15] Y. X. Niu, Y. Liu, H. Li, F. W. Liu, Fast high-order compact difference scheme for the nonlinear distributed-order fractional Sobolev model appearing in porous media, Math. Comput. Simulat., 203 (2023), 387–407. https://doi.org/10.1016/j.matcom.2022.07.001 doi: 10.1016/j.matcom.2022.07.001
    [16] C. Wen, Y. Liu, B. L. Yin, H. Li, J. F. Wang, Fast second-order time two-mesh mixed finite element method for a nonlinear distributed-order sub-diffusion model, Numer. Algor., 88 (2021), 523–553. https://doi.org/10.1007/s11075-020-01048-8 doi: 10.1007/s11075-020-01048-8
    [17] G. H. Gao, Z. Z. Sun, Two alternating direction implicit difference schemes for solving the two-dimensional time distributed-order wave equations, J. Sci. Comput., 69 (2016), 506–531. https://doi.org/10.1007/s10915-016-0208-7 doi: 10.1007/s10915-016-0208-7
    [18] L. M. Li, D. Xu, Alternating direction implicit Galerkin finite element method for the two-dimensional time fractional evolution equation, Numer. Math. Theor. Meth. Appl., 7 (2014), 41–57. https://doi.org/10.4208/nmtma.2014.y11051 doi: 10.4208/nmtma.2014.y11051
    [19] L. M. Li, D. Xu, M. Luo, Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation, J. Comput. Phys., 255 (2013), 471–485. https://doi.org/10.1016/j.jcp.2013.08.031 doi: 10.1016/j.jcp.2013.08.031
    [20] M. Li, C. M. Huang, ADI Galerkin FEMs for the 2D nonlinear time-space fractional diffusion-wave equation, Int. J. Model. Simulat. Sci. Comput., 8 (2017), 1750025. https://doi.org/10.1142/s1793962317500258 doi: 10.1142/s1793962317500258
    [21] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for semilinear time fractional reaction diffusion equations by expanded mixed finite element method, Appl. Numer. Math., 157 (2020), 38–54. https://doi.org/10.1016/j.apnum.2020.05.024 doi: 10.1016/j.apnum.2020.05.024
    [22] Q. F. Li, Y. P. Chen, Y. Q. Huang, Y. Wang, Two-grid methods for nonlinear time fractional diffusion equations by $L1$-Galerkin FEM, Math. Comput. Simulat., 185 (2021), 436–451. https://doi.org/10.1016/j.matcom.2020.12.033 doi: 10.1016/j.matcom.2020.12.033
    [23] Y. Liu, Y. W. Du, H. Li, J. F. Wang, A two-grid finite element approximation for a nonlinear time-fractional Cable euqation, Nonlinear Dyn., 85 (2016), 2535–2548. https://doi.org/10.1007/s11071-016-2843-9 doi: 10.1007/s11071-016-2843-9
    [24] Y. Liu, Y. W. Du, H. Li, F. W. Liu, Y. J. Wang, Some second-order $\theta$ schemes combined with finite element method for nonlinear fractional Cable equation, Numer. Algor., 80 (2019), 533–555. https://doi.org/10.1007/s11075-018-0496-0 doi: 10.1007/s11075-018-0496-0
    [25] Y. Liu, M. Zhang, H. Li, J. C. Li, High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation, Comput. Math. Appl., 73 (2017), 1298–1314. https://doi.org/10.1016/j.camwa.2016.08.015 doi: 10.1016/j.camwa.2016.08.015
    [26] Y. Liu, Y. W. Du, H. Li, J. C. Li, S. He, A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70 (2015), 2474–2492. https://doi.org/10.1016/j.camwa.2015.09.012 doi: 10.1016/j.camwa.2015.09.012
    [27] W. Liu, H. X. Rui, F. Z. Hu, A two-grid algorithm for expanded mixed finite element approximations of semi-linear elliptic equations, Comput. Math. Appl., 66 (2013), 392–402. https://doi.org/10.1016/j.camwa.2013.05.016 doi: 10.1016/j.camwa.2013.05.016
    [28] W. L. Qiu, D. Xu, H. F. Chen, J. Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80 (2020), 3156–3172. https://doi.org/10.1016/j.camwa.2020.11.003 doi: 10.1016/j.camwa.2020.11.003
    [29] M. Saffarian, A. Mohebbi, A novel ADI Galerkin spectral element method for the solution of two-dimensional time fractional subdiffusion equation, Int. J. Comput. Math., 98 (2020), 845–867. https://doi.org/10.1080/00207160.2020.1792450 doi: 10.1080/00207160.2020.1792450
    [30] I. M. Sokolov, A. V. Chechkin, J. Klafter, Distributed-order fractional kinetics, Acta Phys. Polon. B., 35 (2004), 1323–1341. https://doi.org/10.48550/arXiv.cond-mat/0401146 doi: 10.48550/arXiv.cond-mat/0401146
    [31] W. Y. Tian, H. Zhou, W. H. Deng, A class of second order difference approximations for solving space fractional diffusion equations, Math. Comput., 84 (2015), 1703–1727. https://doi.org/10.1090/s0025-5718-2015-02917-2 doi: 10.1090/s0025-5718-2015-02917-2
    [32] Z. B. Wang, S. W. Vong, Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation, J. Comput. Phys., 277 (2014), 1–15. https://doi.org/10.1016/j.jcp.2014.08.012 doi: 10.1016/j.jcp.2014.08.012
    [33] J. F. Wang, T. Q. Liu, H. Li, Y. Liu, S. He, Second-order approximation scheme combined with $H^1$-Galerkin MFE method for nonlinear time fractional convection-diffusion equation, Comput. Math. Appl., 73 (2017), 1182–1196. https://doi.org/10.1016/j.camwa.2016.07.037 doi: 10.1016/j.camwa.2016.07.037
    [34] J. C. Xu, A novel two-grid method for semilinear elliptic equations, SIAM J. Sci. Comput., 15 (1994), 231–237. https://doi.org/10.1137/0915016 doi: 10.1137/0915016
    [35] J. C. Xu, Two-grid discretization techniques for linear and nonlinear PDEs, SIAM J. Numer. Anal., 33 (1996), 1759–1777. https://doi.org/10.1137/s0036142992232949 doi: 10.1137/s0036142992232949
    [36] Z. Zhang, D. Deng, A new alternating-direction finite element method for hyperbolic equation, Numer. Meth. Part. Differ. Equ., 23 (2007), 1530–1559. https://doi.org/10.1002/num.20240 doi: 10.1002/num.20240
    [37] Y. Zeng, Z. Tan, Two-grid finite element methods for nonlinear time fractional variable coefficient diffusion equations, Appl. Math. Comput., 434 (2022), 127408. https://doi.org/10.1016/j.amc.2022.127408 doi: 10.1016/j.amc.2022.127408
    [38] H. Zhang, F. W. Liu, X. Y. Jiang, F. H. Zeng, I. Turner, A Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional Riesz space distributed-order advection-diffusion equation, Comput. Math. Appl., 76 (2018), 2460–2476. https://doi.org/10.1016/j.camwa.2018.08.042 doi: 10.1016/j.camwa.2018.08.042
    [39] L. Peng, Y. Zhou, The analysis of approximate controllability for distributed order fractional diffusion problems, Appl. Math. Opt., 86 (2022), 22. https://doi.org/10.1007/s00245-022-09886-9 doi: 10.1007/s00245-022-09886-9
    [40] L. Peng, Y. Zhou, J. W. He, The well-posedness analysis of distributed order fractional diffusion problems on $\mathbb{R}^N$, Monatsh. Math, 198 (2022), 445–463. https://doi.org/10.1007/s00605-021-01631-8 doi: 10.1007/s00605-021-01631-8
    [41] Z. C. Fang, R. X. Du, H. Li, Y. Liu, A two-grid mixed finite volume element method for nonlinear time fractional reaction-diffusion equations, AIMS Math., 7 (2022), 1941–1970. https://doi.org/10.3934/math.2022112 doi: 10.3934/math.2022112
    [42] D. Wang, Y. Liu, H. Li, Z. C. Fang, Second-order time stepping scheme combined with a mixed element method for a 2D nonlinear fourth-order fractional integro-differential equations, Fractal Fract., 6 (2022), 201. https://doi.org/10.3390/fractalfract6040201 doi: 10.3390/fractalfract6040201
    [43] H. Chen, W. Qiu, M. A. Zaky, A. S. Hendy, A two-grid temporal second-order scheme for the two-dimensional nonlinear Volterra integro-differential equation with weakly singular kernel, Calcolo, 60 (2023), 13. https://doi.org/10.1007/s10092-023-00508-6 doi: 10.1007/s10092-023-00508-6
    [44] H. Zhang, X. Y. Jiang, F. W. Liu, Error analysis of nonlinear time fractional mobile/immobile advection-diffusion equation with weakly singular solutions, Fract. Calc. Appl. Anal., 24 (2021), 202–224. https://doi.org/10.1515/fca-2021-0009 doi: 10.1515/fca-2021-0009
    [45] F. H. Zeng, Z. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: smooth and non-smooth solutions, Comput. Methods Appl. Mech. Eng., 327 (2017), 478–502. https://doi.org/10.1016/j.cma.2017.08.029 doi: 10.1016/j.cma.2017.08.029
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1263) PDF downloads(60) Cited by(2)

Article outline

Figures and Tables

Figures(13)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog