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Abstract: In this paper, a two-grid alternating direction implicit (ADI) finite element (FE) method
based on the weighted and shifted Griinwald difference (WSGD) operator is proposed for solving
a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation. The stability
and optimal error estimates with second-order convergence rate in spatial direction are obtained. The
storage space can be reduced and computing efficiency can be improved in this method. Two numerical
examples are provided to verify the theoretical results.
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1. Introduction

Distributed order differential equations [4,10-16,38—40] can be seen as a natural extension of single-
term and multi-term fractional order differential equations. When the fractional order derivative term
is sufficiently large, we take its limit state to obtain the distributed order derivative. Distributed order
models are a broader class of models with a broader meaning. It can be used to describe processes that
cannot be portrayed by a single-term or multi-term fractional differential equations, such as retarding
sub-diffusion and accelerating superdiffusion [5, 30]. The distribution order differential equations can
be classified into time, space and space-time distributed order differential equations according to the
location of the distributed order integral terms. Time distributed order differential equations are often
used to describe some complex processes in which the diffusion index varies with time. It is now
playing an important role in many fields and has become a popular research topic in the international
academic community. However, the complexity and nonlocality of the distributed-order operator make
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it difficult to solve the exact solution of the distributed-order differential equations, so scholars have
turned to its numerical solution and made important progress [13]. Among many algorithms, the finite
element method is favored by scholars because of its strong regional adaptability, more flexible mesh
parting, lower smoothness requirement, and strong generality [16].

In this paper, we consider the following nonlinear distributed-order fractional sub-diffusion equation

u(x,y, 1) + DPu(x,y, 1) — Au(x,y, t) + m(u) = f(x,y,1),(x,y) € Q,t € J,
u(x, v, 1) =0,(x,y) € 0Q,t € J, (1.1)
u(x,y,0)=0,(x,y) e Q,

where Q = I, x I, = (0,L) x (0, L), and the boundary 0Q is Lipschitz continuous. J = (0, 7] is the
time interval, and the nonlinear reaction term m(u) satisfies |m(u)| < Clu| with [m' (u)| < C, where C is
a positive constant. The term f(x,y, f) is a given source function.

Define

1
Dputxy.0 = [ wl@EDrut.y.da (1.2)
0

where

1 ' ou
- t—1) " —(,y,dr,0<a <1,

Mt(X,y, l),a = 1’

(1.3)

and w(@) > 0, [ w(@)da = Cy > 0.

Inspired by the works [19,23,24,34], in this article, we propose a two-grid ADI FE scheme with the
WSGD approximation formula to solve nonlinear distributed-order fractional sub-diffusion equation.
In what follows, we will introduce the advancements of the WSGD approximation formula, two-grid
method, and ADI FE method.

In 2015, Tian et al. [31] proposed a WSGD approximation formula for the Riemann-Liouville
space fractional derivative. Based on this operator, they got the second-order convergence, which is
independent of the changed fractional parameters. The WSGD operator, with its outstanding
advantages such as high-order approximation, has attracted the attention of many scholars and has
been widely used, and many fruitful research results have been achieved. Wang and Vong in [32]
discussed the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave
equation by using the WSGD formula to approximate the Caputo fractional derivative of time. In
2016, Liu et al. [23] presented a two-grid FE scheme with the WSGD operator for solving the
nonlinear fractional Cable equation. In 2017, Liu et al. [25] solved a Caputo time-fractional
sub-diffusion equation by using a high-order local discontinuous Galerkin (LDG) method combined
with the WSGD approximation. Wang et al. [33] discussed an H'-Galerkin mixed finite element
(MFE) method combined with the WSGD operator for solving nonlinear convection-diffusion
equation with time fractional derivative. In 2020, Saffarian and Mohebbi [29] discussed the
application of ADI Galerkin spectral element method with the WSGD operator in solving
two-dimensional time fractional sub-diffusion equation.

In 1994, Xu [34] presented a new finite element discretization technique based on two (coarse and
fine) subspaces for a semilinear elliptic boundary value problem. And then in 1996, Xu [35] did
further study and explored about the two-grid method. This method has attracted many scholars in
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solving partial differential equations because of the advantage of saving computational time. Since its
introduction, the method has been mainly applied to numerically solve integer-order PDEs by many
computational scholars [21,27]. Until 2015, Liu et al. [26] presented the application of the two-grid
finite element method to numerically solve the nonlinear fourth-order fractional differential equations,
in which the fractional derivative is the Caputo type. And in 2016, Liu et al. [23] discussed the
numerical solution of nonlinear fractional Cable equation with initial and boundary condition by
using two-grid FE method with higher-order time approximate scheme. Chen et al. in [1] proposed a
fully discrete two-grid modified method of characteristics (MMOC) scheme for solving nonlinear
variable-order time-fractional advection-diffusion equations in two space dimensions. Zeng and Tan
in [37] developed a two-grid FE methods for variable coeflicient time fractional diffusion equations.
However, there is still a lack of work on the numerical solution of fractional partial differential
equations using the two-grid FE method, especially there are few studies on the solution of nonlinear
time-distributed partial differential equations using the two-grid FE method, so the research on this
method still needs to be focused. The ADI FE method is an efficient algorithm for solving
multi-dimensional differential equations. It inherits the advantages of the ADI method of low
computation and low storage, and also has the characteristics of high accuracy of the FE algorithm.
Therefore, it has received a lot of attention from researchers in solving differential equations. In 1971,
Douglas and Dupont [8] for the first time proposed the ADI FE method. Then Dendy [6, 7] and
Fernandes [9] and Zhang [36] have studied the method in depth and further extended the application
of the method. In 2013, Li and Xu [19] discussed the Galerkin FE method in space and the ADI
method in the time stepping for the two-dimensional fractional diffusion-wave equation. Li and
Xu [18] in 2014 studied the two-dimensional time fractional evolution equation by ADI Galerkin FE
method. In 2017, Chen and Li [3] proposed an efficient ADI Galerkin method for solving a
time-fractional partial differential equation with damping. In the same year, Li and Huang [20] solved
a class of 2D nonlinear fractional diffusion-wave equations with the Caputo-type temporal derivative
and Riesz-type spatial derivative by using the ADI FE method. In 2020, Chen [2] used the ADI FE
method to numerically solve two classes of Riesz space fractional partial differential equations. In the
same year, Qiu et al. [28] presented the ADI Galerkin FE method for solving the distributed-order
time-fractional mobile-immobile equation in two dimensions.

However, there is little research on solving distributed-order partial differential equations using the
ADI FE method. In particular, we are not aware of any studies that apply the two-grid ADI FE method
to numerically solve the time-distributed order reaction diffusion equation with nonlinear terms and
time-integer order derivatives. Based on these considerations, we propose two-grid ADI FE method
for solving this model (1.1), prove the stability, and derive the a priori error estimates. Finally, we
verify the effectiveness and computational efficiency of the algorithm by carrying out numerical tests.

This paper is organized as follows. In Section 2, we give some preliminaries and lemmas. In
Section 3, we present the ADI FE numerical approximation of the nonlinear distributed order
equation. In Section 4, we analyze the stability and convergence of the fully discrete scheme. In
Section 5, some numerical examples are presented to confirm the theoretical analysis. In Section 6,
conclusions and future works are discussed.

2. Preliminaries and lemmas

We insert the nodes a; = kAa, kK = 0,1,2---,2K in the interval [0, 1], where Aa = ﬁ and
0=ap<ay <@ <--- <ayx = 1. At = J= is the step size, #, = nAt (n = 0,1,2,--- ,N + 1), and

0=ty <t <tp <---<tyy =T, where N is positive integer, and for a smooth function ¢ on [0, T'],
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we denote ¥ = y(t,), and 5t1//"+% = W, w”*% = %

Define H™(€), L¥(Q), L*(€2) and || - ||,m, || - llo» Il - || be the usual Sobolev spaces and their norms,
respectively. Meanwhile, the inner product of L*(Q) is denoted by (-,-). For 7i > 0 (% indicates fine
grid size h or coarse grid size H ), r > 2, define V; C Hé (€2) is a finite-dimensional subspace and V]
satisfies the following properties [9]

(1)V; € Z N Hy(Q),

aZv -2 r
(2) < Chr|vll,v e V;,

dxdy 2.1)

2

: m 6”1(“ S 1)

(3)323;[271 ,-,-:oZij:mH S H] < CHllullye, u e HHQ)NZNH\Q),2< s <,
where PP
u u u
7 = {ulu, 2,2 2Q }
{uu 0x dy 6x(9y€ )

In order to give the numerical approximation of Eq (1.1), we use the following composite Trapezoid
formula.

Lemma 2.1. Letting s(a) € C?[0, 1], we have

f s(@)da = Aaz crs(ay) — —s<2>(g) Le(0,1), (2.2)

0

where

1, otherwise.

{ L k=021,
Ci =

Lemma 2.2. [31,32] For 0 < a < 1, the following approximate formula holds

n+1
DI, Y, i) = ) (AD ™ Gu(DU(X, Y, 1)) + O(AP) £ T3 u + O(AP), (2.3)
=0
where
2+a .« .
. A _y > .] = O’
gD 200 T (2.4)
5 -5V >0,
and I ) |
Jj—«a « _a+ )
=1; — — ,j>1. 2.5

Lemma 2.3. [23] For series {7j } given by Lemma 2.2, we have

Yo =1>0;9<0,G=12..0; > 9=~ (2.6)
Lemma 2.4. /23,31, 32] For series {q,())} defined by formula (2.4). Then for any integer n and any
positive integer N as well as real vector (u®,u', ...u") € RV*!', we get
N n
D (Z gau, u) >0, 2.7)
n=0  j=0
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3. Derivation of the two-grid ADI FE scheme

By using Lemma 2.1, we discretize the integral term of the distributed order equation. Suppose
s(a) € C*[0, 1], and set s(a) = w(@)§ D{u, to arrive at

2K
Du = Aa Z crw(ay)S D u — Ry, (3.1)
k=0

where R, = O(Ad?).
By using Lemma 2.2 and formula (3.1), the time discretization scheme of Eq (1.1) can be written as
1 X 1 1 1 1 >
U2 + Aa Z (@)D" u = A+ muT) = Z R (3.2)
k=0 i=1
Denote

2K
1 1
R = DVus = Aa ) eule)§ D™ = O(Aa®),n > 0,
k=0
(3.3)

|
n+3

1
R =§ Diu(x,y, 1) = 7" u= O(AF),n 2 0,

At
1
n+5

R,

1
= 6u™ =" = O(AP),n > 0.

So we have
2K

1
(6,u"+% V) + A Z ckw(a/k)(.@Zf’Hz u, v) + (Vu’”%, Vv) + (m(u”*%), V)
k=0

—(F"h )+ (iRi,v).
i=1

Finding uh+1 € V;, we arrive at the following FE scheme of formula (3.4)

(3.4)

2K
1 antd el el
Gty 2, vi) + A D el )( Dy, vi) + (Vi 2, Vvy) + (mGad, "), vy) 45
k=0 .
=(f"2, ), ¥y € V.

To speed up the calculation, we create the following two-grid ADI finite element scheme.
Denote

1 ) 1 2K
2 _ (2 _ - -
@ = ( 2At) L b=1+Aka ;:O cr(@)(AD) %o, (0).

Then, we get the following two-grid ADI finite element scheme.
Step 1: Letting U%“ [0, T] V— VIf{_ C V; be the solution of the following nonlinear system which is
based on the coarse grid 7, we have

2K
GUL vy + A Y cwl@)( e Ug.vg) + (VUL Vvp)
. 1 (3.6)
1 a2 025t n_+§ O*v= 1
nts N a i AN B )
(U, vg) + b( e ’axay)_(f Evi) Vg e V-
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Step 2: Letting u}*' : [0, T] +—> V be the solution of the following nonlinear system which is based
on the fine grid 7, we have

1 n+
G v + A Y @)@ ) + (Vi T
k=0
a? at) un+% o2
_( tYy Vi
b\ 0xdy ’ dx0y
:(fn+%’ Vh), vvh € V}’;’

(3.7

)+ nU DG - U )

where h < H.
Next, we further discuss the numerical scheme (3.6). We rewrite it into a more familiar alternating
direction finite element form. Assume that V’ = V’ ® V,f » where V;' and ng are finite-dimensional

subspaces of H, 1(Q) Let {go,} "and {Xp el ' be bases of V., and Vi respectively. So { ,Xp}fvxlél\i‘ :
is the tensor product basis of V’
Let
N—1 Ny—1
Un(xy) = ), > omeixx,0),
i=1 p=1
N1 N1 (3.8)
I"(e,y) = Uk(x,y) = U (y) = >0 B, o),
i=1 p=1
where
(n _ _(n) (n=1)
lBip - O-ip _O-ip ' (39)

Letvg = opm,l=1,--- ,Nc—1;m=1,--- N, — 1, then the scheme (3.6) can be changed into

N,y—1Ny—1

3

dpi Iy Np  Oxm
(n+1) p
Bip {(SOsz":Dle)+ [(a Xp» 5 Xm) + (@i ay"pl_)]

i=1 p=1
002 O0 k)| G0
2\ ox Oy Ox Oy
=F"*', n=0,1,2,---,N,

where

1 1 n+y
F! =—{At(f"+2,soz)(m) — Am(U ), @ixm)
N,—1Ny-1

- Z Z AtAa Z crw(ap)(At) " q,, (0)o fz)(%)( p> PLXm)

i=1 p=1
1Ny , (3.11)
- Z Z AtAaZckw(ak)Z(At)‘“"qm(J)a,,, s oxm)

i=1 p=1
Ny—1Ny—1

- 2 > 0] B Sy + (0L 2|

i=1 p=1

Networks and Heterogeneous Media Volume 18, Issue 2, 855-876.



861

Denote
Ny-1
A - ((‘Pu ‘pp)x)lp 1’ A = ((Xi’/\/p)y)i [),_1’
dp; 0 dyi O Ny-1
((— )x),p > By = ((E — )it
FoD = [F"+1(901,)(1), F™ (@1, x2), ,Fn+1(901,)(1\{‘,—1),
Fn+1(‘102,/\/1)a e ,Fn+1(90Nx—17XNy—l)]T7
and let
) ) ) @) )] )] T
o =[oy), o, O-IJN DO ’O'Jéx—l,Ny—l] ’
() ) () () () T
ﬁ(J) [:814’:3112’ IJN),.—I’ 2]1" :8] ~1,Ny S

So we obtain the matrix form of the ADI Galerkin scheme (3.10) as follows
a a .
[(As+ 2B @ Iy 11yt ® (A + 2 BYIB™ = FO°0, (3.12)

where ® denotes the matrix tensor product and Iy, and Iy,_; denote the identity matrices of order
N, — 1 and N, — 1, respectively. By introducing the auxiliary vector ", then the Eq (3.12) is
equivalent to

a A A
(A + 2B ® Iy, 1B"D = FO*D,

a 0 (3.13)
[y, ® (A, + 2 BB = B0,
Thus we determine """ by solving two sets of independent one-dimensional problems.
In x-direction, we calculate ,B("+1) by using the following equations
(A, + Bx)ﬁ(”“) FO* Y p=1,2,--- ,Ny— 1, (3.14)
where
,3("“) w(n+l) ﬁ(n+1)’ N B(n:ll)p]T
F(n+1) [F(n+1) F(n+1), . F}(\;H'll)p]T.
In y-direction, we can calculate ,BE"“) by using the following equations
a A
(A, + EBy),Bf.””) =p" Y i=1,2,--- N, -1, (3.15)

where

(n+1) _ (n+1) +1) ( +1)
B = 1B B BT

(n+1) _ (n+1) 7( +1) ( +1)
B = 1B B BT

For the numerical scheme (3.7) we use a similar approach to the above process. In the next process,
we consider the stability and convergence of the two-grid FE systems (3.6) and (3.7).
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4. Analysis of stability and convergence

4.1. Stability

Theorem 4.1. For the systems (3.6) and (3.7), which is based on coarse grid Tz and fine grid T}, the
following stable inequality holds

e ? < € max £ 4.1)

1
Proof. Taking v, = 2uZ+2 in scheme (3.7), we obtain

(||u P = Ih1P) + 2Aa Z o) Z" )
k=0
n+1 2 (42)

n+d o
+ 2|V, 2" +

Atb (H 8x8y ” 8x8y wil| )

=~ (U +m U DT = U, 20 + (20,

By using Cauchy-Schwarz inequality and Young inequality, we can get

1 2 apn+ n+
<||u"+ P = I >+2Aazckw<ak><9m S, 10, )
k=0

4.3
2) (4.3)

n+1

+2V"+2 +—
12,1 Atb(Hax@

n+doo n+i 1
<C(lhw, “II" + IU; IR+ IR

H (9x(9y R

Multiply At on both sides of inequality (4.3) and sum the resulting inequality (4.3) for n from O to N
to obtain

N 2K
12 apn+i n+
| +2AtAaZchw<ak)(@Af Fy,10,%)

n=0 k=0
N n+i 2
£ 208 Y (ViR + 11 s 4.4)
n=0
N+1 5
<CAL Y (I + U + 171 + W) + —H 5o
n=0
By using Lemma 2.4 and Gronwall lemma, we have
N+1 2
WP < Ca Y AUSR + 1717 + C(IgIP + —H 53" ) (4.5)
n=0

1
Next we discuss the term ||U’?ﬁ||2. Take vz = 2U;;r2 in scheme (3.6) and use the same process of the

derivation for ||uN I” to arrive at

lUz? < c(iug)r +—H o U°~H + max [|£11). (4.6)

0<i<n
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N
Use At ), < T and substitute inequality (4.6) into inequality (4.5) to derive
n=0

N+1 < i 2.
Iy * 17 < COSrp;}Vﬁlllfll 4.7
Thus, the proof of stability is completed.

4.2. Convergence

Define a Ritz projection operator R;, : H)(Q) — V; by
(V(u — Rpu), Vvy) = 0,Yv, € V}.

Then, we introduce the property of the projector R;.

Lemma4.2. [9]If2 > ShelP(H"),1=0,1,2, p=2,00, then there exists a constant C that is independent
of h, such that

Hal(u —~ ‘Rhu)H ws)

s k”
LP(Hk) - ot lercasy’

where, k = 0,1, 1 < s < rand h is coarse grid step length H or fine grid size h.

Lemma 4.3. [7] Let D represent the operator g or By using the triangle inequality and

' 612
inequality (2.1), we have

< CH2|Dully + CH 2D — Ryw)"l. (4.9)

Haz(D(u — Ruu)")
0x0y

To simplify the notations, we denote
u(ty) =, = (u(t,) — Ry + (Rpu" — ) = &7 + 17,
u(ty) = U = (u(t,) - Rgu") + (Rgu" - U%) = 4, + P

Theorem 4.4. Let u(t,), Uz and w, be the solution of Eq ( 1 1), scheme (3.6) and scheme (3.7),

respectively. Assume that u(t,) € L*(H"), § a” e L*((0,T); H"), € L*((0,T1; L?) and r > 2, then we
obtain the following error results

{)x{))at

ou |2
~ <c(wrii. o n - ”
llu(t,) — )l C(h uelI7 (H)+h or LZ(Hr) ArlIn A ot 2
2
+ AP|In At + 1 + At + Ao’
| l‘ 0xdyotll 22 ¢ 4.10
Ou |4 TTAr-8 A 4 || Ou 10
Tr74r I74r = —_—
+ HY |||l ooy + H Sl T H AT InAY Hat L2

3

+ Ar*|In Ar?
el ey

4
+ ﬁ“)
12(12)

where C is a positive constant independent of fine grid step length h, coarse grid step length H as well
as time step parameter At.
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Proof. Combining scheme (3.4) and scheme (3.7), the error equation is as follows

2K

n+i ag,n 1
G o) + Aa Y ) (D™ s vn)
k=0

41
2 2 2
n (V?]u+2 VV},) 4 _(a 5)?7714 0 Vi )

b\ 0xdy ’ 0xdy
— ) = mUH S HE e - e Ut -6 ) @

2K
g,n 1 1
—Aa Y ) (D" i) = (VES?, Vv
k=0

a2 (0% 6%, 826,§"+2 0, :
Lo T TV L (OO0 TV NV R W, € VI
b( xDy axay) b( Bx0y axay) 2 Rivi) €V

i=1

1
Taking v, = 27, %, summing up Eq (4.11) for n from 0 to N, and multiplying A on both sides of the
above equation, we can get

1 1
TP+ 288 ) A Y cele)( Dy ™ P ')
n=0 k=0

+2AzZIIVn R+ b“ ;;,;; 2

1 n+l st ot n+t L ntd n+l
=- ArZ(m(u“z)—m(U,;-) FmlUNET +n, 7 =S+ U, 2m,77)

@, 412
—ArZ(a@ o )—AtZAachwmk)(@ e (12
n=0 k=0
Pourt o2 @ (PoE ol
w35 )8 L5 e )
* Z oxdy 0xady IZ b\ 0Oxdy 0xady

+AIZ Z(R,,Znu 2)"‘”’714“2 2“6)«9; 2

n=0 i=1

=FE\+E,+E;+ E4s+ Es+ E¢ + E7 + Eg.

In the following, we estimate the terms E;, i = 1,2,...,8.
From Lemma 4.2, we can get

€021 < ElPoegszy < CR Nl iy (4.13)

Then we have

1 nil
= e S @ WG et 2
n=0

(4.14)
N
<CALY (Bl + 1 P >+CAzZ||<u"+z ~ U + CArZun”*z

n=0
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Use Cauchy-Schwarz inequality, Young inequality and Lemma 4.2 to arrive at

=— ArZ((sng*z )

N
<CAtZ f IulPds + CA Y Il

n=0

2 A Y nt+lio
+C tz .
s i
=

By using the Cauchy-Schwarz inequality and Young inequality, we have

Ou

<Ch2r
ot

=—At Z Aa Z aw()(Dyy n+2§u, 2'7u+2)

n=0

SAIZ Aaz @ 7" el

n n 1
<CAt Z Aa Z crw(a)(lIR, +2 I? + 112722 1)

n=0 o
+ Ch” Aa Z Ckw(ak)“o Daku”L‘”(H'
k=0

By using the Young inequality and Holder inequality, we have

_ A Z (826@ F o) )
B dxdy ~ Oxdy

a’ 83§u(s) 2116°n, s
<C— + CAt
b f; 0x0yot Z 0x0y
From Lemma 4.2 and Lemma 4.3, we obtain
fT 83614(5) ds < CH2 Ou |2
o ll0xdyot At 2y

So we can get

E, < Ch2- 4“

NS}

o,
LZ(Hr) tZ b H aZay ‘ '

wlal.

Similarly, we have

P o,
Es =At ( , - )
i Z 0x0y 0x0y

2
AtZ

2

n+i
a 82 2

0x0y

Fu
0x0yot

L2(12)

(4.15)

(4.16)

4.17)

(4.18)

(4.19)
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Together, we have

Es —AtZ Z(R,, 2

n=0 1= (4.20)
<CAtZ(At + At + 1P+ IR
n=0
Substituting inequalities (4.14)—(4.20) into Eq (4.12) and using Gronwall lemma, we have
7P + 24 Z Aa Z cxoa)( Ty )
n=0 k=0
4l 2 N+1 2
2A Vi,
+ r;n m P+ il L e
Ou a’ (4.21)
2r 2r 2r 4 .
<CTR Nl + CH | 52 H il
a|| Pu |P 2r C 12
b 5x6y6t L2(L?) h 0222%(](”0 Dt u”Lm(Hr)
N
n+3 u
+ CT(A* + Aa*) + CAIZ_(; I = U IR + )P + _”Bxng .
. . . . N 1 n+l 2112
For the next discussion, we give the estimate for the term Ar )] ||(u"*2 — Uﬁ .
n=0
Subtract scheme (3.6) from scheme (3.4) to arrive at
1 2K 1
n+s ay,n+5
@2 vip) + B Y @) (D™ pusvig)
k=0
»PS.pn? 62\/1;
V! +1 v _( u )
+ (Ve Vi * b\ 0xdy 6x6y
= — (™) = U, v) — @) (4.22)

g+t

—Aachw(ak)(.@At Qo) — (VA2 V)
k=0

az(c’izétu"*; (92\/;;) a2(625t/12+5 Fvg

3
N S ) Ri7 H ’v H Vi
5\ Toxay axay) ” B\ axay axay) " ;( v i € Vi

1
Take vz = 2pZ+2 in scheme (4.22) and use the similar process of proof to the estimate for [|u(z,) — 1|
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to obtain

N
N+li2 g+t n+t
o 1P + 220 3" Aa > (@) (g pun i)
n=0 k=0
8%pN*1 12

b ” axay

ou
ot

+CH* max |[ED%u|P, . + CT(Af* + Ad*
OskSZKHO ul; (H") ( )

N
n+l
+ 2Atz V"I +

Pu |2

6x8y0t

2 4@

I72r I72r
<CTH Nl gy, + CH vt H o

a
LZ(H’ b

L2(L2)

+ b1 + zuaxa

By using the similar progress of [22], we have

N
1 n 1
CAZZ ”(un+§ _ Uﬁ+2)2||2

—CArZ et — U

ou |4

<C(H Ml + 7|5

u
0x8y8t

g4~ 8 H
L2(H ’) ot

L2(H")
2

+(5)

o4 4
+ ol + H

4

+ HY max ||O Dakulle(H,) + AP + Add
L2 L2) 0<k<
(9x8y )
By using the similar progress of [17], we can get

e (3ar)

b1+ LAtha Y25 cro(a) (A =g, (0)
2
(547)
T 1Aa T35 (@) (Anen(1 + %)
=O(AF|1n At)).
Substitute inequalities (4.24) and (4.25) into inequality (4.21) to have

ou |2
N+1112 2r 2r 2r—4
<C(h P + I + AL lnAt”
Tl [ s mad| =L
3 2
+ AP|In At + 17+ A + Ad?
1 Ay
~ — 4
+ Yl + HY||ZE + HYSAAIn Ar H
el L2(H) I ATl 5 s
3 4
Ou + ﬁ4r)
5xay(9t L2(12)

By using triangle inequality, we finish the proof of the theorem.

(4.23)

(4.24)

(4.25)

(4.26)
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5. Numerical experiment

In this section, we carry out numerical experiments to illustrate our theoretical results.

Example 5.1. On the space-time domain [0, 11> x [0, %], we choose w(a) = I'(4 — @), nonlinear term
m(u) = sin(u), source term

6(> — 1)

) =03+ —=

+ 27°1%) sin rx sin 7ty + sin(7 sin 7x sin 7ry), (5.1
and the exact solution
u = £ sin 7rx sin y. (5.2)

In Table 1, with Ae = 1/500, Ar = 1/200, H, = ﬁy = 1/2,1/3,1/4,1/5,1/6 and
h, = hy, = 1/4,1/9, 1/16, 1/25,1/36, the error estimate result, second-order spatial convergence
rates and  computation  time of u are  obtained. In  Table 2, with
Aa = At = h, = hy = H; = H; = 1/4, 1/16, 1/36, 1/64 and 1/100, we get the convergence in time
and space. The data results show that the two-grid ADI finite element metnod can effectively solve the
nonlinear time distributed-order reaction-diffusion equations.

Table 1. The errors and convergence orders in space with Aa = ﬁ, At = 7%0 andh, = h, =
= i

Hy = Hy Hy = Hy IU - Uyl Rate Time(S)

1/2 1/4 4.8437E-03 - 1.76

1/3 1/9 9.2451E-04 2.0423 7.81

1/4 1/16 2.8519E-04 2.0441 29.77

1/5 1/25 1.1151E-04 2.1042 89.94

1/6 1/36 4.9230E-05 2.2422 251.21

Table 2. The errors and convergence orders in space and time with Ao = At = h, = h, =

H? = H2.
H,=H, h, = h, llu — w| Rate time(s)
12 1/4 1.2439E-02 - 0.36
1/4 1/16 9.1725E-04 1.8807 0.59
1/6 1/36 1.9373E-04 1.9174 10.29
1/8 1/64 6.3576E-05 1.9366 220.41
1/10 1/100 2.6660E-05 1.9474 3837.59

In Figure 1, we give the surface for the exact solution u at t+ = 0.5 with h, = h, = 1/200.
Furthermore, in Figures 2-7, by taking A« = 1/500, At = 1/200,
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he=hy, = H> = H?=1/4,1/9, 1/16, 1/25, 1/36 and 1/49, at t = 0.5, we show the surfaces for the
numerical solutions u;. In order to show the error behavior between the numerical solution and the
exact solution, in Figures 8-13, we give the surfaces for the errors u — u;, with Aa = 1/500,

At = 1/200, hy = hy = H2 H2 =1/4,1/9, 1/16, 1/25, 1/36,1/49 at t = 0.5. It can be seen from
the image dlsplay that the numerical method is effective in solving the nonlinear time
distributed-order reaction-diffusion equation.

0.1

0.05

Figure 1. The exact solution u at t = 0.5 with h, = hy, = ﬁ.

0.1

0.05

Figure 2. u; at t = 0.5 with Aa = At = s=and h, = h, = = H?= H2

500’

Figure 3. u;, at t = 0.5 with A = At = s=and h, = h, = =H? = H2

500’
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Figure 4. u;, at t = 0.5 with Aa =

Figure 5. u, at t = 0.5 with Aa =

Figure 6. u;, at t = 0.5 with Aa =

Figure 7. u;, at t = 0.5 with Aa =

Networks and Heterogeneous Media

500’

500’

500’

500’

At = 200 and h,

At = 200 and £,

% o:o‘:
',/',:o‘o\ S N

/////, 'QQ

77 I,'%:‘Q “

o \‘“\\\\\ \
\“\‘\“ \

0.6

0.4

At = 200 and £,

0.6
0.2 0.4

At = 200 and h,

=h, =

=hy, =

= hy =

=h, =

=H =1
H2 %-
=1} = 5.
=H =1,
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Figure 8. u — uj at = 0.5 with Ae = g5, Ar = sbsand h, = h, = H? = H? = 1.

x10™

N
\W

0.8
04

1
0.6 0.8

0.2 0.4

0o o 02

Figure 9. u — u, at t = 0.5 with Aa = i, At = 555 and hx:hy:ﬁ)%:ﬁyzzé.

Figure 10. u — u; at t = 0.5 with Aa = &, At = sk and hy = h, = H> = H? = L.

N
NZF

Figure 11. u — uy at t = 0.5 with A = g5, At = 5h-and h, = hy = H? = H? = %.
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0 o

Figure 12. u — uy at t = 0.5 with A = g, At = 5bsand h, = hy = H? = H? = .

0 o

Figure 13. u — uy at t = 0.5 with Ae = g5, At = 55 and h, = hy = H2 = H? =

500° 200 49

Example 5.2. On the space-time domain [0, 11> x [0, %], we choose w(a) = I'(5 — @), nonlinear term
m(u) = arctan(u), source term

24(t* - 1

(47 el = 0yl — y) + 24 (1 — _
fOoynt) =47 + = )a(l = 2y(1 = 3) + 2701 =) + x(1 - 2) 5.3

+ arctan(* x(1 — x)y(1 — y)),
and the exact solution
u=rxl- x)y(1 —y). 5.4

In Table 3, by taking fixed temporal step length Az = 1/300, fractional parameter A = 1/600, and
changed H, = H, = 1/2, 1/3, 1/4, 1/5,1/6, h, = h, = 1/4, 1/9, 1/16, 1/25,1/36, we show the error
estimation results, the second-order spatial convergence rate and calculation time of u, from which one
can see that we can obtain the similar results as that shown in Example 5.1.

Table 3. The errors and convergence orders in space with Aa = H%o’ At = ﬁ andh, = h, =
= i,

H,=H, h. = hy e — 1y Rate time(s)

12 1/4 1.9517E-04 - 3.19

1/3 1/9 3.6717E-05 2.0601 14.59

1/4 1/16 1.1455E-05 2.0245 73.51

1/5 1/25 4.6293E-06 2.0301 182.94

1/6 1/36 2.1858E-06 2.0580 463.55

Networks and Heterogeneous Media Volume 18, Issue 2, 855-876.



873

Remark 5.1. As pointed out in some works, when the exact solution u(x,y, t) has a strong singularity,
the WSGD scheme maybe cannot preserve second-order approximation accuracy in time, so the initial
correction technique presented in [44,45] can be considered.

6. Conclusions and future works

In this paper, a two-dimensional nonlinear time distributed-order fractional sub-diffusion equation
is solved by a proposed two-grid ADI FE method based on the WSGD operator. The unconditional
stability and optimal error estimates with second-order convergence rate in spatial direction are
obtained. The comparison of the numerical solution and the exact solution is made to demonstrate the
efficiency of the numerical method. Compared with the traditional FE method, computing time can be
saved and the storage space can be reduced in this method. Therefore, this method has further
research value.

In the future, this method can be used to numerically solve nonlinear distributed-order time-space
fractional sub-diffusion equations and nonlinear Volterra integro-differential equation with weakly
singular kernel [42,43], and an ADI method with two-grid finite volume element method [41] for
solving fractional models will be developed in another work.
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