Distributed real time system has developed into an outstanding computing platform for parallel, high-efficiency applications. A real time system is a kind of planning where tasks must be completed with accurate results within a predetermined amount of time. It is well known that obtaining an optimal assignment of tasks for more than three processors is an NP-hard problem. This article examines the issue of assigning tasks to processors in heterogeneous distributed systems with a view to reduce cost and response time of the system while maximizing system reliability. The proposed method is carried out in two phases, Phase Ⅰ provides a hybrid HPSOGAK, that is an integration of particle swarm optimization (PSO), genetic algorithm (GA), and k-means technique while Phase Ⅱ is based on GA. By updating cluster centroids with PSO and GA and then using them like initial centroids for the k-means algorithm to generate the task-clusters, HPSOGAK produces 'm' clusters of 'r' tasks, and then their assignment onto the appropriate processor is done by using GA. The performance of GA has been improved in this article by introducing new crossover and mutation operators, and the functionality of traditional PSO has been enhanced by combining it with GA. Numerous examples from various research articles are employed to evaluate the efficiency of the proposed technique, and the numerical results are contrasted with well-known existing models. The proposed method enhances PIR values by 22.64%, efficiency by 6.93%, and response times by 23.8 on average. The experimental results demonstrate that the suggested method outperforms all comparable approaches, leading to the achievement of superior results. The developed mechanism is acceptable for an erratic number of tasks and processors with both types of fuzzy and crisp time.
Citation: Karishma, Harendra Kumar. A novel hybrid model for task scheduling based on particle swarm optimization and genetic algorithms[J]. Mathematics in Engineering, 2024, 6(4): 559-606. doi: 10.3934/mine.2024023
Distributed real time system has developed into an outstanding computing platform for parallel, high-efficiency applications. A real time system is a kind of planning where tasks must be completed with accurate results within a predetermined amount of time. It is well known that obtaining an optimal assignment of tasks for more than three processors is an NP-hard problem. This article examines the issue of assigning tasks to processors in heterogeneous distributed systems with a view to reduce cost and response time of the system while maximizing system reliability. The proposed method is carried out in two phases, Phase Ⅰ provides a hybrid HPSOGAK, that is an integration of particle swarm optimization (PSO), genetic algorithm (GA), and k-means technique while Phase Ⅱ is based on GA. By updating cluster centroids with PSO and GA and then using them like initial centroids for the k-means algorithm to generate the task-clusters, HPSOGAK produces 'm' clusters of 'r' tasks, and then their assignment onto the appropriate processor is done by using GA. The performance of GA has been improved in this article by introducing new crossover and mutation operators, and the functionality of traditional PSO has been enhanced by combining it with GA. Numerous examples from various research articles are employed to evaluate the efficiency of the proposed technique, and the numerical results are contrasted with well-known existing models. The proposed method enhances PIR values by 22.64%, efficiency by 6.93%, and response times by 23.8 on average. The experimental results demonstrate that the suggested method outperforms all comparable approaches, leading to the achievement of superior results. The developed mechanism is acceptable for an erratic number of tasks and processors with both types of fuzzy and crisp time.
[1] | R. Mall, Real-time systems: theory and practice, Pearson Education India, 3 Eds., 2009. |
[2] | H. Jin, P. Tan, A novel dynamic allocation and scheduling scheme with CPNA and FCF algorithms in distributed real-time systems, 11th International Conference on Parallel and Distributed Systems (ICPADS'05), 1 (2005), 550–556. https://doi.org/10.1109/ICPADS.2005.38 doi: 10.1109/ICPADS.2005.38 |
[3] | Y. Singh, M. Popli, S. S. P. Shukla, Energy reduction in weakly hard real time systems, 2012 1st International Conference on Recent Advances in Information Technology (RAIT), 2012,909–915. https://doi.org/10.1109/RAIT.2012.6194555 |
[4] | V. Jeyakrishnan, P. Sengottuvelan, A hybrid strategy for resource allocation and load balancing in virtualized data centers using BSO algorithms, Wireless Pers. Commun., 94 (2017), 2363–2375. https://doi.org/10.1007/s11277-016-3481-8 doi: 10.1007/s11277-016-3481-8 |
[5] | V. M. A. Xavier, S. Annadurai, Chaotic social spider algorithm for load balance aware task scheduling in cloud computing, Cluster Comput., 22 (2019), 287–297. https://doi.org/10.1007/s10586-018-1823-x doi: 10.1007/s10586-018-1823-x |
[6] | X. Huang, C. Li, H. Chen, D. An, Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies, Cluster Comput., 23 (2020), 1137–1147. https://doi.org/10.1007/s10586-019-02983-5 doi: 10.1007/s10586-019-02983-5 |
[7] | L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile search algorithm (RSA): a nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191 (2022), 116158. https://doi.org/10.1016/j.eswa.2021.116158 doi: 10.1016/j.eswa.2021.116158 |
[8] | R. I. Davis, A. Burns, A survey of hard real-time scheduling for multiprocessor systems, ACM Comput. Surv. (CSUR), 43 (2011), 1–44. https://doi.org/10.1145/1978802.1978814 doi: 10.1145/1978802.1978814 |
[9] | Y. Zhang, A. Sivasubramaniam, J. Moreira, H. Franke, Impact of workload and system parameters on next generation cluster scheduling mechanisms, IEEE Trans. Parall. Distr. Syst., 12 (2001), 967–985. https://doi.org/10.1109/71.954632 doi: 10.1109/71.954632 |
[10] | H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for scheduling parameter sweep applications in grid environments, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000), 2000,349–363. https://doi.org/10.1109/HCW.2000.843757 |
[11] | J. Kennedy, R. C. Eberhart, Particle swarm optimization, Proceedings 9th Heterogeneous Computing Workshop (HCW 2000), 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 doi: 10.1109/ICNN.1995.488968 |
[12] | D. E. Goldberg, Genetic algorithm in search, optimization and machine learning, Boston: Addison-Wesley Longman Publishing Co., Inc., 1989. |
[13] | Z. Wu, X. Liu, Z. Ni, D. Yuan, Y. Yang, A market-oriented hierarchical scheduling strategy in cloud workflow systems, J. Supercomput., 63 (2011), 256–293. https://doi.org/10.1007/s11227-011-0578-4 doi: 10.1007/s11227-011-0578-4 |
[14] | M. Naderam, M. Dehgham, H. Pedram, Upper and lower bounds for dynamic cluster assignment for multi-agent tracking in heterogeneous WSNs, J. Parall. Distr. Com., 73 (2012), 1389–1399. https://doi.org/10.1016/j.jpdc.2013.04.007 doi: 10.1016/j.jpdc.2013.04.007 |
[15] | L. Wang, S. U. Khan, D. Chen, J. Kolodziej, R. Ranian, C. Z. Xu, et al., Energy-aware parallel task scheduling in a cluster, Future Gener. Comp. Sy., 29 (2013), 1661–1670. https://doi.org/10.1016/j.future.2013.02.010 doi: 10.1016/j.future.2013.02.010 |
[16] | B. Tripathy, S. Dash, S. K. Padhy, Dynamic task scheduling using a directed neural network, J. Parall. Distr. Com., 75 (2015), 101–106. https://doi.org/10.1016/j.jpdc.2014.09.015 doi: 10.1016/j.jpdc.2014.09.015 |
[17] | Y. Xiao, Z. Ren, H. Zhang, C. Chen, C. Shi, A novel task allocation for maximizing reliability considering fault-tolerant in VANET real time systems, 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, 1–7. https://doi.org/10.1109/PIMRC.2017.8292511 |
[18] | P. Neamatollahi, S. Abrishami, M. Naghibzadeh, M. H. Y. Moghaddam, O. Younis, Hierarchical clustering-task scheduling policy in cluster-based wireless sensor networks, IEEE Trans. Ind. Inform., 14 (2018), 1876–1886. https://doi.org/10.1109/TII.2017.2757606 doi: 10.1109/TII.2017.2757606 |
[19] | H. Kumar, N. K. Chauhan, P. K. Yadav, A high performance model for task allocation in distributed computing system using k-means clustering technique, In: Research anthology on architectures, frameworks, and integration strategies for distributed and cloud computing, 9 (2021), 1244–1268. https://doi.org/10.4018/978-1-7998-5339-8.ch060 |
[20] | T. K. Dao, T. S. Pan, T. T. Nguyen, J. S. Pan, Parallel bat algorithm for optimizing makespan in job shop scheduling problems, J. Intell. Manuf., 29 (2018), 451–462. https://doi.org/10.1007/s10845-015-1121-x doi: 10.1007/s10845-015-1121-x |
[21] | H. Kumar, I. Tyagi, Implementation and comparative analysis of k-means and fuzzy c-means clustering algorithms for tasks allocation distributed real time system, Int. J. Embedded Real-Time Commun. Syst., 10 (2019), 66–86. https://doi.org/10.4018/IJERTCS.2019040105 doi: 10.4018/IJERTCS.2019040105 |
[22] | A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris Hawks optimization: algorithm and applications, Future Gene. Comput. Syst., 97 (2019), 849–872. https://doi.org/10.1016/j.future.2019.02.028 doi: 10.1016/j.future.2019.02.028 |
[23] | F. Alkhateeb, B. H. Abed-alguni, A hybrid cuckoo search and simulated annealing algorithm, J. Intell. Syst., 28 (2019), 683–898. https://doi.org/10.1515/jisys-2017-0268 doi: 10.1515/jisys-2017-0268 |
[24] | E. B. Tirkolaee, A. Goli, G. W. Weber, Fuzzy mathematical programming and self-adaptive artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with outsourcing option, IEEE Trans. Fuzzy Syst., 28 (2020), 2772–2783. https://doi.org/10.1109/TFUZZ.2020.2998174 doi: 10.1109/TFUZZ.2020.2998174 |
[25] | H. Kanemitsu, M. Hanada, H. Nakazato, Clustering-based task scheduling in a large number of heterogeneous processors, IEEE Trans. Parall. Distr. Syst., 27 (2016), 3144–3157. https://doi.org/10.1109/TPDS.2016.2526682 doi: 10.1109/TPDS.2016.2526682 |
[26] | K. Mishra, S. K. Majhi, A binary bird swarm optimization based load balancing algorithm for cloud computing environment, Open Comput. Sci., 11 (2021), 146–160. https://doi.org/10.1515/comp-2020-0215 doi: 10.1515/comp-2020-0215 |
[27] | N. A. Alawad, B. H. Abed-alguni, Discrete Jaya with refraction learning and three mutation methods for the permutation flow shop scheduling problem, J. Supercomput., 78 (2022), 3517–3538. https://doi.org/10.1007/s11227-021-03998-9 doi: 10.1007/s11227-021-03998-9 |
[28] | M. Haris, S. Zubair, Mantaray modified multi-objective Harris hawk optimization algorithm expedites optimal load balancing in cloud computing, J. King Sau. Univ.-Comput. Inf. Sci., 34 (2022), 9696–9709. https://doi.org/10.1016/j.jksuci.2021.12.003 doi: 10.1016/j.jksuci.2021.12.003 |
[29] | M. Agarwal, G. M. S. Srivastava, Genetic algorithm-enabled particle swarm optimization (PSOGA)-based task scheduling in cloud computing environment, Int. J. Inf. Tech. Dec. Making, 17 (2018), 1237–1267. https://doi.org/10.1142/S0219622018500244 doi: 10.1142/S0219622018500244 |
[30] | Y. Kang, H. Lu, J. He, A PSO-based genetic algorithm for scheduling of tasks in a heterogeneous distributed system, J. Soft., 8 (2013), 1443–1450. https://doi.org/10.4304/jsw.8.6.1443-1450 doi: 10.4304/jsw.8.6.1443-1450 |
[31] | A. K. Samal, R. Mall, C. Tripathy, Fault tolerant scheduling of hard real-time tasks on multiprocessor system using a hybrid genetic algorithm, Swarm Evol. Comput., 14 (2014), 92–105. https://doi.org/10.1016/j.swevo.2013.10.002 doi: 10.1016/j.swevo.2013.10.002 |
[32] | I. R. K. Raju, P. S. Varma, M. V. R. Sundari, G. J. Moses, Deadline aware two stage scheduling algorithm in cloud computing, Indian J. Sci. Tech., 9 (2016), 1–10. https://doi.org/10.17485/ijst/2016/v9i4/80553 doi: 10.17485/ijst/2016/v9i4/80553 |
[33] | M. Mutingi, C. Mbohwa, Modeling supplier selection using multi-criterion fuzzy grouping genetic algorithm, In: Grouping genetic algorithms: studies in computational intelligence, Cham: Springer, 666 (2017), 213–228. https://doi.org/10.1007/978-3-319-44394-2_12 |
[34] | Z. Zhou, J. Chang, Z. Hu, J. Yu, F. Li, A modified PSO algorithm for task scheduling optimization in cloud computing, Concur. Comput.: Pract. Exper., 30 (2018), e4970. https://doi.org/10.1002/cpe.4970 doi: 10.1002/cpe.4970 |
[35] | J. Luan, Z. Yao, F. Zhao, X. Song, A novel method to solve supplier selection problem: Hybrid algorithm of genetic algorithm and ant colony optimization, Math. Comput. Simul., 156 (2018), 294–309. https://doi.org/10.1016/j.matcom.2018.08.011 doi: 10.1016/j.matcom.2018.08.011 |
[36] | L. Tang, X. Zhang, Z. Li, Y. Zhang, A new hybrid task scheduling algorithm designed based on ACO and GA, J. Inf. Hiding Multim. Signal. Process., 9 (2018), 1585–1594. |
[37] | J. P. B. Mapetu, Z. Chen, L. Kong, Low-time complexity and low-cost binary particle swarm optimization algorithm for task scheduling and load balancing in cloud computing, Appl. Intell., 49 (2019), 3308–3330. https://doi.org/10.1007/s10489-019-01448-x doi: 10.1007/s10489-019-01448-x |
[38] | H. Kumar, N. K. Chauhan, P. K. Yadav, Hybrid genetic algorithm for task scheduling in distributed real-time system, Inter. J. Syst., Cont., Commun., 10 (2019), 32–52. https://doi.org/10.1504/IJSCC.2019.097417 doi: 10.1504/IJSCC.2019.097417 |
[39] | H. Kumar, I. Tyagi, Hybrid model for tasks scheduling in distributed real time system, J. Ambient Intell. Human Comput., 12 (2021), 2881–2903. https://doi.org/10.1007/s12652-020-02445-6 doi: 10.1007/s12652-020-02445-6 |
[40] | S. Devi, D. Garg, Hybrid genetic and particle swarm algorithm: redundancy allocation problem, Int. J. Syst. Assur. Eng. Manag., 11 (2020), 313–319. https://doi.org/10.1007/s13198-019-00858-x doi: 10.1007/s13198-019-00858-x |
[41] | M. Agarwal, G. M. S. Srivastava, Opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing, J. Ambient Intell. Human. Comput., 12 (2020), 9855–9875. https://doi.org/10.1007/s12652-020-02730-4 doi: 10.1007/s12652-020-02730-4 |
[42] | H. Zhang, F. Liu, Y. Zhou, Z. Zhang, A hybrid method integrating an elite genetic algorithm with tabu search for the quadratic assignment problem, Inf. Sci., 539 (2020), 347–374. https://doi.org/10.1016/j.ins.2020.06.036 doi: 10.1016/j.ins.2020.06.036 |
[43] | N. K. Chauhan, I. Tyagi, H. Kumar, D. Sharma, Tasks scheduling through hybrid genetic algorithm in real‑time system on heterogeneous environment, SN Comput. Sci., 3 (2022), 75. https://doi.org/10.1007/s42979-021-00959-0 doi: 10.1007/s42979-021-00959-0 |
[44] | A. Amirteimoori, I. Mahdavi, M. Solimanpur, S. S. Ali, E. B. Tirkolaee, A parallel hybrid PSO-GA algorithm for the flexible flow-shop scheduling with transportation, Comput. Ind. Eng., 173 (2022), 108672. https://doi.org/10.1016/j.cie.2022.108672 doi: 10.1016/j.cie.2022.108672 |
[45] | Karishma, H. Kumar, A new hybrid particle swarm optimization algorithm for optimal tasks scheduling in distributed computing system, Intell. Syst. Appl., 18 (2023), 200219. https://doi.org/10.1016/j.iswa.2023.200219 doi: 10.1016/j.iswa.2023.200219 |
[46] | G. Attiya, Y. Hamam, Task allocation for maximizing reliability of distributed systems: a simulating annealing approach, J. Parallel Distr. Com., 66 (2006), 1259–1266. https://doi.org/10.1016/j.jpdc.2006.06.006 doi: 10.1016/j.jpdc.2006.06.006 |
[47] | M. Jiang, J. Zhou, M. Hu, Fuzzy reliability analysis of disk array systems, 2007 Chinese Control Conference, 2007,314–317. https://doi.org/10.1109/CHICC.2006.4347012 doi: 10.1109/CHICC.2006.4347012 |
[48] | Q. M. Kang, H. He, H. M. Song, R. Deng, Task allocation for maximizing reliability of distributed computing systems using honeybee mating optimization, J. Syst. Soft., 83 (2010), 2165–2174. https://doi.org/10.1016/j.jss.2010.06.024 doi: 10.1016/j.jss.2010.06.024 |
[49] | S. S. Donight, S. Khanmohammadi, A fuzzy reliability model for series-parallel system, J. Ind. Eng. Int., 7 (2011), 10–18. |
[50] | K. Noori, K. Jenab, Fuzzy reliability-based traction control model for intelligent transportation systems, IEEE Trans. Syst. Man Cybern.: syst., 43 (2012), 229–234. https://doi.org/10.1109/TSMCA.2012.2204047 doi: 10.1109/TSMCA.2012.2204047 |
[51] | L. Cederholm, N. Petterson, Distributed real time system survey, Sweden: Mälardalen University, 2009. |
[52] | J. Li, R. Guo, Z. Shao, The research of scheduling algorithm in real-time system, 2010 International Conference on Computer and Communication Technologies in Agriculture Engineering, 2010,333–336. https://doi.org/10.1109/CCTAE.2010.5544771 |
[53] | Y. Li, A. M. K. Cheng, Transparent real-time task scheduling on temporal resource partitions, IEEE Trans. Comput., 65 (2015), 1646–1655. https://doi.org/10.1109/TC.2015.2449857 doi: 10.1109/TC.2015.2449857 |
[54] | S. A. Narale, P. K. Butey, Throttled load balancing scheduling policy assist to reduce grand total cost and data center processing time in cloud environment using cloud analyst, 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), 2018, 1464–1467. https://doi.org/10.1109/ICICCT.2018.8473062 |
[55] | M. Adhikari, S. Nandy, T. Amgoth, Meta heuristic-based task deployment mechanism for load balancing in IaaS cloud, J. Netw. Comput. Appl., 128 (2019), 64–77. https://doi.org/10.1016/j.jnca.2018.12.010 doi: 10.1016/j.jnca.2018.12.010 |
[56] | G. Li, Z. Wu, Ant colony optimization task scheduling algorithm for SWIM based on load balancing, Future Internet, 11 (2019), 90. https://doi.org/10.3390/fi11040090 doi: 10.3390/fi11040090 |
[57] | Z. Shao, D. Pi, W. Shao, Hybrid enhanced discrete fruit fly optimization algorithm for scheduling blocking flow-shop in distributed environment, Expert Syst. Appl., 145 (2020). https://doi.org/10.1016/j.eswa.2019.113147 doi: 10.1016/j.eswa.2019.113147 |
[58] | P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, R. Ghaemi, A new energy-aware tasks scheduling approach in fog computing using hybrid meta-heuristic algorithm, J. Parallel. Distr. Com., 143 (2020), 88–96. https://doi.org/10.1016/j.jpdc.2020.04.008 doi: 10.1016/j.jpdc.2020.04.008 |
[59] | S. Negi, M. M. S. Rauthan, K. S. Vaisla, N. Panwar, CMODLB: an efficient load balancing approach in cloud computing environment. J. Supercomp., 77 (2021), 8787–8839. https://doi.org/10.1007/s11227-020-03601-7 doi: 10.1007/s11227-020-03601-7 |
[60] | G. A. P. Princess, A. S. Radhamani, A hybrid meta-heuristic for optimal load balancing in cloud computing, J. Grid Comput., 19 (2021), 21. https://doi.org/10.1007/s10723-021-09560-4 doi: 10.1007/s10723-021-09560-4 |
[61] | S. M. Shatz, J. P. Wang, M. Goto, Task allocation for maximizing reliability of distributed computing system, IEEE Trans. Comput., 41 (1992), 1156–1168. https://doi.org/10.1109/12.165396 doi: 10.1109/12.165396 |
[62] | D. M. Abdelkader, F. Omara, Dynamic task scheduling algorithm with load balancing for heterogeneous computing system, Egypt. Inform. J., 13 (2012), 135–145. https://doi.org/10.1016/j.eij.2012.04.001 doi: 10.1016/j.eij.2012.04.001 |
[63] | H. Djigal, J. Feng, J. Lu, Task scheduling for heterogeneous computing using a predict cost matrix, ICPP Workshops '19: Workshop Proceedings of the 48th International Conference on Parallel Processing, 2019, 1–10. https://doi.org/10.1145/3339186.3339206 doi: 10.1145/3339186.3339206 |
[64] | H. Kumar, M. P. Singh, P. K. Yadav, A tasks allocation model with fuzzy execution and fuzzy inter-tasks communication times in a distributed computing system, Int. J. Comput. Appl., 72 (2013), 24–31. |
[65] | M. Sharma, H. Kumar, D. Garg, An optimal task allocation model through clustering with inter-processor distances in heterogeneous distributed computing systems, Int. J. Soft Comput. Eng. (IJSCE), 2 (2012), 50–55. |
[66] | E. Ilavarasan, P. Thambidurai, R. Mahilmannan, High performance task scheduling algorithm for heterogeneous computing system, In: M. Hobbs, A. M. Goscinski, W. Zhou, Distributed and parallel computing. ICA3PP 2005, Lecture Notes in Computer Science, Springe, 3719 (2005), 193–203. https://doi.org/10.1007/11564621_22 |
[67] | H. Kumar, I. Tyagi, A new hybrid optimization technique for scheduling of periodic and non-periodic tasks, Augment Hum. Res., 6 (2021), 11. https://doi.org/10.1007/s41133-021-00049-z doi: 10.1007/s41133-021-00049-z |
[68] | H. Topcuoglu, S. Hariri, M. Y. Wu, Performance-effective and low complexity task scheduling for heterogeneous computing, IEEE Trans. Parallel Distr. Syst., 13 (2002), 260–274. https://doi.org/10.1109/71.993206 doi: 10.1109/71.993206 |
[69] | Y. Dai, X. Zhang, A synthesized heuristic task scheduling algorithm, Sci. World J., 2014 (2014), 465702. https://doi.org/10.1155/2014/465702 doi: 10.1155/2014/465702 |
[70] | P. K. Yadav, M. P. Singh, K. Sharma, Task allocation model for reliability and cost optimization in distributed computing system, Int. J. Model. Simul. Sci. Comput., 2 (2011), 131–149. https://doi.org/10.1142/S179396231100044X doi: 10.1142/S179396231100044X |
[71] | M. I. Daoud, N. Kharma, A high performance algorithm for static task scheduling in heterogeneous distributed computing systems, J. Parallel Distr. Comput., 68 (2008), 399–409. https://doi.org/10.1016/j.jpdc.2007.05.015 doi: 10.1016/j.jpdc.2007.05.015 |
[72] | A. Khandelwal, Optimal execution cost of distributed system: through clustering, Int. J. Eng. Sci. Tech., 3 (2011), 2320–2328. |
[73] | K. Govil, A. Kumar, A modified and efficient algorithm for static task assignment in distributed processing environment, Int. J. Comput. Appl., 23 (2011), 1–5. |
[74] | P. K. Yadav, P. P. Singh, P. Pradhan, A task allocation algorithm for optimum utilization of processor in heterogeneous distributed system, Int. J. Res. Rev. Eng. Sci. Tech., 2 (2013), 153–160. |
[75] | M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous distributed computing systems, IEEE Concurrency, 6 (1998), 42–50. https://doi.org/10.1109/4434.708255 doi: 10.1109/4434.708255 |
[76] | A. Kumar, P. K. Yadav, Task management algorithm for distributed system, The 15th International Conference of International Academy of Physical Sciences, 2014. |
[77] | V. M. Lo, Heuristic algorithms for task assignment in distributed system, IEEE Trans. Comput., 37 (1988), 1384–1397. https://doi.org/10.1109/12.8704 doi: 10.1109/12.8704 |
[78] | U. Kaushal, A. Kumar, Improving the performance of DRTS by optimal allocation of multiple tasks under dynamic load sharing scheme, Int. J. Sci. Eng. Res., 4 (2013), 1316–1321. |
[79] | Y. Kopiddakis, M. Lamari, V. Zissimopoulos, On the task assignment problem: two new heuristic algorithms, J. Parallel Dist. Comput., 42 (1997), 21–29. https://doi.org/10.1006/jpdc.1997.1311 doi: 10.1006/jpdc.1997.1311 |
[80] | M. Akbari, H. Rashidi, A multi objectives scheduling algorithm based on cuckoo optimization for task allocation problem at compile time in heterogeneous systems, Expert Syst. Appl., 60 (2016), 234–248. https://doi.org/10.1016/j.eswa.2016.05.014 doi: 10.1016/j.eswa.2016.05.014 |
[81] | L. F. Bittencourt, R. Sakellariou, E. R. M. Madeira, DAG scheduling using a lookahead variant of the heterogeneous earliest finish time algorithm, 2010 18th Euromicro Conference on Parallel, Distributed and Network-based Processing, 2010, 27–34. https://doi.org/10.1109/PDP.2010.56 |
[82] | P. K. Yadav, M. P. Singh, A. Kumar, B. Agarwal, An efficient tasks scheduling model in distributed processing systems using ANN, Int. J. Circuits Syst., 1 (2011), 53–66. |
[83] | P. K. Yadav, P. Pradhan, P. P. Singh, A fuzzy clustering method to minimize the inter task communication effect for optimal utilization of processor's capacity in distributed real time systems, In: K. Deep, A. Nagar, M. Pant, J. Bansal, Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011) December 20–22, 2011, Advances in Intelligent and Soft Computing, Springer, 1 30 (2012), 159–168. https://doi.org/10.1007/978-81-322-0487-9_16 |
[84] | B. Ucar, C. Aykanat, K. Kaya, M. Ikinci, Task assignment in heterogeneous computing systems, J. Parallel Dist. Comput., 66 (2006), 32–46. https://doi.org/10.1016/j.jpdc.2005.06.014 doi: 10.1016/j.jpdc.2005.06.014 |
[85] | R. Gupta, P. K. Yadav, Task allocation model for balance utilization of available resource in multiprocessor environment, J. Comput. Eng., 17 (2015), 94–99. https://doi.org/10.9790/0661-17419499 doi: 10.9790/0661-17419499 |
[86] | A. A. Elsadek, B. E. Wells, A heuristic model for task allocation in heterogeneous distributed computing system, Int. J. Comput. Appl., 6 (1999), 1–36. |