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Abstract: Distributed real time system has developed into an outstanding computing platform for 

parallel, high-efficiency applications. A real time system is a kind of planning where tasks must be 

completed with accurate results within a predetermined amount of time. It is well known that obtaining 

an optimal assignment of tasks for more than three processors is an NP-hard problem. This article 

examines the issue of assigning tasks to processors in heterogeneous distributed systems with a view 

to reduce cost and response time of the system while maximizing system reliability. The proposed 

method is carried out in two phases, Phase I provides a hybrid HPSOGAK, that is an integration of 

particle swarm optimization (PSO), genetic algorithm (GA), and k-means technique while Phase II is 

based on GA. By updating cluster centroids with PSO and GA and then using them like initial centroids 

for the k-means algorithm to generate the task-clusters, HPSOGAK produces ‘m’ clusters of ‘r’ tasks, 

and then their assignment onto the appropriate processor is done by using GA. The performance of GA 

has been improved in this article by introducing new crossover and mutation operators, and the 

functionality of traditional PSO has been enhanced by combining it with GA. Numerous examples 

from various research articles are employed to evaluate the efficiency of the proposed technique, and 

the numerical results are contrasted with well-known existing models. The proposed method enhances 

PIR values by 22.64%, efficiency by 6.93%, and response times by 23.8 on average. The experimental 

results demonstrate that the suggested method outperforms all comparable approaches, leading to the 

achievement of superior results. The developed mechanism is acceptable for an erratic number of tasks 

and processors with both types of fuzzy and crisp time.  
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Abbreviations: 

Indices ,i j  Task index,  , 1, 2, ...,i j r=  

,k l  Processor index/Clustering index, , 1, 2, ...,k l m=  

Parameters  :  1,2,...,iT t i r= =  Set of r number of tasks 

 :  1,2,...,kP p k m= =  Set of m number of processors 

,i ke  Fuzzy  of  task on  processor 
th th

TE i k  

,T i kFE M e =    Fuzzy  matrixTE  

,i jc  Fuzzy  between tasks  and   T i jITC t t  

,T i jFITC M c =  
 Fuzzy  matrix  TITC  

,i ke  Crisp  of task  on  processor T i kE t p  

,T i kE M e =  
  matrixTE  

,i jc   Crisp  between tasks  and  T i jITC t t  

,T i jITC M c =  
  matrix  TITC  

ˆ

,

n

T i kNE M e =  
  matrixNew crisp TE  

ˆ

,

n

T i jNITC M c =  
  matrix  New crisp TITC  

kR  Reliability of processor kp  

klR  Reliability of kl communication link 

k  Failure rate of processor kp  

kl  Failure rate of kl connecting path  

kcl  th
k  task cluster 

kCd  th
k  cluster centroid 

( )kV t  Velocity of 
thk particle 

( )kP t  Local best fitness of 
thk particle 

( )kG t  Globally best fitness of 
thk particle 

Cdg  Fitness value of a particle in PSO 

Decision variables 
,i kx  1,       

0,   

   kif task is allocated to processori

otherwise

t p



 

,k ld  
Inter-processor distance with unit data transfer where 

,k ld =0 if k=l. 

 
,i ku  1,         

0,   

  if t task does belong to cluster cli k

otherwise




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1. Introduction 

Distributed real time system (DRTS) comprises a set of geographically distributed varied-pace 

heterogeneous processors that are interconnected to each other via fast communication networks. It 

has become a spectacular stage for computing high efficiency parallel applications. Parallel 

applications can be split into multiple tasks and executed simultaneously on different processors in the 

system. To make optimal use of this system, the key challenge lies in generating a task assignment 

model that assigns each task to the most appropriate processor for parallel execution. Authors Mall [1] 

and Jin and Tan [2] did explain that tasks in distributed system are performed in two ways, a hard real 

time system, and a soft real time system. Jobs are created and outcomes are generated without any time 

delay in hard real time system. For example, missile system, satellite system etc. (there should not be 

time lag). Whereas the soft real time system does not have any time limit to deliver the result or 

within a fixed pre-defined time. For example, web searching. Singh et al. [3] mentioned that 

according to the complexity of the distributed environment we need of system where multiple systems 

are connected and work together to optimize the goal. Typically, throughput processor usage, tasks 

waiting time etc., are the execution scales for the task assignment problem. In the system, if scheduling 

is not executed carefully, processors may take their maximum time to run the calculations. DNS 

(domain name system) is a simple example of DRTS that is used in a network to translate the domain 

name to IP address and internet [3]. The utilization of distributed system and multiprocessors is 

becoming very successful in real time applications. And the reason behind this is to provide the fault 

tolerance feature and lightning response time to the system and prices of these systems. Real time tasks’ 

assignment in distributed environment subsists of two sub-problems: primarily partition of a set of 

tasks and secondary assignment of tasks to the worthy processor. Based on the time when scheduling 

decisions are made, there are two classes of assignment policies in DRTS, namely static and dynamic. 

By the static assignment of the task the permanent allocation of the task can be achieved whereas, in 

the dynamic assignment, the task is allotted at the time of node arrival or while the task is running. In 

order to acquire a simple and quick method, it is required to use approximations that yield the nearest 

optimum performance in a feasible amount of time. In the present work, the analysis focuses on static 

task assignment within a heterogeneous environment that provides diverse designing capabilities. This 

allocation technique can be utilized for a large set of real time applications that are able to plan a 

method which allows deterministic execution. Since static method does not have run time overhead 

and can be created applying very complex algorithmic process, it is far better than dynamic method. 

As compared to centralized systems, DRTS is way more intricate. Excessive complexity can 

increase the likelihood of system failures. Task allocation technique and reliability play a key role in 

the efficient utilization of such multiprocessing system. Reliability of the system can be defined as the 

possibility of execution of a task having each component in working condition. The intricacy of the 

assignment issue in DRTS is heightened by various factors, such as the variability in task execution 

time, the discriminative nature of tasks, inter-dependency among tasks, and the challenge of load 

balancing. Various articles are assigned with the fundamental objective of reducing the total amount 

of communication and execution time being one of the performance parameters. In order to decrease 

operational costs, increase capacity, and optimize resource utilization in data centres, Jeyakrishnan and 

Sengottuvelan [4] developed the BSO algorithm for resource allocation and load balancing. The CSS 

task scheduling technique was developed by Xavier and Annadurai [5] to avoid local convergence and 

find the most optimal VM for tasks. This technique optimized the overall computing cost while 
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increasing the throughput of the cloud system and there has been presented a task scheduling paradigm 

by Huang et al. [6] for task-VM mapping using several discrete PSO algorithm variations in cloud 

environment. By taking inspiration from the way crocodiles hunt, Abualigah et al. [7] developed the 

Reptile Search Algorithm (RSA), a brand-new meta-heuristic optimizer. The primary goal of RSA was 

to discover strong search techniques that can deliver higher-quality resolutions to challenging real-

world issues. 

In the presented article, a novel technique based on PSO-GA has been set up to solve the tasks 

allotment issue in a heterogeneous static environment. The GA framework can effectively deliver 

promising results in a broad and complex solution space, making it well suited for the scheduling issue. 

On the other hand, the PSO algorithm boasts easy implementation and impressive global search 

capabilities. Despite these advantages, the original PSO encounters limitations due to its slower 

convergence rate, making it unsuitable for directly tackling assignment issues. Therefore, this article 

has been hybridized with genetic operators to prevent the shortcomings of PSO. To reach an ideal 

solution and prevent early convergence, the GA employs continuous iteration. The process of 

convergence is iterated until it is accomplished. In current technique, the convergence of GA has been 

improved by presenting new genetic operations and population initialization method. Two phases are 

addressed in the generated approach. In the first phase a hybrid algorithm HPSOGAK, union of particle 

swarm optimization (PSO), genetic algorithm (GA) and k-means clustering approach has been induced. 

The HPSOGAK algorithm is used for the formation of clusters of tasks such that exceedingly 

communicated tasks assembled together in order to decrease inter-task communication time ( TITC ). 

In the second phase, GA is employed to assign task-clusters to processors efficiently, aiming to 

minimize execution time ( TE  ). The vital assists of the proposed technique in a distributed 

heterogeneous system are outlined below: 

• Proposing a new task allocation model in distributed environment that takes into consideration 

the execution costs of tasks assigned to processors as well as the communication cost between 

tasks. 

• In the context of task allocation onto worthy processors, PSO and GA based algorithms are 

presented. 

• To improve the performance of GA, new crossover and mutation approaches are introduced. 

• Proposed algorithm’s performance is evaluated through studies based on assessment criteria like 

as response time, cost of the system, system reliability, performance improvement ratio (PIR %), 

efficiency, and resource utilization. It consistently delivers superior outcomes in these 

assessments. 

• Analyze the run-time complexity of the proposed method. 

The remainder of this article is organized as follows: The work related to this area is presented in 

Section 2. The definitions and terminology that will be used throughout the work are discussed in 

Section 3. The model of task allocation problem is explained in Section 4 and Section 5 provides more 

information on the proposed model’s methodology. Four examples, two crisp and two fuzzy are solved 

in Section 6 by the proposed technique and Section 7 shows the compare of functioning of the 

suggested model to other existing techniques. Conclusion and recommendations for further research 

on this task allocation problem are provided in Section 8 and notations used throughout the paper are 

defined in the nomenclature section.  
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2. Related work 

DRTS provides accurate results in both logical and temporal aspects, distinguishing itself from 

other types of systems. It can be roughly divided into three areas: environment, controller, and 

controlled object. In this process, input is received by the controller from the environment, and as an 

output, it provides information to the controlled object. In DRTS, task allotment is an essential phase. 

The primary objective of real time system is to establish an allocation model that ensures meeting all 

deadlines while considering execution time. Over the years, a comprehensive study of task assignment 

in a multiprocessing environment has led to the development of many efficient scheduling mechanisms 

for distributed system. Authors Davis and Burns [8] and Zhang et al. [9] came up with their work on a 

multiprocessing system. Casanova et al. [10] did mention that task allotment issue belongs to the 

category of NP- complete problem which includes the number of tasks and each task executes on the 

single processor and communicates with other tasks. In the proposed article, to resolve the task 

allotment complication, three algorithms namely PSO, GA and k-means clustering technique are 

integrated together. PSO and GA both are driven by procedures happening in nature. Inspired by the 

movements of bird flocks and schooling fish, Kennedy and Eberhart [11] developed a PSO technique. 

The particles of this computational technique have two characteristics, velocity, and position. On the 

basis of these two characteristics personal best and global best positions of particle of PSO are 

determined. Like PSO, GA [12] is one more familiar optimization technique. It is a metaheuristic 

approach originated by Charles Darwin’s theory of “survival of the fittest”. This technique refers to 

the natural election process, in which the most eligible individuals are elected for breeding in order to 

generate the succeeding generation of offspring. Clustering is a process where a group of data is 

assigned into smaller groups while considering that the objects in the same groups are more familiar 

than those in other groups. It is a heuristic approach, used to identify groups of similar objects in 

datasets with two or more variable quantities. It can be classified into two types viz. soft clustering and 

hard clustering. K-means clustering technique is a popular hard clustering technique where k 

determines how many predetermined clusters must be formed during the procedure. The task is an 

event which dictates the course of action and when task occurs, processing and responding done by 

the system accordingly. Periodic tasks, aperiodic tasks and sporadic tasks are the three categories of 

tasks. In a distributed environment, task assignment system is one of the elemental and exacting 

problems. This system plays a key role in using the resources efficiently in an economic way. Actually, 

allotment of tasks onto proper processors is the arrangement of tasks in such manner that several 

efficient constraints like system cost (CS), system reliability (RS), response time (RT) etc. are 

optimized. There are essentially several algorithms to achieve optimization; these algorithms are 

categorized into two types: dynamic and static priority algorithms. In dynamic priority model, the 

preference changes dynamically while in static priority model preference assigned to static nature. This 

article focuses on static prioritization. The solution for the task allotment issue is given by various 

researchers in their articles by using different techniques. Some of them evolved well organized task 

scheduling algorithms using heuristic approaches and meta heuristic approaches. The detail study of 

various techniques that are used to solve the assignment issues have shown in the Table 1. 
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Table 1. Study of research articles generated by various authors. 

S. 

No. 

Researchers Core 

technique 

Highlights Evaluation criteria Nature of 

scheduling 

1 Wu et al. [13] Clustering 

approach 

Market- situated hierarchical allocation 

policy in cloud workflow systems 

Makespan, Cost, CPU 

time, cloud 

computing, workflow 

scheduling, 

Static 

2 Naderam 

et al. [14] 

Heuristic 

approach 

Heuristic approach on the basis of 

matching 

Clustering, task 

assignment, 

Lagrangian relaxation, 

Dynamic 

3 Wang 

et al. [15] 

Clustering 

approach 

Developed a model to abate energy 

utilization of tasks execution 

Green computing, 

cluster computing, 

schedule 

Static 

4 Tripathy 

et al. [16] 

Directed 

search 

optimizatio

n 

Three novel algorithms, for scheduling, 

were presented 

Assignment, Cost, 

Service, neural 

network, makespan 

Dynamic 

5 Xiao et al. [17] Hybrid fog 

computing/

SDN 

VANET 

Task allocation method to improve 

reliability within delay constraint 

Reliability, node 

processing capacity, 

communication 

bandwidth 

Static 

6 Neamatollahi 

et al. [18] 

HCSP 

clustering 

To reduce the clustering energy value 

proposed HCSP algorithm 

Network lifetime, 

cluster, energy, 

wireless sensor 

network, cost 

Static 

7 Kumar 

et al. [19] 

k-means 

clustering 

method 

Allocation method to optimize the cost 

and reliability 

Reliability, execution 

cost, time, cluster 

Static 

8 Dao et al. [20] Bat 

algorithm 

BA is subjected to parallel processing, 

and a PBA communication approach is 

suggested to address JSSP 

Makespan, flowtime, 

tardiness, weighted 

earliness 

Dynamic 

9 Kumar and 

Tyagi [21] 

Clustering 

approach 

k-means and fuzzy c-means algorithms 

were taken 

Communication cost, 

execution cost, time 

Static 

10 Heidari 

et al. [22] 

HHO Developed the Harris Hawks 

Optimizer, a unique optimization 

method inspired by nature 

Optimization, 

scalability 

- 

11 Alkhateeb 

and Abed-

alguni [23] 

Hybrid 

CS-SA 

Developed a hybrid model combining 

CS and SA to enhance the results 

produced by CS. 

Standard deviation, 

benchmark functions 

Dynamic 

12 Tirkolaee 

et al. [24] 

Hybrid 

SAAFSA 

Authors presented a high-performance 

decision-making for FSS issues in line 

with total cost and energy consumption 

reduction to enhance the productivity 

Completion time, cost, 

energy consumption, 

sensitivity analysis 

Static 

13 Kanemitsu 

et al. [25] 

Clustering 

approach 

An algorithm was proposed to 

minimize the schedule length of 

heterogeneous processors 

Efficiency, SLR, CCR Static 

14 Mishra and 

Majhi [26] 

Bird 

swarm 

optimizatio

n 

Introduced a load balancing technique 

that distributes loads among virtual 

machines fairly 

Load balancing, 

makespan, task 

scheduling 

Dynamic 

15 Alawad 

and Abed-

alguni [27] 

DJaya To solve the PFSSP, suggested a novel 

approach called Discrete Jaya with 

Refraction Learning 

Reliability, makespan, 

ARD 

Dynamic 

16 Haris and 

Zubair [28] 

MMHHO A new, effective hybrid optimization 

technique called MMHHO was 

designed to enhance load balancing in 

the cloud network 

Cost, response time, 

load balancing 

Dynamic 
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Table 2. Study of research publications authored by various researchers using PSO and GA. 

S. 

No. 

Researchers Core 

technique 

Highlights Evaluation criteria Nature of 

scheduling 

1 Agarwal and 

Srivastava [29] 

PSOGA Makespan time was considered Makespan, PIR Static 

2 Kang 

et al. [30] 

Hybrid 

PSO 

Approached an assignment algorithm on 

heterogeneous distributed environment 

Task schedules, 

execution time, 

CER, DWR 

Static 

3 Samal 

et al. [31] 

GA GA based assignment result in 

multiprocessor environment 

Fault-tolerance, 

scheduling, 

primary- backup 

Static 

4 Raju et al. [32] PSO Optimized tasks allocation strategy to 

reduce execution time 

Deadline violation, 

resource allocation, 

waiting time, 

turnaround time 

Static 

5 Mutingi and 

Mbohwa [33] 

GA An approach to tackle 

the complications of supplier selection 

from a vaguely multi-criteria perspective 

Price, lead time, 

quality 

Static 

6 Zhou 

et al. [34] 

PSO Modified PSO to control the local 

optimum 

Inertia weight, 

cloud computing, 

CPU time, memory, 

allocation 

Dynamic 

7 Luan et al. [35] Hybrid GA 

and ACO 

Demonstrated a hybrid model to solve 

supplier selection issue 

Supplier election, 

fitness value 

Static 

8 Tang et al. [36] GA-ACO The GAPACO algorithm was designed 

to save time and cost 

Makespan, 

execution time, cost 

Static 

9 Mapetu 

et al. [37] 

PSO PSO based technique for load balancing Makespan, time Static 

10 Kumar 

et al. [38] 

Hybrid GA Scheduling of tasks based on hybrid 

model 

Scheduling, 

execution cost, time 

Static 

11 Kumar and 

Tyagi [39] 

Hybrid 

GA, B&B 

Hybrid model to reduce the system cost 

and time 

Assignment, cost, 

communication 

time, reliability 

Static 

12 Devi and 

Garg [40] 

Hybrid 

PSO 

A hybrid model was developed to 

address the problem of redundant 

allocation 

CPU time, 

reliability, 

Static 

13 Agarwal and 

Srivastava [41] 

OPSO To evade premature convergence, 

combined opposition-based learning 

technique with PSO 

Makespan, 

scheduling, 

opposite number, 

PIR 

Dynamic 

14 Zhang 

et al. [42] 

Hybrid GA To resolve the QAP, the hybrid algorithm 

EGATS was devised. 

CPU time, 

reliability, 

Static 

15 Chauhan 

et al. [43] 

Hybrid GA An approach to maximize the reliability 

of the system 

Reliability, system 

time, execution cost 

Static 

16 Amirteimoori 

et al. [44] 

PSO-GA To simultaneously schedule tasks and 

transporters in a flow shop system, a 

MILP model was proposed. 

Efficiency, time Dynamic 

17 Karishma and 

Kumar [45] 

PSO Authors developed a model to optimize 

flowtime, cost and time 

Cost, Execution 

time, Flowtime 

Static 

18 Proposed 

technique 

HPSOGAK Algorithms based on PSO-GA are 

discussed to improve the system's 

reliability and reduce response time and 

cost. 

Response time, 

cost, reliability, 

efficiency, resource 

utilization 

Static 

  



566 

Mathematics in Engineering  Volume 6, Issue 4, 559–606. 

The meta heuristic techniques GA and PSO are based on the principles of biological evolution 

and swarms, respectively. These algorithms have been applied to address optimization problems across 

various domains, such as remote monitoring systems, energy-storage optimization, industrial 

engineering, and more. There have been numerous attempts to use these metaheuristic algorithms to 

solve a tasks allocation problem under various assumptions and limitations. Such as, in [29], the 

authors proposed a hybrid PSOGA model to enhance task scheduling in cloud computing, utilizing GA 

to refine solutions within PSO through genetic operations. However, a significant drawback of this 

approach was that GA tends to be slow and computationally intensive, due to the evaluation of many 

functions and the slow convergence of its operators. Unlike PSOGA, which relies on single-point 

crossover, the proposed method employs novel crossover and mutation techniques, to ensure a more 

diverse set of offspring. Additionally, a dynamic inertia weight balances local and global search 

components of PSO. This approach synergizes PSO and GA strengths, achieving faster convergence 

and superior optimization results. Table 2 includes an overview of some task scheduling approaches 

that comprise PSO, GA, and hybridization of these with other meta-heuristic or heuristic techniques, 

along with a list of all the salient characteristics. 

Here, we are going to discuss some of the works done by the authors aimed at maximizing 

reliability without repetition. Reliability, a crucial factor to raise the system’s performance, is used for 

examining fault-tolerant designs under significant unpredictability. If the program is carefully 

allocated to suitable processors, while considering the probability of failure for both communication 

lines and processors, a distributed system can achieve enhanced reliability in executing a program. 

Processor outages and communication errors have an impact on system reliability and user service 

quality. To raise the distributed system’s reliability, Attiya and Hamam [46] approached a simulated 

annealing model in a heterogeneous environment and compared it to the B&B technique. Minghua 

et al. [47] came up with a model which gives the approximation for the upper and lower boundary of 

RAND 5 with a single run of the model. Authors Kang et al. [48] suggested HBMO algorithm, the 

power combination of simulated annealing and GA, to increase the distributed system’s reliability. 

Other than these researchers Donight et al. [49] determined a novel method for fuzzy reliability that 

uses the beta type distribution as the membership function. In intelligent transportation systems, Noori 

and Jenab [50] established a model for rail vehicles with speed sensors on the basis of fuzzy reliability. 

Authors addressed a clustering based mathematical approach to get system’s optimal reliability and 

cost by assigning tasks to the processors [19]. 

Although the use of a multiprocessor was expected to offer suitable solutions for the problem of 

task scheduling in DRTS, doing so caused several challenges. When a failure occurs in DRTS, we 

expect it to be noticed right away, and the distributed operation reverts to the previous checkpoint it 

had reached. Due to some such failures in system, uncertain results can be obtained. To rescue from 

this some authors had been dealing with the algorithms for the vague computation in which some of 

them got their best result and some got failed. Table 3 describes work of such authors with their 

drawbacks. 

  



567 

Mathematics in Engineering  Volume 6, Issue 4, 559–606. 

Table 3. The summary of existing literature regarding to their drawbacks. 

S. No. Literature Existing environment Drawback of existing 

environment 

1 Cederholm and 

Petterson [51] 

The goal of this study was to develop an 

algorithm for scheduling a collection of 

tasks in a multiprocessor environment 

This research did not provide an 

outlook as per increasing the 

number of processors and the 

size of system 

2 Jie et al. [52] The authors focused on fixed and hard real-

time scheduling in uniprocessor and 

multiprocessor systems 

This work did not provide a 

distributed, soft real-time, 

dynamic, or heterogeneous 

assignment algorithm 

3 Singh et al. [3] Authors work presented a basic viewpoint 

on model PDS, CDS and RMA. This study 

had provided a tool that is created using the 

C programming language to accomplish job 

scheduling and energy consumption 

This study did not include any 

suggestions for dealing with the 

genuine deadline or other 

assignment techniques 

4 Li and Cheng 

[53] 

This study had proposed a strategy for 

dealing with the few classes of real-time 
allotment problem and many optional ways 

in light of the RRP model, as well as 

achieving task scheduling transparency on 

the basis of conventional partitions 

The transformation methods for 

the following aspects were not 
provided in this work. Non-

preemptive policies, soft real-

time policies, and dynamic job 

priorities 

5 Narale and 

Butey [54] 

Through the use of the Throttled load 

balancing technique, this study suggested a 

method to decrease data centre processing 

time and transfer cost 

If the number of VMs rises, the 

response time and cost would as 

well 

6 Adhikari 

et al. [55] 

To achieve the best resource clustering, a 

load balancing technique that relies on the 

Bat-algorithm had been presented. Reduced 

degree of unbalance, better load balancing, 

and minimize makespan and cost 

Homogeneous environment, 

lower scalability, unique task 

7 Li and Wu [56] To minimize task execution time and 

enhance system resource utilization, an 

ACO-based algorithm was developed. 

Maximize load balancing, maximal 

scalability 

The presented technique was 

less reliable, having a longer 

response time and lower quality 

of service 

8 Shao et al. [57] The flow-shop scheduling problem 

(DBFSP) was examined in this article in 

order to reduce the maximum completion 

time 

RPD and makespan 

performance could be improved 

9 Hosseinioun 

et al. [58] 

In this work, a method for conserving 

energy was introduced using the DVFS 

approach 

The static energy was not taken 

into account in this model 

10 Negi et al. [59] The suggested PLB model takes into 

account makespan time, task starvation, 

multi-queuing model, resource mapping, 

and optimum performance 

It did not take into account 

reallocating resources in a 

dynamic environment 

11 Princess and 

Radhamani [60] 

With an efficiency of 97%, hybrid Harris 

Hawk optimizing technique was developed 

It did not offer a better degree 

of imbalance 



568 

Mathematics in Engineering  Volume 6, Issue 4, 559–606. 

3. Definitions and terminology 

Appropriate task arranging onto relevant processors can enhance reliability of the system. Various 

performance specifications impact scheduling strategies. The ,i ke  , where 1 ,  1i r k m     , is 

determined by the task's efficiency and the processor's attributes. If tasks  and i jt t  are on separate 

processors, ,i jc   symbolizes the fuzzy communication time between them. Under this report, it is 

assumed that data exist about ,i ke  and ,i jc times, and these times are demonstrated as 
TFE M and 

TFITC M   in the form of matrix respectively and by the process of defuzzification 
TFE M   and 

TFITC M are renewed into crisp matrix. 

3.1. Defuzzification 

Robust’s ranking approach has been used in this present work to defuzzify the TFE  and TFITC . 

If ( ),L Ua a   represents the  -cut for fuzzy (triangular/trapezoidal) communication/execution time, 

then the defuzzification is performed as: 

( ) ( )
1

, ,

0

1
  = ,

2

L U

i k i ke R e a a d  =   

( ) ( )
1

, ,

0

1
  = ,

2

L U

i j i jc R c a a d  =  .       (1) 

After defuzzification, crisp values of communication time are stored in ,T i jITC M c =  matrix 

and values of execution time are stored in ,T i kE M e =   matrix. 

Moreover, the following are some key terms that will be used all across the article: 

3.2. Communication time (CT) 

If the tasks are on multiple processors, then the total amount of time which needed to transmit 

data among tasks it  and jt is known as communication time. TTITC  may be prescribed as: 

( ), , , ,

, 1 1

 =  
r m

T k l i j j l i k

i j k
k l

TITC d c x x
= =



   ,       (2) 

where, the inter-processor distance 
,k ld   represents the communication time per unit of data 

transferred between processor kp   and processor lp  . In scenarios where tasks it   and jt  are 

assigned to different processors, the communication time is calculated as ( ), ,k l i jd c , where 
,k ld = 0 if 

k=l [39]. Therefore, under this approximation, the communication time for tasks on different 

processors corresponds directly to the amount of data exchanged between them. 
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3.3. Execution time (ET) 

The execution time is the time of executing so every task it on processor
kp . Total execution 

time ( )TTE is calculated as: 

, ,

1

 =  
r

T i k i k

i

TE x e
=

 .         (3) 

3.4. System cost (CS) 

In terms of time units, cost of the system is the total sum of execution and communication times. 

It can be determined as: 

( ), , , , , ,

, 1 1 1 1

   
r m r m

k l i j j l i k i k i k

i j k i k
k l

CS d c x x x e
= = = =



=    +   .     (4) 

3.5. Response time (RT) 

The amount of computation to be performed by each processor determines the RT. Response time 

is inversely proportional to stability of the system. It can be calculated by using the following: 

( ), , , , , ,
1

, 1 1 1

 max  
r m r

k l i j j l i k i k i k
k m

i j k i
k l

RT d c x x x e
 

= = =


 
 

=    +  
 
 

  .     (5) 

3.6. System reliability (RS) 

The probability that each engaged component will be operational during the execution process is 

referred to as RS. The stability of a system is improved by having a reliable system. The following 

equation is used to determine the RS: 

,

1 1

  
m m

k k l

k k
k l

RS R R
= =



 
   =     

  

  ,         (6) 

where kR and 
,k lR  are the processor kp  reliability and the kl link reliability, respectively. In a given 

time interval, let's call it t, processor kp  reliability pursues a Poisson distribution, 

( )
0 =  

t

k t dt

kR e
−

 

where k  remains constant all across the procedure. In terms of TE , in which task it  is assigned 

to kp  processor, reliability of kp  can be computed as 
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, ,

1 =  

r

k i k i k

i

x e

kR e


=

−  
. 

Correspondingly, in a specified interval of time t, the reliability of the kl path is 
,k lte

−
 and in terms 

of communication time the reliability between kl paths is given by 

( ), , , , ,

, 1 1

 

,  = 

r m

k l k l i j j l i k

i j k
k l

d c x x

k lR e



= =


−    

. 

3.7. Performance improvement ratio (PIR%) 

Term PIR refers to the ability of a suggested algorithm, determined by the decrease in execution 

time. It is one of the essential parameters that ascertain the effectiveness of the proposed algorithm. It 

can be computed as per Eq (7), as follows: 

 %  100
i proposed

i

RT RT
PIR

RT

−
=  ,       (7) 

where 
proposedRT   and iRT   represent the obtained RT for the proposed and 

thi   algorithm, 

respectively. 

4. Model of tasks allocation problem 

DRTS comprises a diverse set of heterogeneous processing units interconnected via advanced 

networks. These processing units and communication networks may possess different resource 

capabilities and varying levels of bandwidth utilization. This model can perform all functions 

simultaneously and communicate at any point during the program's execution. The following 

assumptions are employed to generate a model for solving the task allocation problem. 

• In a real time structure, for every processor has a varying processing capability. 

• On various processors, a task's execution time may vary. 

• The allocated task persists on the processor while the program is executing. 

• RS, RT, and CS are determined by the times of communication and execution. 

• Heterogeneous processors are used in this DRTS paradigm. Consequently, the processors may 

be restricted by different memory and compute units and they have varying failure rates and 

processing times. Additionally, the communication links’ failure rates may vary. 

• While executing, a module consumes a certain amount of its designated processor’s compute 

resources. It is possible for two modules that are running on different processors to 

communicate and incur a certain amount of intermodule communication time in terms of data 

quantity. 

In this article, task allocation issue is preferred and timing-constrained tasks are placed on 

processors in a way that optimises RS, CS and RT under the following conditions: 
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• In DRTS all the tasks are non-preemptive. 

• In a certain amount of time each and every processor execute single task. 

The object of the task assignment problem in DRTS, where 
TE M  and 

TITC M  are assumed to 

be given, is to minimize the RT and maximize the RS. The task allocation problem addressed with 

system resource constraints is as follows: 

( ), , , , , ,
1

, 1 1 1

min  max  
r m r

k l i j j l i k i k i k
k m

i j k i
k l

RT d c x x x e
 

= = =


 
 

=    +  
 
 

  . 

Such that, 

,

1

1 ,
m

j l

l

x j
=

=            (8) 

 , 0,1 ,j lx j l  .          (9) 

Each and every module must be allotted to precisely single processor, according to constraint (8) 

and ,j lx  must be binary variables, according to constraint (9). With a quadratic objective function, 

the aforementioned formulation is an NP-hard 0–1 programming problem. 

5. The proposed method 

This section elucidates the developed method for addressing the task scheduling problem, aiming 

to minimize CS and RT while maximizing RS. This paper introduces a novel scheduling method 

developed through the integration of a PSO-based swarm technique with GA and k-means techniques. 

In recent decades, GA and PSO have been widely utilized in a number of scientific domains. The study 

of computing systems motivated by collective intelligence is known as swarm intelligence. Large 

numbers of homogeneous agents in the environment work together to form collective intelligence. 

That includes the examples of flocks of birds, fish schooling, and ant colonies. Swarm intelligence can 

be used to find the best solutions for the issues like task scheduling. PSO is used in this paper because 

it is the best strategy for all size problems. An approximate solution to an optimization or search 

problem can be found using the GA search approach. Since GA considers all potential solutions, it 

takes longer to find a solution to any given problem. The procedure of selecting which task should be 

carried out at each moment in time is called task scheduling. The assignment algorithm prioritizes each 

active task at runtime and allots the highest priority task to the processor. In the present study task-

clusters are formed using hybrid particle swarm optimization genetic algorithm k-means (HPSOGAK) 

and their assignment onto appropriate processor is done by using genetic algorithm. The main 

drawback of the traditional PSO algorithm is to establish a balance between local and global search, 

which leads to local best or optima in large number of optimization issues. Additionally, the standard 

PSO algorithm suffers from slow convergence rates, rendering it unsuitable for directly addressing 

assignment problems. Numerous attempts have been made to mitigate these issues, as detailed in 

Section 2. As an illustration, the approach in [30], devised a hybrid PSO-based method for task 

scheduling in heterogeneous systems, faced restrictions on operators’ actions, potentially made parts 
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of the search space unreachable. The motivation behind developing the proposed HPSOGAK approach 

is to overcome the drawbacks and limitations associated with the standard PSO algorithm. This work 

combines PSO and GA techniques to enhance the capabilities of conventional PSO, with the goal of 

effectively tackling the crucial task scheduling problem in heterogeneous computing systems. By 

combining the exploration capabilities of PSO with the refinement strengths of GA, the proposed 

hybrid method effectively balances the search process, leading to improved optimization results. Even 

though, using only genetic operators to determine the optimal solution is difficult. Therefore, the 

convergence rate of GA is improved by providing new population initialization, encoding and genetic 

operations. This article introduces new crossover and mutation techniques that help GA function better. 

In addition to initializing particles with HPSOGAK, a global-local best inertia weight is used to 

balance the local and global search components of the standard PSO algorithm. In the hybrid 

HPSOGAK algorithm, k-means clustering technique is implemented to produce a finite number of 

task-clusters as the conception of k-means is quite straightforward and comfortable to accomplish. The 

fundamental disadvantage of the k-means clustering method is that it may produce vacant clusters. 

Hence, PSO-GA approach is employed to address this shortcoming. After using the PSO-GA approach, 

non-empty clusters of tasks are obtained within a low number of iterations of k-means. Now, the 

fundamental characteristics of PSO and GA are as follows. 

5.1. Particle swarm optimization 

In an effort to address issues related to optimization, Kennedy and Eberhart [11] introduced the 

basic version of PSO. It is a meta-heuristic optimizing technique that draws inspiration from animal 

social behavior and information-sharing strategies, such as that of soaring birds and fish schooling. A 

particle swarm is a gathering of particles that can all move around in the problem space and be drawn 

to advantageous locations. Each and every particle of PSO in a population has two characteristics, 

velocity and position. On the basis of these two factors all the particles look for their food in that 

available search space. Influenced by the natural phenomena of schooling and flocking, PSO particles 

are distinguished not only by their position but also by a velocity that allows them to move within the 

search space. Each and every particle in PSO represents a location in the specified search space and a 

potential answer to the problem. Its goal is to optimize the problem-dependent fitness function, a 

function that provides each particle of the population a specific value demonstrating the superiority of 

the g best and p best in the solution. Centroids of task-clusters are represented as swarm particles in 

the present article, and the following Eq (10) can be used to get the fitness value for each particle. 

( )
2

ˆ

, ,
1 1

1
max ,        1, 2,...

1
Cd r r

n

i j k j
i j

g k m

c cd
= =

=

 
 
  =

  + −   
  

    (10) 

where, ( )ˆ

,

n

i jc  represents the element of the matrix TNITC M  and for the centroid of the 
thk  cluster 

k
Cd ; ( ),1 ,2 ,, ,...,k k k k rCd cd cd cd= . 

In the search space each particle’s position is influenced by both its best position (p best) and the 

position of the next best particle (g best). All the particles migrate to the ideal solution, updating their 
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p best and g best results. All of these particles have now reached their destination in the best possible 

manner. Each bird in this process is viewed as a distinct particle. Therefore, each and every particle 

has its own position and velocity. PSO is an iterative procedure in which each particle modifies its 

position and velocity in accordance with its prior experience as well as that of its neighbors. Determine 

the p best and g best for upgrading every particle’s velocity and position i.e., cluster centroids based 

on its fitness values by the Eqs (11) and (12) respectively. 

( ) ( ) ( ) ( )( ) ( ) ( )( )1 1 2 21k k k k k kV t V t P t Cd t G t Cd t    + =  +   − +   −     (11) 

where,   stands for the inertia weight and the values of cognitive constant 1  and social constant

2  typically fall between [0, 2]. 
1 , 2  are two random numbers, have values in the range from [0,1]. 

The inertia component is the first, cognitive component is the second, and social component is the 

third component in the velocity upgrade calculation in Eq (11). Here, an algorithm’s two successive 

iterations are represented by (t) and (t+1). 

( ) ( ) ( )1 1t t t
k k k

Cd Cd V+ += + .       (12) 

The three components that make up the velocity vector, which controls how a particle moves 

through a given search space, are as follows: momentum, also known as inertia, keeps a particle from 

abruptly changing direction; cognitive component, that is accountable for the trend to return the 

particles to their previous foremost position; and social component, which assists a particle in moving 

through the swarm’s best position. These factors influence how the velocity of the 
thk  particle updates 

according to Eq (11). The iterative procedure described in Eqs (11) and (12) will continue until the 

halting condition is satisfied. 

The graphic depiction of the PSO is shown in Figure 1. The particle changes direction with each 

iteration, and often, the new path is optimal. This decision is based on both the individual's personal 

best position and the global best position. 

 

Figure 1. Graphical presentation of PSO. 
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5.2. Genetic algorithm 

Like PSO, GA is also a sort of meta-heuristic optimization approach. Inspired from Charles 

Darwin’s theory of “Survival of the fittest”, the GA is capable of producing excellent solutions for a 

variety of issues, including optimization and search, by imitating the processes of natural selection, 

breeding, and mutation. As robust stochastic search in algorithms, GA has lately been used to solve 

the job-shop assignment problem and task allocation issue. Based on a concept of natural genetics and 

selection, this category of techniques combines the concept of the fittest surviving, random yet 

structured search, and parallel assessment of locations in the search space. A population of specific 

solutions is continuously modified by the GA. The population develops towards the best option 

through subsequent generations. GA can be employed to address a variety of optimization problems, 

such as those involving stochastic, discontinuous, highly nonlinear, or non-differentiable objective 

functions. The following subsections of GA cover the novel encoding, population initiation approach 

and genetic processes. 

5.2.1. Evolution of an initial population 

Presenting chromosome like a string of integers is particularly beneficial for task clustering and 

allocating task-clusters onto processors. Each sole chromosome demonstrates the allocation of one of 

the possible modes of each task into a cluster or to a task-cluster on a processor. The number of tasks 

‘r’ (or processors ‘m’) involved in a program, determines each chromosome’s length used to cluster of 

tasks (or schedule task-clusters onto processors). Any of the program's total participating processors 

could be a chromosome's digit and each and every gene connected with a chromosome provides 

information on scheduling and clustering. Here, an example of an encoded chromosome is presented, 

where the ‘r’ tasks are randomly clustered to form ‘m’ clusters, and their allocation is assigned across 

‘m’ processors. Chromosomes are encoded as follows in Figure 2 for task clustering and scheduling: 

 

Figure 2. Chromosomes encoding. (a) Encoding of clustering of tasks. (b) Encoding of 

task-clusters scheduling. 

5.2.2. Fitness function 

The optimization-related objective function is the fitness function in GA. The accuracy of tasks 

allocation on processors is expressed by the fitness function, which assigns a value to every 

chromosome in the population. Optimizing RT, RS and CS are the main goals of the task allocation 

issue. By clustering the tasks that are highly communicated via HPSOGAK technique and then 

allocating them to appropriate processors via GA technique, the assignment problem has been solved. 

For any random number (0,1]  , the following is the fitness function for the allocation algorithm GA: 
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 1/ . 
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f x e
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= + 

 
 .       (13) 

The purpose of this fitness function is to effectively evaluate the quality of solutions, guide the 

optimization process towards optimal results, and helps to improve the convergence speed. 

5.2.3. Selection 

Pick the best, dismiss the rest, is the guiding idea of the selection operator. The process of 

selection determines which chromosomes should be maintained and allowed to regenerate and which 

ones should be eliminated. A selection operator’s primary goal is to maintain the population dimension 

while decreasing the proportion of low-quality chromosomes and increasing the proportion of high-

quality chromosomes in a population. The roulette-wheel selection approach is used in this research 

article, where each and every time a single chromosome is chosen for a new population. This procedure 

takes place on a spinning wheel, and the spinning numbers are commensurate with the size of the 

population. The following is the given selection probability for task scheduling onto processor: 

( )

( )( ) ( )
1

_
 1

_ _ 1

feti

rob m

fet fet

i

f chromosome i
P

f chromosome i f chromosome i
=

 
  

= −  
 − +
  


.    (14) 

From the foremost population, eliminate the chromosomes with the lowest selection probability. 

Furthermore, include a chromosome by replicating one chromosome with higher selection probability 

to new population. 

5.2.4. Crossover 

The most essential part of a genetic algorithm is crossover. By combining information from the 

two chromosomes of parents, it produces the two chromosomes of the offspring. In GA, the crossover 

operator is employed on the chromosomes with the lowest probability rather than the chromosomes 

with the highest probability in the population. The crossover probability, which ranges between 0 and 

1, determines how frequently crossover occurs between chromosomes in each generation, meaning the 

likelihood of two chromosomes exchanging parts. A 100% crossover rate implies that all offspring are 

produced through crossover, while a 0% rate means no crossover occurs, resulting in a new generation 

nearly identical to the old one. The present article proposes a novel crossover strategy with a 

probability of 0.8, based on several experimental studies such as [38,39]. Tests show that a 0.8 

crossover probability offers a balance between rapid convergence and high-quality results. Lower 

probabilities slow convergence, whereas higher one risk losing genetic diversity or causing premature 

convergence. This impacts GA and PSO convergence rates and aids in achieving optimal clustering 

outcomes. The presented crossover operator selects two parents with equal probability for the next 

generation. The goal of this crossover operator is to produce offspring who inherit groups with a 

significant level of variety from two chosen parents. In Algorithm 1, the suggested crossover operator 

is described as follows: 



576 

Mathematics in Engineering  Volume 6, Issue 4, 559–606. 

Algorithm 1: Proposed crossover operator. 

Input: 
Select two distinct parents 

( )t
A  and 

( )t
B  of dimension m from parent pool 

Output: Two distinct offspring 
( )1t

C
+

 and 
( )1t

D
+

 

 
# Create offspring 

( )1t
C

+
 and 

( )1t
D

+
 respectively as follows: 

 # For offspring 
( )1t

C
+

, 
( )1t

C
+

= Reverse ( )( )' 1t

C
+  

1: While ( )k m  

2: { 

3: if (k==1) 
4: {  

5: ( )' 1

1 1

t tC B
+

==
 

6: } 

7: if ( )1 k m   

8: { 

9: t

kx = (image (
'( 1)

1

t

kC
+

− )) IN 
( )t

B  

10: t

ky = (image ( t

k
x )) IN 

( )t
A  

11: if (( t

k
y IN 

( )1' t
C

+
)=True) 

12: { 

13: '( 1)t

kC
+

=min
( ) ( )( )' 1t t

B C
+

−  

14: } 

15: else 

16: { 

17: '( 1)t

kC +
= t

ky  

18: } 

19: } 

20: } 

21: ( )1t
C

+

=Reverse ( )( )' 1t
C

+
 

22: # For offspring 
( )1t

D
+

 

23: While ( )k m  do 

24: { 

25: if (k=1) 
26: { 

27: ( )1

1 1

t tD A
+

==
 

28: } 

29: if ( )1 k m   

30: { 

31: t

kw = (image (
( 1)

1

t

kD +

− )) IN
( )t

A  

31: t

kv = (image ( t

kw )) IN 
( )t

B  

32: if (( t

kv IN 
( )1t

D
+

)=True) 
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33: { 

34: ( 1)t

kD +
=min

( ) ( )( )1t t
A D

+
−  

35: } 

36: else 
37: { 

38: ( 1)t

kD +
= t

kv  

39: } 

40: } 

41: } 

In this Algorithm 1, (t) represents the generation count and the image of any bit in a chromosome 

is the bit after it. An example of the developed crossover technique is shown below. Through use of 

the procedures in Algorithm 1, the two offsprings C and D that were produced from the parents’ 

chromosomes A and B are as follows in Figure 3: 

 

Figure 3. An example of the proposed crossover technique. 

5.2.5. Mutation 

Following crossover, the chromosomes undergo a mutation operation. GA uses mutations in 

chromosome populations as a genetic operator to preserve genetic diversity from one generation to the 

succeeding. A mutation operator's major purpose is to prevent chromosomes from becoming too 

identical to each other as well after a certain number of iterations. A novel mutation technique with a 

probability of 0.1 is used in this article. This technique can be comprehended with the help of the 

subsequent Algorithm 2. 

Algorithm 2: Proposed mutation operator. 

Input: Select an offspring chromosome 
( )1t

C
+

 of dimension m 

Output: A mutated offspring 
( )1t

E
+

 
 

# Create mutated offspring 
( )1t

E
+

 as follows: 

1: Select two random cut-points over 
( )1t

C
+

say, cut-point1 and cut-point2 respectively 
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2: 'x =
( )1t

C
+

(cut-point1 to cut-point2) 

3: 'x =Shuffle ( )'x  

4: Place 
'x  in 

( )1t
C

+
between cut-point1 and cut-point2 

5: While ( k m ) 

6: { 

7: if (k==1)  
8: { 

9: ( ) ( )1' '

1  min
t

E x
+
=

 
10: } 

11: if ( )1 k m   

12: { 

13: ( )' 1t
y

+
=(image ( '( 1)

1

t

kE +

−
)) IN 

( )1t
C

+
 

14: if (( ( )' 1t
y

+
IN 

( )1' t
E

+
)=True) 

15: { 

16: ( )' 1t

kE
+

=image ( ( )' 1t
y

+
) 

17: else 

18: { 

19: ( )' 1t

kE
+

= ( )' 1t
y

+
 

20: } 

21: } 

22: Reshuffle the bits of ( )' 1t

kE
+

 to their original position from Step 2 to get mutated 

offspring 
( )1t

E
+

 

In this Algorithm 2, (t+1) represents the generation count and the image of any bit in a 

chromosome is the bit after it. Below is an example that demonstrates this operator's process. Through 

use of the procedures in Algorithm 2, the mutated offspring E that was produced is as follows in 

Figure 4: 

 

Figure 4. An example of the proposed mutation technique. 
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5.3. Stopping criteria 

The stopping condition is used to prevent PSO and GA from running indefinitely. Both the 

algorithms run until they converge in order to obtain a better quality of solution, and the result is the 

best solution as far obtained. A terminating criterion is needed to determine this convergence behavior. 

Convergence happens when the most ideal reported value does not change during the maximum 

number of generations. In this work, two distinct categories of stopping criteria are used. 

• An upper bound on the maximum number of iterations (generations). 

• The algorithm keeps running for a specified number of generations until the best result obtained 

throughout the evolution process does not improve. 

5.4. Developed algorithms 

To address the task allocation issue, the suggested model uses a PSO-based hybrid model 

HPSOGAK to generate task-clusters and GA to find the task-clusters’ assignment onto processors. The 

proposed technique is appropriate for both fuzzy and crisp time. The proposed task scheduling method 

is divided into two phases. The HPSOGAK and GA techniques are discussed in the first and second 

phases, respectively. 

5.4.1. Phase I 

The HPSOGAK algorithm is developed in this phase by integrating PSO, GA and k-means. In the 

suggested approach, centroids are taken as particles that are improved using the PSO-GA technique 

and then used like initial centroids in the k-means algorithm. The method elevates the 'p best and g 

best' position of particles determined from PSO using genetic operators and then k-means clustering 

approach is employed to acquire a finite number of task-clusters. To create the task-clusters using k-

means clustering approach ,T i jITC M c =    is renewed from ,T i jFITC M c =   . To provide the best 

outcomes for all data points, the k-means algorithm repeatedly reduces the distances between each data 

point and its centroid. To make a one-to-one correlation, the number of processors ‘m’ and task- 

clusters ‘k’ must be the same. Here kn  and 
k

Cd  indicates the tasks’ number in 
thk  cluster and the 

centroid of the 
thk  cluster respectively, where 

( ),1 ,2 ,, ,...,k k k k rCd cd cd cd= . 

By implementing the HPSOGAK, TITC   is minimized by clustering together the extremely 

communicative tasks. 

To address various allocation issues based on PSO, several authors have proposed their 

mechanisms, wherein the inertia weight remains either constant or decreases linearly during the 

process. Based on existing knowledge, the assignment of tasks in DRTS has been categorized as NP-

hard problems, and the complexity of these assignments further increases with the increase in the 

number of deployed processors and the tasks that have been submitted. So, balancing the local search 

and the global search is important, and for that, in the present work, the inertia weight,    is 

determined based on the calculation in Eq (15). 
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 min
max

- current iter.
0.5

max iter.


 

 
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 
      (15) 

where, 

max Maximum weight   = , 

min   Minimum weight = , 

Max iter. = Maximum iteration number. 

The inertia weight is set to decrease linearly from a high initial value ( )max 0.9 =  to a lower 

final value ( )min 0.4 =  as the algorithm progresses through its iterations. This approach enhances 

global exploration at the start of the iterative process and promotes a more localized, fine-tuned search 

towards the end of the iterations. 

Phase I is described in detail as in Algorithm 3. 

Algorithm 3: Formation of task-clusters by employing HPSOGAK. 

1:  Initialize 1 2 1 2, , , , , , , TFITC Mr m       

2:  Defuzzification of ,T i jFITC M c =     into crisp ,T i jITC M c =     through using 

Robust’s ranking approach 

3:  for 0 i j r    do 

4:  { 

5:  
, ,ˆ

,

max max  , if 

 0 , otherwise

i j i j
i j

T

n

i j

c c i j
NITC M c

− 
= =

   


 

6:  } 

7:  end for 

8:  Generate ‘m’ number of task-clusters of ‘r’ tasks randomly named as  1 2, ,... mcl cl cl  

9:  for ( ) cluster 1 th
k mk    do 

10:  { 

11:  Calculate the initial kCd  for PSO-GA as follows: 

ˆ

, ,

, 1

1
. 

r
n

k i j i k

i jk

Cd c u
n =

=   

12:  } 

13:  end for 

14:  t=0 

15:  for ( )1 k m   do 

16:  { 

17:  Initialize ( )kV t and ( )kCd t  

18:  ( )k tP = ( )kCd t  

19:  } 
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20:  end for 

21:  Formation of new centroids using PSO-GA technique 

22:  if (PSO-GA stopping criteria = false) do 
23:  for ( ) particle 1

th
k mk   do 

24:  { 

25:  Evaluate the fitness value Cdg  of each particle by using Eq (10) 

26:  Determine the p best for each particle based on its fitness value 

27:  Implement the crossover operator to update p best 
28:  Implement the mutation operator to update p best 

29:  Determine the g best based on its fitness value 
30:  Implement the mutation operator to update g best 

31:  Update ( )1kV t +  by using Eq (11) 

32:  Update ( )1kCd t + by using Eq (12) 

33:  } 

34:  end for 

35:  end if 

36:  Assign the centroids obtained in Step 32 as the initial centroids for the k-means 
algorithm 

37:  Repeat 

 (a) for (1   1i r and k m    ) do 

  { 

  
Distance ˆ

ikd between task it  and the cluster centre kCd  

( )
2

,
1

ˆ

,
ˆ  = 

r

ik k j
j

n

i j
d cdc

=

−  

  } 

  end for 

 (b) Create new task-clusters by allocating each task to its closest cluster centroid 
  # Update novel clusters as follows 

 (c) for ( )1 k m   do 

  { 

  
,

, 1

ˆ
,

1
. 

r

k i k

i jk

n
i jCd c u

n =

=   

  } 
  end for 

 (d) Apply 37 (a), (b) steps and encore the process until the stopping criteria are met 

38:  end 

5.4.2. Phase II 

Throughout this phase, GA has been implemented to schedule task-clusters into processors. 

During the program’s execution, the clusters obtained from the preceding Algorithm 3 will remain 

unchanged. Identical clustered tasks perform similarly to a single task and might be assigned to the 

same processor. The 
thi  and

thj  rows of the TFE M  must be added and represented as a new row 

in the TNFE M   if tasks it   and jt   do belong to the same cluster. Only one processor may be 

assigned to all of the tasks that are present in one cluster at once. According to the task-clusters that 
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are acquired from algorithm HPSOGAK, ,T i kE M e =    is updated into 
ˆ

,

n

T i kNE M e =   . Phase II is 

described in detail as an algorithm. Algorithm 4 provides a summary of this stage’s numerous steps: 

Algorithm 4: To determine the assignment of task-clusters onto processors. 

1: Input ,T i kFE M e =    

2: Defuzzification of ,T i kFE M e =   into crisp ,T i kE M e =   through using Robust’s ranking 

approach 

3: Modify ,T i kE M e =     into 
ˆ

,

n

T i kNE M e =     by fusing the rows based on the cluster 

acquired from Algorithm 3 

4: To produce the initial population, encode ‘m’ chromosomes 

5: Start 

6: Size of population=m 

7: for k=1 to size of population ‘m’ 

8: chromosome 
kch =select in random order 

9: end 

10: Through using the following formula, compute the fitness value of each chromosome in the 

population: 

, ,

1 1

 1/ . 
r m

fet i k i k

i k

f x e
= =

 
= + 

 
  

11: Assess the probability of each chromosome in the population through using following 

formula: 

( )

( )( ) ( )
1

_
 1

_ _ 1

feti

rob m

fet fet

i

f chromosome i
P

f chromosome i f chromosome i
=

 
  

= −  
 − +
  


 

12: New population to be produced- 

13: For the new population, select the chromosome having high probability 

14: Select the chromosomes with the least probability and apply the proposed crossover operator 

to them 

15: Implement the proposed mutation operator 

16: If the prerequisites for stopping are met, stop; otherwise go to Step 10 

17: Applying Eqs (4) – (6) to determine CS, RT, and RS respectively. 

18: End 

In Figure 5, the whole processes of Algorithms 3 and 4 are shown, providing a succinct 

understanding of the algorithms’ processes. 
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Figure 5. Flowchart depicting the procedure of Algorithms 3 and 4. 

5.5. Performance parameter 

If the setting of PSO and GA algorithm parameter is improper, it will slow down the solution 

speed and have an impact on the outcomes' quality. Each population-based technique may converge to 

the global best location in a realistic period of time by maintaining a proper balance between local 

search and global search. Inertia weight ( ) and crossover-mutation, respectively, are the coefficients 

that keep this balance in the PSO and GA algorithms. Therefore, the developed technique yields new 

crossover and mutation strategies for GA and an updated  -equation (Eq (15)) for PSO. Where the 

value of  steadily decreased throughout the iteration and balanced the rate of PSO convergence. This 

section provides details on a few significant parameters that the proposed task assignment algorithm 

considers for analytical evaluation. The articles by Kumar and Tyagi [39], Agarwal and Srivastava [41], 

and Shatz et al. [61] are taken into consideration for determining the parameters. Following Table 4 

presents the parameters:  
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Table 4. Input parameters and the corresponding values. 

System parameters Values 

Inertia weight   0.4–0.9 

1 2and   [0,1] 

1 2and   1.49 

Failure rate of processor, k  [0.0002–0.00012] 

Failure rate of kl communicating path,
,k l  [0.0005–0.00015] 

Maximum iteration of GA 50 
Crossover probability 0.8 

Mutation probability 0.1 
Maximum iteration of PSO 100 

6. Performance assessment 

Let's assess the technique which is presented by considering the four real-applications-based 

examples. All four examples are drawn from proven existing models. In two examples, time is regarded 

in the crisp form, however in the other two examples; time is viewed as a fuzzy number. Fuzzy numbers 

can be of any form, including Gaussian, bell-shaped, triangular, trapezoidal, and so on. Table 5 

illustrates the test setup, employing the presented HPSOGAK and GA algorithms for solving task 

scheduling problems. It represents the solutions of RS, RT, and CS of the system, along with the 

allocation onto processors for all four analyzed examples. Additionally, the effectiveness of the 

presented PSO-based task scheduling technique has been assessed in terms of resource utilization 

(Abdelkader and Omara [62]). The resource utilization is carried out in terms of RT and is contrasted 

with other models. According to Table 5, it is vivid that in order to reduce the RT and CS and maximize 

the RS and utilization, the proposed model produces a better quality of results than any existing models 

for allocation. 

Table 5. Comparison of the aforementioned examples' outcomes with those of existing methods. 

Example Reference Used 

Technique 

Tasks 

Assignment 

RS CS RT Resource 

Utilization 

(%) 

1 Djigal 

et al. [63] 

List based 

scheduling 

algorithm 

{t1,t2,t3,t7}→p1 

{t4,t6,t8,t10}→p2 

{t5,t9}→p3 

- 304 181 75.32 

 Proposed 

model 

Hybrid 

PSO 

{t8,t10}→p1 

{t2,t5,t9}→p3 

{t1,t3,t4,t6,t7}→p

2 

0.98074 275 162 79.39 

2 Kumar 

et al. [64]  

Heuristic 

approach 

{t1,t4}→p1 

{t5}→p2 

{t2,t3}→p3 

0.97096 (145, 240, 

360) 

(110,175,250) 68.06 

      Continued on next page 
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Example Reference Used 

Technique 

Tasks 

Assignment 

RS CS RT Resource 

Utilization 

(%) 

2 Proposed 

model 

Hybrid 

PSO 

{t1}→p2 

{t2,t3,t5}→p1 

{t4}→p3 

0.98780 (145,230,3

20) 

(95,165,240) 74.35 

3 Sharma 

et al. [65] 

Clustering 

approach 

{t4,t5}→p1 

{t2,t3}→p2 

{t1}→p3 

0.9956 123 97 77.89 

 Proposed 

model 

Hybrid 

PSO 

{t3,t4,t5}→p2 

{t1}→p1 

{t2}→p3 

0.9979 81 68 81.34 

4 Chauhan 

et al. [43] 

Hybrid GA {t1,t8}→p1 

{t4,t9}→p2 

{t2,t5}→p3 

{t6,t7}→p4 

{t3}→p5 

(0.9349,0.95

06,0.9693) 

(403.8,634

.8,965.8) 

(32,53,78) 51.29 

 Proposed 

model 

Hybrid 

PSO 

{t3}→p5 

{t4,t9}→p2 

{t1,t8}→p1 

{t2,t5}→p3 

{t6,t7}→p4 

(0.9349,0.95

06,0.9693) 

(403.8,634

.8,965.8) 

(32,53,78) 51.29 

Example 1. Here, the problem is grabbed from Djigal et al. [63] model. In which DRTS consist ten 

tasks  1 2 10, ,......,t t t  that have to be allocated on three processors  1 2 3, ,p p p . In this problem ,i ke  

and ,i jc  have been assessed as crisp number shown in Figures 6 and 7 respectively. 

 

Figure 6. Tasks crisp execution time ( ,i ke ) on processors. 
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Figure 7. Crisp inter-task communication time ( ,i jc ) between tasks. 

The following chromosome in Figure 8 gives the final task-clusters as a result of carrying out the 

steps of Algorithm 3: 

 

Figure 8. Final task-clusters of Example 1. 

The optimal allocation of task-clusters onto worthy processors has been achieved employing the 

steps in Algorithm 4, that is displayed by the following chromosome in Figure 9: 

 

Figure 9. Allocation of task-clusters onto processors of Example 1. 

The task-clusters and their allotment on processors can be written as follows using the two 

chromosomes mentioned above: 

 1 8 10 1,cl t t p= → ,  2 2 5 9 3, ,cl t t t p= →  and  3 1 3 4 6 7 2, , , ,cl t t t t t p= → . 
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Task-clusters assignments are shown in Figure 10. 

 

Figure 10. Solution graph of Example 1. 

In Figure 10, the processors are enclosed by solid circles and depict the corresponding ,i ke  on 

them, while the figures with dotted lines in parenthesis depict ,i jc . Now, based on the information 

gleaned from the optimal allocation; the RT is 162 and the CS is 275 of the system. Equation (6) 

determines the system’s reliability (RS), that is 0.98074. 

Example 2. Here, the problem is acquired from Kumar et al. [64] model. In which DRTS consist five 

tasks  1 2 5, ,...,t t t  that have to be allocated on three processors  1 2 3, ,p p p . In this problem ,i ke  

and ,i jc  have been assessed as fuzzy triangular number shown in Figures 11 and 12 respectively. 

 

Figure 11. Fuzzy execution time ( ,i ke ) on processors. 
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Figure 12. Fuzzy inter-task communication time ( ,i jc ) between tasks. 

To resolve the aforementioned example, first use Robust’s ranking technique to defuzzify the 

,i ke   and ,i jc   times into crisp times ,i ke   and ,i jc  respectively, and then generate 
TE M   and 

TITC M  by inserting ,i ke  and ,i jc , respectively in them. 

The following chromosome in Figure 13 gives the final task-clusters as a result of carrying out 

the steps of Algorithm 3: 

 

Figure 13. Final task-clusters of Example 2. 

The optimal allocation of task-clusters onto worthy processors has been achieved employing the 

steps in Algorithm 4, that is displayed by the following chromosome in Figure 14: 

 

Figure 14. Allocation of task-clusters onto processors of Example 2. 
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The task-clusters and their allotment on processors can be written as follows using the two 

chromosomes mentioned above: 

 1 1 2cl t p= → ,  2 2 3 5 1, ,cl t t t p= →  and  3 4 3cl t p= → . 

Task-clusters assignments are shown in Figure 15. 

 

Figure 15. Solution graph of Example 2. 

Now, based on the information gleaned from the optimal allocation in Figure 15; the RT is (95,165,240) 

and the CS is (145,230,320) of the system. Eq (6) determines the system’s reliability (RS) that is 

0.98780. 

Example 3. Here, the problem is grabbed from Sharma et al. [65] model. In which DRTS consist five 

tasks  1 2 5, ,...,t t t  that have to be allocated on three processors  1 2 3, ,p p p . In this problem ,i ke  

and ,i jc  have been assessed as crisp number shown in Figures 16 and 17 respectively. 

 

Figure 16. Tasks crisp execution time ( ,i ke ) on processors. 
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Figure 17. Crisp inter-task communication time ( ,i jc ) between tasks. 

The following chromosome in Figure 18 gives the final task-clusters as a result of carrying out the 

steps of Algorithm 3: 

 

Figure 18. Final task-clusters of Example 3. 

The optimal allocation of task-clusters onto worthy processors has been achieved employing the steps 

in Algorithm 4, that is displayed by the following chromosome in Figure 19: 

 

Figure 19. Task-clusters allocation on processors of Example 3. 

The task-clusters and their allotment on processors can be written as follows using the two 

chromosomes mentioned above: 

 1 3 4 5 2, ,cl t t t p= → ,  2 1 1cl t p= →  and  3 2 3cl t p= → . 

Task-clusters assignments are shown in Figure 20. 
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Figure 20. Solution graph of Example 3. 

In Figure 20, the processors are enclosed by dotted circles and depict the corresponding ,i ke  on 

them, while the figures with solid lines depict ,i jc . Now, based on the information gleaned from the 

optimal allocation; the RT is 68 and the CS is 81 of the system. Eq (6) determines the system’s 

reliability (RS), that is 0.9979. 

Example 4. Here, the problem is acquired from Chauhan et al. [43] model. In which DRTS consist 

nine tasks  1 2 9, ,...,t t t  that have to be allocated on five processors  1 2 5, ,...,p p p . In this problem 

,i ke  and ,i jc  have been assessed as fuzzy triangular number shown in the matrices TFE M  and 

TFITC M  respectively. 
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To resolve the aforementioned example, first use Robust’s ranking technique to defuzzify the 

,i ke   and ,i jc   times into crisp times ,i ke   and ,i jc  respectively, and then generate 
TE M   and 

TITC M  by inserting ,i ke  and ,i jc , respectively in them. 

The following chromosome in Figure 21 gives the final task-clusters as a result of carrying out 

the steps of Algorithm 3: 

 

Figure 21. Final task-clusters of Example 4. 

The optimal allocation of task clusters onto worthy processors has been achieved employing the steps 

in Algorithm 4, that is displayed by the following chromosome in Figure 22: 

 

Figure 22. Task-clusters allocation on processors of Example 4. 

The task-clusters and their allotment on processors can be written as follows using the two 

chromosomes mentioned above: 

 1 3 5cl t p= → ,  2 4 9 2,cl t t p= → ,  3 1 8 1,cl t t p= → , 

 4 2 5 3,cl t t p= →  and  5 6 7 4,cl t t p= → . 

Task-clusters assignments are shown in Figure 23. 
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Figure 23. Solution graph of Example 4. 

In Figure 23, the processors are enclosed by rounded rectangles and depict the corresponding 

,i ke   on them, while the figures with solid lines in parenthesis depict ,i jc  . Now, based on the 

information gleaned from the optimal allocation; the RT is (32, 53, 78) and the CS is (403.8, 634.8, 

965.8) of the system. Eq (6) determines the system’s reliability (RS), that is (0.9349, 0.9506, 0.9693). 

7. Comparison 

In several situations with variable numbers of tasks and processors, we compared the proposed 

meta-heuristic based method to well-established approaches in order to assess its effectiveness. CS, 

RT, RS, PIR, (discussed in Subsections 3.4.–3.7.) efficiency [62] and, resource utilization is being 

taken into account as performance measures for analytical assessment to analyze the performance of 

the proposed task assignment algorithm in DRTS. Efficiency is defined as the ratio of sequential 

computation time to scheduling time, taking the number of processors into consideration. Efficiency 

and PIR are incredibly beneficial in assessing the accuracy of the outcomes produced by the given 

approach. In terms of these metrics, the given approach performs better than existing techniques. Also, 

to examine the quality of outcomes from a statistical perspective, Friedman’s test is carried out. Data 

of different task assignment problems have been accumulated from the articles of Kumar et al. [38], 

Kumar and Tyagi [39], Chauhan et al. [43], Ilavarasan et al. [66], Kumar and Tyagi [67], Topcuoglu 

et al. [68]. The following five scenarios have been taken into consideration in this study. 

7.1. Scenario 1 

In this scenario, 30 real-world issues from the existing methods have been taken into 

consideration in order to evaluate the proposed technique. Table 6 shows a comparison of the outcomes 

of these issues based on CS and RT which is also depicted in Figure 24. As per shown in Figure 24, 

the developed method provides superior quality outcomes than other available task scheduling 

methods used to reduce CS and RT. 
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Table 6. Output comparison from different exploratory articles. 

S. No. References Size of 

the 

model 

(r, m) 

Technique used By reference 

technique 

By proposed 

technique 

CS RT CS RT 

1 Dai and Zhang [69] (10,3) Heuristic approach 218 147 199 126 

2 Yadav et al. [70] (4,4) Heuristic approach 29 27 23 21 

3 Kumar et al. [64] (5,3) Heuristic approach 246.25 177.5 231.25 166.25 

4 Attiya and 

Hamam [46] 

(6,4) Simulated annealing 

approach 

145 51 60 21 

5 Sharma et al. [65] (5,3) Clustering approach 123 97 81 68 

6 Daoud and 

Kharma [71] 

(5,2) List based 

scheduling 

algorithm 

36 27 33 18 

7 Topcuoglu et al. [68] (10,3) List based 

scheduling 

algorithm 

230 172 203 128 

8 Ilavarasan et al. [66] (10,3) HPS approach 236 131 203 128 

9 Khandelwal [72] (8,3) Clustering approach 122 58 76 46 

10 Govil and Kumar [73] (10,4) Heuristic approach 163 89 154 77 

11 Yadav et al. [74] (9,3) Heuristic approach 2563.9 1272.6 2475.70 1181.20 

12 Kafil and Ahmad [75] (5,3) A* technique 65 28 62 28 

13 Kumar and Yadav [76] (8,3) Heuristic approach 83 54 76 46 

14 Lo [77] (4,3) Graph theoretic 

approach 

38 30 35 30 

15 Kaushal and 

Kumar [78] 

(10,4) Heuristic approach 400 200 154 77 

16 Kumar et al. [19] (9,3) Clustering approach 1094 422 963 415 

17 Koppiddakis et al. [79] (3,2) Heuristic approach 30 24 14 13 

18 Shatz et al. [61] (4,4) Heuristic approach 33 21 23 21 

19 Akbari and 

Rashidi [80] 

(8,3) Genetic algorithm 170 111 154 88 

20 Bittencourt et al. [81] (9,3) DAG scheduling 474 347 474 336 

21 Daoud and 

Kharma [71] 

(11,2) List based 

scheduling 

algorithm 

188.5 142 157 115 

22 Kumar et al. [38] (5,3) Genetic algorithm 246.25 177.5 231.25 166.25 

23 Yadav et al. [82] (9,3) Artificial neural 

network approach 

1372 479 963 415 

24 Djigal et al. [63] (10,3) List based 

scheduling 

algorithm 

304 181 275 162 

25 Kumar and Tyagi [21] (6,4) Clustering approach 84 36 60 21 

26 Yadav et al. [83] (8,4) Clustering approach 83.8 37 80.2 37 

27 Ucar et al. [84] (7,3) Heuristic approach 270 195 270 185 

28 Kumar and Tyagi [39] (5,3) Hybrid Genetic 

algorithm 

246.25 177.5 231.25 166.25 

29 Gupta and Yadav [85] (9,3) Heuristic approach 2525 1221.9 2475.70 1181.20 

30 Elsadek and 

Wells [86] 

(9,3) Heuristic approach 1372 479 963 415 
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Figure 24. Graphical presentation of Table 6. 

7.2. Scenario 2 

In this subsection, we will assess the performance of the proposed algorithm by comparing it to 

that of other well-known algorithms, focusing on PIR %. Table 7 displays the results acquired for 

PIR %, and it is clear that the developed PSO-based algorithm is superior to these other existing 

approaches. The hybrid PSO's capability to attain the minimum value for RT in this study, coupled 

with the close correlation between PIR% and RT, constitutes the primary factors contributing to its 

performance. In most instances, the proposed algorithm significantly outperforms its well-known 

competitors, as demonstrated by the PIR values presented in Table 7 and illustrated in Figure 25. The 

overall average PIR % for the proposed approach, GA-B&B, Clustering approach, GA, and B&B are 

22.64%, 19.90%, 17.03%, 20.21%, and 16.19%, respectively. 

 

Figure 25. Graphical presentation of Table 7. 
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Table 7. PIR of the proposed approach in terms of RT for various problem sizes compared 

to other algorithms. 

Size of the 

model (r, m) 

B&B GA Clustering 

approach 

GA-B&B Proposed 

approach 

(6,4) 39.21 58.82 29.41 58.82 58.82 

(10,3) 11.56 18.16 10.20 8.16 14.28 

(4,4) 9.52 10.52 19.04 9.52 0 

(9,3) 11.69 11.89 11.27 11.69 13.36 

(8,3) 18.91 29.72 16.76 19.81 20.72 

(11,2) 1.16 4.92 2.81 1.16 19.01 

(9,3) 11.52 10.52 11.10 11.11 13.53 

(10,3) 23.46 30.81 24.41 24.41 25.58 

(8,4) 0 5.40 0 16.21 18.91 

(10,4) 62.5 70.45 67.23 67.5 61.50 

(5,3) 1.97 2.98 4.61 2.98 6.33 

(7,3) 2.05 4.87 1.02 0 5.12 

(3,2) 41.66 40.83 25 41.66 45.83 

(9,3) 2.97 3.33 2.97 3.33 3.33 

(5,2) 4.81 0 29.62 22.22 33.33 

7.3. Scenario 3 

The performance study of the suggested method based on RS and CS is presented in this sub-

section. By resolving the running problem from Topcuoglu et al. [68] article, the effectiveness of the 

developed approach has been demonstrated. In Table 8, which is provided below, are the outcomes for 

this problem using the proposed algorithm, the Chauhan et al. [43] algorithm, the Kumar et al. [19] 

algorithm, the Kumar and Tyagi [39] algorithm, and the algorithm of Ilavarasan et al. [66]. In light of 

this, it can be said that the proposed algorithm produces optimal allocation when compared to the other 

algorithms listed in Table 8. 

Table 8. Comparative results of Topcuoglu et al. [68] algorithm with proposed and other 

existing algorithms. 

S. No. Algorithms Tasks Processors RS CS 

1 Topcuoglu et al. [68] {t3,t7} 𝑝1 0.9614 230 

{t4,t6,t8} 𝑝3 

{t1,t2,t5,t9,t10} 𝑝2 

2 Kumar et al. [19] {t3,t7,t10} 𝑝1 0.9629 224 

{t4,t8,t9} 𝑝2 

{t1,t2,t5,t6} 𝑝3 

3 Chauhan et al. [43] {t3,t7,t10} 𝑝1 0.9629 224 

{t4,t8,t9} 𝑝2 

{t1,t2,t5,t6} 𝑝3 

4 Ilavarasan et al. [66] {t3,t7,t8} 𝑝1 - 236 

{t1,t2,t6} 𝑝3 

{t4,t5,t9,t10} 𝑝2 

    Continued on next page 
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S. No. Algorithms Tasks Processors RS CS 

5 Kumar and Tyagi [39] {t4,t8,t9} 𝑝2 0.9629 224 

{t3,t7,t10} 𝑝1 

{t1,t2,t5,t6} 𝑝3 

6 Proposed algorithm {t3,t7,t10} 
{t2,t4,t8,t9} 

{t1,t5,t6} 

𝑝2 

𝑝1 

𝑝3 

0.9840 203 

7.4. Scenario 4 

This subsection presents the performance analysis of the specified approach based on RT, 

efficiency, and resource utilization. The article by Chauhan et al. [43] has been used to consider various 

task assignment issues where GA-based mechanisms were generated. These problems are also 

implemented on the proposed model and the obtained results are tabulated in Table 9. From the study 

of Table 9, it can be concluded that the developed method produces finer results in terms of considered 

parameters. Table 9 concludes that proposed PSO-GA algorithm generates results of higher quality 

than to GA algorithm having RT with an average 170.16 and 181.04 respectively. Results are also 

depicted in Figure 26 with respect to efficiency. The outcomes of Figure 26 shows that the suggested 

PSO-GA based model performs better than the GA based model in terms of efficiency for the majority 

of the processor quantities, while for the remaining processor quantities, both models deliver similar 

results. The average efficiency of the GA and PSO-GA algorithms is 0.6387 and 0.7013, respectively. 

Table 9. Comparison study of GA with proposed PSO-GA in terms of RT, efficiency & 

utilization under different size of problems. 

S. No. Tasks & 

Processors 

GA PSO-GA 

RT Efficiency Utilization 

(%) 

RT Efficiency Utilization 

(%) 

1 (9,3) 422 0.7867 81.37 415 0.8001 83.69 

2 (6,4) 21 0.7976 78.66 21 0.7976 78.66 

3 (4,3) 65 0.5246 - 30 0.6105 67.31 

4 (6,4) 34 0.6126 52.94 21 0.7976 78.66 

5 (9,3) 120 0.5629 - 118 0.5801 61.13 

6 (8,4) 37 0.7901 - 37 0.7901 78.38 

7 (9,3) 1181.2 0.6183 - 1181.20 0.6183 69.23 

8 (4,3) 19 0.6140 63.25 19 0.6140 63.25 

9 (5,2) 86 0.3139 - 18 0.7502 79.33 

10 (10,4) 85 0.5973 - 77 0.6421 71.77 

11 (7,3) 195 0.4708 - 185 0.5954 63.13 

12 (10,4) 65 0.7803 - 58 0.7992 81.02 

13 (10,3) 130 0.5385 55.38 128 0.5891 78.41 

14 (8,3) 78 0.7629 77.38 78 0.7629 77.38 

15 (5,3) 177.5 0.7102 - 166.25 0.7732 81.79 
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Figure 26. Graphical presentation of Table 9 in terms of efficiency. 

7.5. Scenario 5 

In this subsection, to examine the quality of outcomes from a statistical perspective, Friedman 

test is carried out. This test analysis whether there are statistically significant differences between the 

dependent groups. The Friedman's test is a non-parametric statistical test which is used to assess the 

significance of the data given in Tables 7 and 10 displays the results of this test. 

Table 10. Outcomes of Friedman’s test in terms of PIR. 

S. No. Problem’s 

size 

Ranks of the algorithms 

B&B GA Clustering 

approach 

GA-B&B Proposed 

technique 

1 6 4  4 2 5 2 2 

2 10 3  3 1 4 5 2 

3 4 4  3.5 2 1 3.5 5 

4 9 3  3.5 2 5 3.5 1 

5 8 3  4 1 5 3 2 

6 11 2  4.5 2 3 4.5 1 

7 9 3  2 5 4 3 1 

8 10 3  5 1 3.5 3.5 2 

9 8 4  4.5 3 4.5 2 1 

10 10 4  4 1 3 2 5 

11 5 3  5 3.5 2 3.5 1 

12 7 3  3 2 4 5 1 

13 3 2  2.5 4 5 2.5 1 

14 9 3  3.5 2 3.5 2 2 

15 5 2  4 5 2 3 1 

Sum of ranks 56 36.5 54.5 48 28 

Sum of ranks squared 3136 1332.25 2970.25 2304 784 

Average of ranks 3.73 2.43 3.63 3.2 1.86 
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It is noticeable that the developed method yields the best average of ranks as compared to B&B, 

GA, Clustering method, and GA-B&B. It is clear proof that the proposed PSO-GA based algorithm is 

a promising technique for tasks scheduling. In the outcomes of Table 7, the 2

r  statistic is 10.686 (4, 

N=15) and the p-value is 0.00226. Hence the results of the proposed method are significant at p< 0.05. 

8. Conclusions 

The problem of task scheduling is resolved in this article using a PSO-based approach. The 

purpose of this technique is to use evolutionary algorithms for static task scheduling onto 

heterogeneous processors in DRTS. The present research demonstrates an efficient method for 

handling the scheduling issue with different objectives simultaneously, such as response time, total 

cost, and system reliability optimization. So far, hybrid PSO-GA model has not been applied in this 

manner to solve this type of problem to handle all these objectives simultaneously. Throughout this 

article, two algorithms have been developed: HPSOGAK, a combination of PSO, GA, and k-means 

for task-cluster formation to minimize TITC , and GA for allocation of tasks to processors to minimize 

total CS, RT and maximize RS of the system. The following are the essential contributions of this work: 

(i) In this study, a scheduling mechanism based on the evolutionary algorithms PSO and GA is 

designed to deal with the real-life applications. 

(ii) PSO is employed in this study as it is the best approach for all size problems, and PSO and 

GA are integrated to enhance traditional PSO's functionality and address its primary shortcomings. 

(iii) By providing new encoding, population initialization, new crossover and mutation approaches, 

the convergence rate of GA is improved. 

(iv) Both crisp and fuzzy times can be used with the model presented in heterogeneous system. 

(v) Numerous real-world problems have been solved in order to compare the proposed model's 

performance to that of existing methods. 

(vi) In terms of PIR %, RT, CS, RS, efficiency, and resource utilization, the accuracy of the 

presented model is examined. In all of these, as discussed in the comparison section, the proposed 

technique delivers superior results when compared to different meta-heuristics and traditional 

algorithms. 

(vii) Friedman's test is applied to statistically evaluate the quality of results. 

(viii) The run time complexity of various existing techniques, including those by Elsadek and 

Wells [86], Kumar et al. [19], Kumar and Tyagi [39], are O (r2+m2+r2m), O (r2+rm) and O 

(rm+m2+m) respectively. Whereas the proposed technique’s run time complexity is O (m2 +rm), 

which is lower than that of existing approaches, when (r>m). 

(ix) In DRTS, the described model is applicable any number of jobs/tasks and processors. 

Implementation results demonstrate that the developed model is more effective than existing 

methods. From the obtained results, it can be concluded that proposed approach is suitable to deal with 

the issues of tasks scheduling. According to these results, the proposed technique is a worthwhile 

substitute for resolving the task allocation issue but the given model also has some limitations. The 

PSO can easily fall into the local optimum because of its slow convergence rate during the iterative 

procedure. Consequently, the HPSOGAK algorithm also has certain limitations. In future study we 

shall address the comparison of the algorithm’s performance using both fuzzy and crisp times. 

Specifically, case studies will be conducted to compare the same tasks and processors with and without 

defuzzification applied. This approach will help to further evaluate the robustness and versatility of 
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the algorithm, enhancing the comprehensiveness of the findings. Additionally, the advantages of 

various algorithms, such as DE algorithm, WOA, and GWO, will be utilized for further algorithm 

enhancement. By employing these techniques, the algorithm’s overall scheduling performance can be 

improved. To continually enhance the task assignment strategy, the task scheduling policy in the 

dynamic environment of the DRTS will be considered, and the implications of PSO parameters and 

local search techniques on the system's overall performance will be examined. 
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