
Mathematics in Engineering, 6(4): 559–606.

DOI: 10.3934/mine.2024023

Received: 03 February 2024

Revised: 25 June 2024

Accepted: 31 July 2024

Published: 08 August 2024

http://www.aimspress.com/journal/mine

Research article

A novel hybrid model for task scheduling based on particle swarm

optimization and genetic algorithms

Karishma and Harendra Kumar*

Department of Mathematics and Statistics, Gurukula Kangri (Deemed to be University) Haridwar,

Uttarakhand 249404, India

* Correspondence: Email: balyan.kumar@gmail.com.

Abstract: Distributed real time system has developed into an outstanding computing platform for

parallel, high-efficiency applications. A real time system is a kind of planning where tasks must be

completed with accurate results within a predetermined amount of time. It is well known that obtaining

an optimal assignment of tasks for more than three processors is an NP-hard problem. This article

examines the issue of assigning tasks to processors in heterogeneous distributed systems with a view

to reduce cost and response time of the system while maximizing system reliability. The proposed

method is carried out in two phases, Phase I provides a hybrid HPSOGAK, that is an integration of

particle swarm optimization (PSO), genetic algorithm (GA), and k-means technique while Phase II is

based on GA. By updating cluster centroids with PSO and GA and then using them like initial centroids

for the k-means algorithm to generate the task-clusters, HPSOGAK produces ‘m’ clusters of ‘r’ tasks,

and then their assignment onto the appropriate processor is done by using GA. The performance of GA

has been improved in this article by introducing new crossover and mutation operators, and the

functionality of traditional PSO has been enhanced by combining it with GA. Numerous examples

from various research articles are employed to evaluate the efficiency of the proposed technique, and

the numerical results are contrasted with well-known existing models. The proposed method enhances

PIR values by 22.64%, efficiency by 6.93%, and response times by 23.8 on average. The experimental

results demonstrate that the suggested method outperforms all comparable approaches, leading to the

achievement of superior results. The developed mechanism is acceptable for an erratic number of tasks

and processors with both types of fuzzy and crisp time.

560

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Keywords: genetic algorithm; task scheduling; k-means; response time; particle swarm optimization;

system reliability; system cost

Abbreviations:

Indices ,i j Task index, , 1, 2, ...,i j r=

,k l Processor index/Clustering index, , 1, 2, ...,k l m=

Parameters  : 1,2,...,iT t i r= = Set of r number of tasks

 : 1,2,...,kP p k m= = Set of m number of processors

,i ke Fuzzy of task on processor
th th

TE i k

,T i kFE M e =   Fuzzy matrixTE

,i jc Fuzzy between tasks and T i jITC t t

,T i jFITC M c =  
 Fuzzy matrix TITC

,i ke Crisp of task on processor T i kE t p

,T i kE M e =  
 matrixTE

,i jc Crisp between tasks and T i jITC t t

,T i jITC M c =  
 matrix TITC

ˆ

,

n

T i kNE M e =  
 matrixNew crisp TE

ˆ

,

n

T i jNITC M c =  
 matrix New crisp TITC

kR Reliability of processor kp

klR Reliability of kl communication link

k Failure rate of processor kp

kl Failure rate of kl connecting path

kcl th
k task cluster

kCd th
k cluster centroid

()kV t Velocity of
thk particle

()kP t Local best fitness of
thk particle

()kG t Globally best fitness of
thk particle

Cdg Fitness value of a particle in PSO

Decision variables
,i kx 1,

0,

 kif task is allocated to processori

otherwise

t p



,k ld
Inter-processor distance with unit data transfer where

,k ld =0 if k=l.

,i ku 1,

0,

 if t task does belong to cluster cli k

otherwise





561

Mathematics in Engineering Volume 6, Issue 4, 559–606.

1. Introduction

Distributed real time system (DRTS) comprises a set of geographically distributed varied-pace

heterogeneous processors that are interconnected to each other via fast communication networks. It

has become a spectacular stage for computing high efficiency parallel applications. Parallel

applications can be split into multiple tasks and executed simultaneously on different processors in the

system. To make optimal use of this system, the key challenge lies in generating a task assignment

model that assigns each task to the most appropriate processor for parallel execution. Authors Mall [1]

and Jin and Tan [2] did explain that tasks in distributed system are performed in two ways, a hard real

time system, and a soft real time system. Jobs are created and outcomes are generated without any time

delay in hard real time system. For example, missile system, satellite system etc. (there should not be

time lag). Whereas the soft real time system does not have any time limit to deliver the result or

within a fixed pre-defined time. For example, web searching. Singh et al. [3] mentioned that

according to the complexity of the distributed environment we need of system where multiple systems

are connected and work together to optimize the goal. Typically, throughput processor usage, tasks

waiting time etc., are the execution scales for the task assignment problem. In the system, if scheduling

is not executed carefully, processors may take their maximum time to run the calculations. DNS

(domain name system) is a simple example of DRTS that is used in a network to translate the domain

name to IP address and internet [3]. The utilization of distributed system and multiprocessors is

becoming very successful in real time applications. And the reason behind this is to provide the fault

tolerance feature and lightning response time to the system and prices of these systems. Real time tasks’

assignment in distributed environment subsists of two sub-problems: primarily partition of a set of

tasks and secondary assignment of tasks to the worthy processor. Based on the time when scheduling

decisions are made, there are two classes of assignment policies in DRTS, namely static and dynamic.

By the static assignment of the task the permanent allocation of the task can be achieved whereas, in

the dynamic assignment, the task is allotted at the time of node arrival or while the task is running. In

order to acquire a simple and quick method, it is required to use approximations that yield the nearest

optimum performance in a feasible amount of time. In the present work, the analysis focuses on static

task assignment within a heterogeneous environment that provides diverse designing capabilities. This

allocation technique can be utilized for a large set of real time applications that are able to plan a

method which allows deterministic execution. Since static method does not have run time overhead

and can be created applying very complex algorithmic process, it is far better than dynamic method.

As compared to centralized systems, DRTS is way more intricate. Excessive complexity can

increase the likelihood of system failures. Task allocation technique and reliability play a key role in

the efficient utilization of such multiprocessing system. Reliability of the system can be defined as the

possibility of execution of a task having each component in working condition. The intricacy of the

assignment issue in DRTS is heightened by various factors, such as the variability in task execution

time, the discriminative nature of tasks, inter-dependency among tasks, and the challenge of load

balancing. Various articles are assigned with the fundamental objective of reducing the total amount

of communication and execution time being one of the performance parameters. In order to decrease

operational costs, increase capacity, and optimize resource utilization in data centres, Jeyakrishnan and

Sengottuvelan [4] developed the BSO algorithm for resource allocation and load balancing. The CSS

task scheduling technique was developed by Xavier and Annadurai [5] to avoid local convergence and

find the most optimal VM for tasks. This technique optimized the overall computing cost while

562

Mathematics in Engineering Volume 6, Issue 4, 559–606.

increasing the throughput of the cloud system and there has been presented a task scheduling paradigm

by Huang et al. [6] for task-VM mapping using several discrete PSO algorithm variations in cloud

environment. By taking inspiration from the way crocodiles hunt, Abualigah et al. [7] developed the

Reptile Search Algorithm (RSA), a brand-new meta-heuristic optimizer. The primary goal of RSA was

to discover strong search techniques that can deliver higher-quality resolutions to challenging real-

world issues.

In the presented article, a novel technique based on PSO-GA has been set up to solve the tasks

allotment issue in a heterogeneous static environment. The GA framework can effectively deliver

promising results in a broad and complex solution space, making it well suited for the scheduling issue.

On the other hand, the PSO algorithm boasts easy implementation and impressive global search

capabilities. Despite these advantages, the original PSO encounters limitations due to its slower

convergence rate, making it unsuitable for directly tackling assignment issues. Therefore, this article

has been hybridized with genetic operators to prevent the shortcomings of PSO. To reach an ideal

solution and prevent early convergence, the GA employs continuous iteration. The process of

convergence is iterated until it is accomplished. In current technique, the convergence of GA has been

improved by presenting new genetic operations and population initialization method. Two phases are

addressed in the generated approach. In the first phase a hybrid algorithm HPSOGAK, union of particle

swarm optimization (PSO), genetic algorithm (GA) and k-means clustering approach has been induced.

The HPSOGAK algorithm is used for the formation of clusters of tasks such that exceedingly

communicated tasks assembled together in order to decrease inter-task communication time (TITC).

In the second phase, GA is employed to assign task-clusters to processors efficiently, aiming to

minimize execution time (TE). The vital assists of the proposed technique in a distributed

heterogeneous system are outlined below:

• Proposing a new task allocation model in distributed environment that takes into consideration

the execution costs of tasks assigned to processors as well as the communication cost between

tasks.

• In the context of task allocation onto worthy processors, PSO and GA based algorithms are

presented.

• To improve the performance of GA, new crossover and mutation approaches are introduced.

• Proposed algorithm’s performance is evaluated through studies based on assessment criteria like

as response time, cost of the system, system reliability, performance improvement ratio (PIR %),

efficiency, and resource utilization. It consistently delivers superior outcomes in these

assessments.

• Analyze the run-time complexity of the proposed method.

The remainder of this article is organized as follows: The work related to this area is presented in

Section 2. The definitions and terminology that will be used throughout the work are discussed in

Section 3. The model of task allocation problem is explained in Section 4 and Section 5 provides more

information on the proposed model’s methodology. Four examples, two crisp and two fuzzy are solved

in Section 6 by the proposed technique and Section 7 shows the compare of functioning of the

suggested model to other existing techniques. Conclusion and recommendations for further research

on this task allocation problem are provided in Section 8 and notations used throughout the paper are

defined in the nomenclature section.

563

Mathematics in Engineering Volume 6, Issue 4, 559–606.

2. Related work

DRTS provides accurate results in both logical and temporal aspects, distinguishing itself from

other types of systems. It can be roughly divided into three areas: environment, controller, and

controlled object. In this process, input is received by the controller from the environment, and as an

output, it provides information to the controlled object. In DRTS, task allotment is an essential phase.

The primary objective of real time system is to establish an allocation model that ensures meeting all

deadlines while considering execution time. Over the years, a comprehensive study of task assignment

in a multiprocessing environment has led to the development of many efficient scheduling mechanisms

for distributed system. Authors Davis and Burns [8] and Zhang et al. [9] came up with their work on a

multiprocessing system. Casanova et al. [10] did mention that task allotment issue belongs to the

category of NP- complete problem which includes the number of tasks and each task executes on the

single processor and communicates with other tasks. In the proposed article, to resolve the task

allotment complication, three algorithms namely PSO, GA and k-means clustering technique are

integrated together. PSO and GA both are driven by procedures happening in nature. Inspired by the

movements of bird flocks and schooling fish, Kennedy and Eberhart [11] developed a PSO technique.

The particles of this computational technique have two characteristics, velocity, and position. On the

basis of these two characteristics personal best and global best positions of particle of PSO are

determined. Like PSO, GA [12] is one more familiar optimization technique. It is a metaheuristic

approach originated by Charles Darwin’s theory of “survival of the fittest”. This technique refers to

the natural election process, in which the most eligible individuals are elected for breeding in order to

generate the succeeding generation of offspring. Clustering is a process where a group of data is

assigned into smaller groups while considering that the objects in the same groups are more familiar

than those in other groups. It is a heuristic approach, used to identify groups of similar objects in

datasets with two or more variable quantities. It can be classified into two types viz. soft clustering and

hard clustering. K-means clustering technique is a popular hard clustering technique where k

determines how many predetermined clusters must be formed during the procedure. The task is an

event which dictates the course of action and when task occurs, processing and responding done by

the system accordingly. Periodic tasks, aperiodic tasks and sporadic tasks are the three categories of

tasks. In a distributed environment, task assignment system is one of the elemental and exacting

problems. This system plays a key role in using the resources efficiently in an economic way. Actually,

allotment of tasks onto proper processors is the arrangement of tasks in such manner that several

efficient constraints like system cost (CS), system reliability (RS), response time (RT) etc. are

optimized. There are essentially several algorithms to achieve optimization; these algorithms are

categorized into two types: dynamic and static priority algorithms. In dynamic priority model, the

preference changes dynamically while in static priority model preference assigned to static nature. This

article focuses on static prioritization. The solution for the task allotment issue is given by various

researchers in their articles by using different techniques. Some of them evolved well organized task

scheduling algorithms using heuristic approaches and meta heuristic approaches. The detail study of

various techniques that are used to solve the assignment issues have shown in the Table 1.

564

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Table 1. Study of research articles generated by various authors.

S.

No.

Researchers Core

technique

Highlights Evaluation criteria Nature of

scheduling

1 Wu et al. [13] Clustering

approach

Market- situated hierarchical allocation

policy in cloud workflow systems

Makespan, Cost, CPU

time, cloud

computing, workflow

scheduling,

Static

2 Naderam

et al. [14]

Heuristic

approach

Heuristic approach on the basis of

matching

Clustering, task

assignment,

Lagrangian relaxation,

Dynamic

3 Wang

et al. [15]

Clustering

approach

Developed a model to abate energy

utilization of tasks execution

Green computing,

cluster computing,

schedule

Static

4 Tripathy

et al. [16]

Directed

search

optimizatio

n

Three novel algorithms, for scheduling,

were presented

Assignment, Cost,

Service, neural

network, makespan

Dynamic

5 Xiao et al. [17] Hybrid fog

computing/

SDN

VANET

Task allocation method to improve

reliability within delay constraint

Reliability, node

processing capacity,

communication

bandwidth

Static

6 Neamatollahi

et al. [18]

HCSP

clustering

To reduce the clustering energy value

proposed HCSP algorithm

Network lifetime,

cluster, energy,

wireless sensor

network, cost

Static

7 Kumar

et al. [19]

k-means

clustering

method

Allocation method to optimize the cost

and reliability

Reliability, execution

cost, time, cluster

Static

8 Dao et al. [20] Bat

algorithm

BA is subjected to parallel processing,

and a PBA communication approach is

suggested to address JSSP

Makespan, flowtime,

tardiness, weighted

earliness

Dynamic

9 Kumar and

Tyagi [21]

Clustering

approach

k-means and fuzzy c-means algorithms

were taken

Communication cost,

execution cost, time

Static

10 Heidari

et al. [22]

HHO Developed the Harris Hawks

Optimizer, a unique optimization

method inspired by nature

Optimization,

scalability

-

11 Alkhateeb

and Abed-

alguni [23]

Hybrid

CS-SA

Developed a hybrid model combining

CS and SA to enhance the results

produced by CS.

Standard deviation,

benchmark functions

Dynamic

12 Tirkolaee

et al. [24]

Hybrid

SAAFSA

Authors presented a high-performance

decision-making for FSS issues in line

with total cost and energy consumption

reduction to enhance the productivity

Completion time, cost,

energy consumption,

sensitivity analysis

Static

13 Kanemitsu

et al. [25]

Clustering

approach

An algorithm was proposed to

minimize the schedule length of

heterogeneous processors

Efficiency, SLR, CCR Static

14 Mishra and

Majhi [26]

Bird

swarm

optimizatio

n

Introduced a load balancing technique

that distributes loads among virtual

machines fairly

Load balancing,

makespan, task

scheduling

Dynamic

15 Alawad

and Abed-

alguni [27]

DJaya To solve the PFSSP, suggested a novel

approach called Discrete Jaya with

Refraction Learning

Reliability, makespan,

ARD

Dynamic

16 Haris and

Zubair [28]

MMHHO A new, effective hybrid optimization

technique called MMHHO was

designed to enhance load balancing in

the cloud network

Cost, response time,

load balancing

Dynamic

565

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Table 2. Study of research publications authored by various researchers using PSO and GA.

S.

No.

Researchers Core

technique

Highlights Evaluation criteria Nature of

scheduling

1 Agarwal and

Srivastava [29]

PSOGA Makespan time was considered Makespan, PIR Static

2 Kang

et al. [30]

Hybrid

PSO

Approached an assignment algorithm on

heterogeneous distributed environment

Task schedules,

execution time,

CER, DWR

Static

3 Samal

et al. [31]

GA GA based assignment result in

multiprocessor environment

Fault-tolerance,

scheduling,

primary- backup

Static

4 Raju et al. [32] PSO Optimized tasks allocation strategy to

reduce execution time

Deadline violation,

resource allocation,

waiting time,

turnaround time

Static

5 Mutingi and

Mbohwa [33]

GA An approach to tackle

the complications of supplier selection

from a vaguely multi-criteria perspective

Price, lead time,

quality

Static

6 Zhou

et al. [34]

PSO Modified PSO to control the local

optimum

Inertia weight,

cloud computing,

CPU time, memory,

allocation

Dynamic

7 Luan et al. [35] Hybrid GA

and ACO

Demonstrated a hybrid model to solve

supplier selection issue

Supplier election,

fitness value

Static

8 Tang et al. [36] GA-ACO The GAPACO algorithm was designed

to save time and cost

Makespan,

execution time, cost

Static

9 Mapetu

et al. [37]

PSO PSO based technique for load balancing Makespan, time Static

10 Kumar

et al. [38]

Hybrid GA Scheduling of tasks based on hybrid

model

Scheduling,

execution cost, time

Static

11 Kumar and

Tyagi [39]

Hybrid

GA, B&B

Hybrid model to reduce the system cost

and time

Assignment, cost,

communication

time, reliability

Static

12 Devi and

Garg [40]

Hybrid

PSO

A hybrid model was developed to

address the problem of redundant

allocation

CPU time,

reliability,

Static

13 Agarwal and

Srivastava [41]

OPSO To evade premature convergence,

combined opposition-based learning

technique with PSO

Makespan,

scheduling,

opposite number,

PIR

Dynamic

14 Zhang

et al. [42]

Hybrid GA To resolve the QAP, the hybrid algorithm

EGATS was devised.

CPU time,

reliability,

Static

15 Chauhan

et al. [43]

Hybrid GA An approach to maximize the reliability

of the system

Reliability, system

time, execution cost

Static

16 Amirteimoori

et al. [44]

PSO-GA To simultaneously schedule tasks and

transporters in a flow shop system, a

MILP model was proposed.

Efficiency, time Dynamic

17 Karishma and

Kumar [45]

PSO Authors developed a model to optimize

flowtime, cost and time

Cost, Execution

time, Flowtime

Static

18 Proposed

technique

HPSOGAK Algorithms based on PSO-GA are

discussed to improve the system's

reliability and reduce response time and

cost.

Response time,

cost, reliability,

efficiency, resource

utilization

Static

566

Mathematics in Engineering Volume 6, Issue 4, 559–606.

The meta heuristic techniques GA and PSO are based on the principles of biological evolution

and swarms, respectively. These algorithms have been applied to address optimization problems across

various domains, such as remote monitoring systems, energy-storage optimization, industrial

engineering, and more. There have been numerous attempts to use these metaheuristic algorithms to

solve a tasks allocation problem under various assumptions and limitations. Such as, in [29], the

authors proposed a hybrid PSOGA model to enhance task scheduling in cloud computing, utilizing GA

to refine solutions within PSO through genetic operations. However, a significant drawback of this

approach was that GA tends to be slow and computationally intensive, due to the evaluation of many

functions and the slow convergence of its operators. Unlike PSOGA, which relies on single-point

crossover, the proposed method employs novel crossover and mutation techniques, to ensure a more

diverse set of offspring. Additionally, a dynamic inertia weight balances local and global search

components of PSO. This approach synergizes PSO and GA strengths, achieving faster convergence

and superior optimization results. Table 2 includes an overview of some task scheduling approaches

that comprise PSO, GA, and hybridization of these with other meta-heuristic or heuristic techniques,

along with a list of all the salient characteristics.

Here, we are going to discuss some of the works done by the authors aimed at maximizing

reliability without repetition. Reliability, a crucial factor to raise the system’s performance, is used for

examining fault-tolerant designs under significant unpredictability. If the program is carefully

allocated to suitable processors, while considering the probability of failure for both communication

lines and processors, a distributed system can achieve enhanced reliability in executing a program.

Processor outages and communication errors have an impact on system reliability and user service

quality. To raise the distributed system’s reliability, Attiya and Hamam [46] approached a simulated

annealing model in a heterogeneous environment and compared it to the B&B technique. Minghua

et al. [47] came up with a model which gives the approximation for the upper and lower boundary of

RAND 5 with a single run of the model. Authors Kang et al. [48] suggested HBMO algorithm, the

power combination of simulated annealing and GA, to increase the distributed system’s reliability.

Other than these researchers Donight et al. [49] determined a novel method for fuzzy reliability that

uses the beta type distribution as the membership function. In intelligent transportation systems, Noori

and Jenab [50] established a model for rail vehicles with speed sensors on the basis of fuzzy reliability.

Authors addressed a clustering based mathematical approach to get system’s optimal reliability and

cost by assigning tasks to the processors [19].

Although the use of a multiprocessor was expected to offer suitable solutions for the problem of

task scheduling in DRTS, doing so caused several challenges. When a failure occurs in DRTS, we

expect it to be noticed right away, and the distributed operation reverts to the previous checkpoint it

had reached. Due to some such failures in system, uncertain results can be obtained. To rescue from

this some authors had been dealing with the algorithms for the vague computation in which some of

them got their best result and some got failed. Table 3 describes work of such authors with their

drawbacks.

567

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Table 3. The summary of existing literature regarding to their drawbacks.

S. No. Literature Existing environment Drawback of existing

environment

1 Cederholm and

Petterson [51]

The goal of this study was to develop an

algorithm for scheduling a collection of

tasks in a multiprocessor environment

This research did not provide an

outlook as per increasing the

number of processors and the

size of system

2 Jie et al. [52] The authors focused on fixed and hard real-

time scheduling in uniprocessor and

multiprocessor systems

This work did not provide a

distributed, soft real-time,

dynamic, or heterogeneous

assignment algorithm

3 Singh et al. [3] Authors work presented a basic viewpoint

on model PDS, CDS and RMA. This study

had provided a tool that is created using the

C programming language to accomplish job

scheduling and energy consumption

This study did not include any

suggestions for dealing with the

genuine deadline or other

assignment techniques

4 Li and Cheng

[53]

This study had proposed a strategy for

dealing with the few classes of real-time
allotment problem and many optional ways

in light of the RRP model, as well as

achieving task scheduling transparency on

the basis of conventional partitions

The transformation methods for

the following aspects were not
provided in this work. Non-

preemptive policies, soft real-

time policies, and dynamic job

priorities

5 Narale and

Butey [54]

Through the use of the Throttled load

balancing technique, this study suggested a

method to decrease data centre processing

time and transfer cost

If the number of VMs rises, the

response time and cost would as

well

6 Adhikari

et al. [55]

To achieve the best resource clustering, a

load balancing technique that relies on the

Bat-algorithm had been presented. Reduced

degree of unbalance, better load balancing,

and minimize makespan and cost

Homogeneous environment,

lower scalability, unique task

7 Li and Wu [56] To minimize task execution time and

enhance system resource utilization, an

ACO-based algorithm was developed.

Maximize load balancing, maximal

scalability

The presented technique was

less reliable, having a longer

response time and lower quality

of service

8 Shao et al. [57] The flow-shop scheduling problem

(DBFSP) was examined in this article in

order to reduce the maximum completion

time

RPD and makespan

performance could be improved

9 Hosseinioun

et al. [58]

In this work, a method for conserving

energy was introduced using the DVFS

approach

The static energy was not taken

into account in this model

10 Negi et al. [59] The suggested PLB model takes into

account makespan time, task starvation,

multi-queuing model, resource mapping,

and optimum performance

It did not take into account

reallocating resources in a

dynamic environment

11 Princess and

Radhamani [60]

With an efficiency of 97%, hybrid Harris

Hawk optimizing technique was developed

It did not offer a better degree

of imbalance

568

Mathematics in Engineering Volume 6, Issue 4, 559–606.

3. Definitions and terminology

Appropriate task arranging onto relevant processors can enhance reliability of the system. Various

performance specifications impact scheduling strategies. The ,i ke , where 1 , 1i r k m    , is

determined by the task's efficiency and the processor's attributes. If tasks and i jt t are on separate

processors, ,i jc symbolizes the fuzzy communication time between them. Under this report, it is

assumed that data exist about ,i ke and ,i jc times, and these times are demonstrated as
TFE M and

TFITC M in the form of matrix respectively and by the process of defuzzification
TFE M and

TFITC M are renewed into crisp matrix.

3.1. Defuzzification

Robust’s ranking approach has been used in this present work to defuzzify the TFE and TFITC .

If (),L Ua a  represents the  -cut for fuzzy (triangular/trapezoidal) communication/execution time,

then the defuzzification is performed as:

() ()
1

, ,

0

1
 = ,

2

L U

i k i ke R e a a d  = 

() ()
1

, ,

0

1
 = ,

2

L U

i j i jc R c a a d  =  . (1)

After defuzzification, crisp values of communication time are stored in ,T i jITC M c =  matrix

and values of execution time are stored in ,T i kE M e =   matrix.

Moreover, the following are some key terms that will be used all across the article:

3.2. Communication time (CT)

If the tasks are on multiple processors, then the total amount of time which needed to transmit

data among tasks it and jt is known as communication time. TTITC may be prescribed as:

(), , , ,

, 1 1

 =
r m

T k l i j j l i k

i j k
k l

TITC d c x x
= =



   , (2)

where, the inter-processor distance
,k ld represents the communication time per unit of data

transferred between processor kp and processor lp . In scenarios where tasks it and jt are

assigned to different processors, the communication time is calculated as (), ,k l i jd c , where
,k ld = 0 if

k=l [39]. Therefore, under this approximation, the communication time for tasks on different

processors corresponds directly to the amount of data exchanged between them.

569

Mathematics in Engineering Volume 6, Issue 4, 559–606.

3.3. Execution time (ET)

The execution time is the time of executing so every task it on processor
kp . Total execution

time ()TTE is calculated as:

, ,

1

 =
r

T i k i k

i

TE x e
=

 . (3)

3.4. System cost (CS)

In terms of time units, cost of the system is the total sum of execution and communication times.

It can be determined as:

(), , , , , ,

, 1 1 1 1

r m r m

k l i j j l i k i k i k

i j k i k
k l

CS d c x x x e
= = = =



=    +   . (4)

3.5. Response time (RT)

The amount of computation to be performed by each processor determines the RT. Response time

is inversely proportional to stability of the system. It can be calculated by using the following:

(), , , , , ,
1

, 1 1 1

 max
r m r

k l i j j l i k i k i k
k m

i j k i
k l

RT d c x x x e
 

= = =


 
 

=    +  
 
 

  . (5)

3.6. System reliability (RS)

The probability that each engaged component will be operational during the execution process is

referred to as RS. The stability of a system is improved by having a reliable system. The following

equation is used to determine the RS:

,

1 1

m m

k k l

k k
k l

RS R R
= =



 
   =     

  

  , (6)

where kR and
,k lR are the processor kp reliability and the kl link reliability, respectively. In a given

time interval, let's call it t, processor kp reliability pursues a Poisson distribution,

()
0 =

t

k t dt

kR e
−

where k remains constant all across the procedure. In terms of TE , in which task it is assigned

to kp processor, reliability of kp can be computed as

570

Mathematics in Engineering Volume 6, Issue 4, 559–606.

, ,

1 =

r

k i k i k

i

x e

kR e


=

−  
.

Correspondingly, in a specified interval of time t, the reliability of the kl path is
,k lte

−
 and in terms

of communication time the reliability between kl paths is given by

(), , , , ,

, 1 1

, =

r m

k l k l i j j l i k

i j k
k l

d c x x

k lR e



= =


−    

.

3.7. Performance improvement ratio (PIR%)

Term PIR refers to the ability of a suggested algorithm, determined by the decrease in execution

time. It is one of the essential parameters that ascertain the effectiveness of the proposed algorithm. It

can be computed as per Eq (7), as follows:

 % 100
i proposed

i

RT RT
PIR

RT

−
=  , (7)

where
proposedRT and iRT represent the obtained RT for the proposed and

thi algorithm,

respectively.

4. Model of tasks allocation problem

DRTS comprises a diverse set of heterogeneous processing units interconnected via advanced

networks. These processing units and communication networks may possess different resource

capabilities and varying levels of bandwidth utilization. This model can perform all functions

simultaneously and communicate at any point during the program's execution. The following

assumptions are employed to generate a model for solving the task allocation problem.

• In a real time structure, for every processor has a varying processing capability.

• On various processors, a task's execution time may vary.

• The allocated task persists on the processor while the program is executing.

• RS, RT, and CS are determined by the times of communication and execution.

• Heterogeneous processors are used in this DRTS paradigm. Consequently, the processors may

be restricted by different memory and compute units and they have varying failure rates and

processing times. Additionally, the communication links’ failure rates may vary.

• While executing, a module consumes a certain amount of its designated processor’s compute

resources. It is possible for two modules that are running on different processors to

communicate and incur a certain amount of intermodule communication time in terms of data

quantity.

In this article, task allocation issue is preferred and timing-constrained tasks are placed on

processors in a way that optimises RS, CS and RT under the following conditions:

571

Mathematics in Engineering Volume 6, Issue 4, 559–606.

• In DRTS all the tasks are non-preemptive.

• In a certain amount of time each and every processor execute single task.

The object of the task assignment problem in DRTS, where
TE M and

TITC M are assumed to

be given, is to minimize the RT and maximize the RS. The task allocation problem addressed with

system resource constraints is as follows:

(), , , , , ,
1

, 1 1 1

min max
r m r

k l i j j l i k i k i k
k m

i j k i
k l

RT d c x x x e
 

= = =


 
 

=    +  
 
 

  .

Such that,

,

1

1 ,
m

j l

l

x j
=

=  (8)

 , 0,1 ,j lx j l  . (9)

Each and every module must be allotted to precisely single processor, according to constraint (8)

and ,j lx must be binary variables, according to constraint (9). With a quadratic objective function,

the aforementioned formulation is an NP-hard 0–1 programming problem.

5. The proposed method

This section elucidates the developed method for addressing the task scheduling problem, aiming

to minimize CS and RT while maximizing RS. This paper introduces a novel scheduling method

developed through the integration of a PSO-based swarm technique with GA and k-means techniques.

In recent decades, GA and PSO have been widely utilized in a number of scientific domains. The study

of computing systems motivated by collective intelligence is known as swarm intelligence. Large

numbers of homogeneous agents in the environment work together to form collective intelligence.

That includes the examples of flocks of birds, fish schooling, and ant colonies. Swarm intelligence can

be used to find the best solutions for the issues like task scheduling. PSO is used in this paper because

it is the best strategy for all size problems. An approximate solution to an optimization or search

problem can be found using the GA search approach. Since GA considers all potential solutions, it

takes longer to find a solution to any given problem. The procedure of selecting which task should be

carried out at each moment in time is called task scheduling. The assignment algorithm prioritizes each

active task at runtime and allots the highest priority task to the processor. In the present study task-

clusters are formed using hybrid particle swarm optimization genetic algorithm k-means (HPSOGAK)

and their assignment onto appropriate processor is done by using genetic algorithm. The main

drawback of the traditional PSO algorithm is to establish a balance between local and global search,

which leads to local best or optima in large number of optimization issues. Additionally, the standard

PSO algorithm suffers from slow convergence rates, rendering it unsuitable for directly addressing

assignment problems. Numerous attempts have been made to mitigate these issues, as detailed in

Section 2. As an illustration, the approach in [30], devised a hybrid PSO-based method for task

scheduling in heterogeneous systems, faced restrictions on operators’ actions, potentially made parts

572

Mathematics in Engineering Volume 6, Issue 4, 559–606.

of the search space unreachable. The motivation behind developing the proposed HPSOGAK approach

is to overcome the drawbacks and limitations associated with the standard PSO algorithm. This work

combines PSO and GA techniques to enhance the capabilities of conventional PSO, with the goal of

effectively tackling the crucial task scheduling problem in heterogeneous computing systems. By

combining the exploration capabilities of PSO with the refinement strengths of GA, the proposed

hybrid method effectively balances the search process, leading to improved optimization results. Even

though, using only genetic operators to determine the optimal solution is difficult. Therefore, the

convergence rate of GA is improved by providing new population initialization, encoding and genetic

operations. This article introduces new crossover and mutation techniques that help GA function better.

In addition to initializing particles with HPSOGAK, a global-local best inertia weight is used to

balance the local and global search components of the standard PSO algorithm. In the hybrid

HPSOGAK algorithm, k-means clustering technique is implemented to produce a finite number of

task-clusters as the conception of k-means is quite straightforward and comfortable to accomplish. The

fundamental disadvantage of the k-means clustering method is that it may produce vacant clusters.

Hence, PSO-GA approach is employed to address this shortcoming. After using the PSO-GA approach,

non-empty clusters of tasks are obtained within a low number of iterations of k-means. Now, the

fundamental characteristics of PSO and GA are as follows.

5.1. Particle swarm optimization

In an effort to address issues related to optimization, Kennedy and Eberhart [11] introduced the

basic version of PSO. It is a meta-heuristic optimizing technique that draws inspiration from animal

social behavior and information-sharing strategies, such as that of soaring birds and fish schooling. A

particle swarm is a gathering of particles that can all move around in the problem space and be drawn

to advantageous locations. Each and every particle of PSO in a population has two characteristics,

velocity and position. On the basis of these two factors all the particles look for their food in that

available search space. Influenced by the natural phenomena of schooling and flocking, PSO particles

are distinguished not only by their position but also by a velocity that allows them to move within the

search space. Each and every particle in PSO represents a location in the specified search space and a

potential answer to the problem. Its goal is to optimize the problem-dependent fitness function, a

function that provides each particle of the population a specific value demonstrating the superiority of

the g best and p best in the solution. Centroids of task-clusters are represented as swarm particles in

the present article, and the following Eq (10) can be used to get the fitness value for each particle.

()
2

ˆ

, ,
1 1

1
max , 1, 2,...

1
Cd r r

n

i j k j
i j

g k m

c cd
= =

=

 
 
  =

  + −   
  

 (10)

where, ()ˆ

,

n

i jc represents the element of the matrix TNITC M and for the centroid of the
thk cluster

k
Cd ; (),1 ,2 ,, ,...,k k k k rCd cd cd cd= .

In the search space each particle’s position is influenced by both its best position (p best) and the

position of the next best particle (g best). All the particles migrate to the ideal solution, updating their

573

Mathematics in Engineering Volume 6, Issue 4, 559–606.

p best and g best results. All of these particles have now reached their destination in the best possible

manner. Each bird in this process is viewed as a distinct particle. Therefore, each and every particle

has its own position and velocity. PSO is an iterative procedure in which each particle modifies its

position and velocity in accordance with its prior experience as well as that of its neighbors. Determine

the p best and g best for upgrading every particle’s velocity and position i.e., cluster centroids based

on its fitness values by the Eqs (11) and (12) respectively.

() () () ()() () ()()1 1 2 21k k k k k kV t V t P t Cd t G t Cd t    + =  +   − +   − (11)

where,  stands for the inertia weight and the values of cognitive constant 1 and social constant

2 typically fall between [0, 2].
1 , 2 are two random numbers, have values in the range from [0,1].

The inertia component is the first, cognitive component is the second, and social component is the

third component in the velocity upgrade calculation in Eq (11). Here, an algorithm’s two successive

iterations are represented by (t) and (t+1).

() () ()1 1t t t
k k k

Cd Cd V+ += + . (12)

The three components that make up the velocity vector, which controls how a particle moves

through a given search space, are as follows: momentum, also known as inertia, keeps a particle from

abruptly changing direction; cognitive component, that is accountable for the trend to return the

particles to their previous foremost position; and social component, which assists a particle in moving

through the swarm’s best position. These factors influence how the velocity of the
thk particle updates

according to Eq (11). The iterative procedure described in Eqs (11) and (12) will continue until the

halting condition is satisfied.

The graphic depiction of the PSO is shown in Figure 1. The particle changes direction with each

iteration, and often, the new path is optimal. This decision is based on both the individual's personal

best position and the global best position.

Figure 1. Graphical presentation of PSO.

574

Mathematics in Engineering Volume 6, Issue 4, 559–606.

5.2. Genetic algorithm

Like PSO, GA is also a sort of meta-heuristic optimization approach. Inspired from Charles

Darwin’s theory of “Survival of the fittest”, the GA is capable of producing excellent solutions for a

variety of issues, including optimization and search, by imitating the processes of natural selection,

breeding, and mutation. As robust stochastic search in algorithms, GA has lately been used to solve

the job-shop assignment problem and task allocation issue. Based on a concept of natural genetics and

selection, this category of techniques combines the concept of the fittest surviving, random yet

structured search, and parallel assessment of locations in the search space. A population of specific

solutions is continuously modified by the GA. The population develops towards the best option

through subsequent generations. GA can be employed to address a variety of optimization problems,

such as those involving stochastic, discontinuous, highly nonlinear, or non-differentiable objective

functions. The following subsections of GA cover the novel encoding, population initiation approach

and genetic processes.

5.2.1. Evolution of an initial population

Presenting chromosome like a string of integers is particularly beneficial for task clustering and

allocating task-clusters onto processors. Each sole chromosome demonstrates the allocation of one of

the possible modes of each task into a cluster or to a task-cluster on a processor. The number of tasks

‘r’ (or processors ‘m’) involved in a program, determines each chromosome’s length used to cluster of

tasks (or schedule task-clusters onto processors). Any of the program's total participating processors

could be a chromosome's digit and each and every gene connected with a chromosome provides

information on scheduling and clustering. Here, an example of an encoded chromosome is presented,

where the ‘r’ tasks are randomly clustered to form ‘m’ clusters, and their allocation is assigned across

‘m’ processors. Chromosomes are encoded as follows in Figure 2 for task clustering and scheduling:

Figure 2. Chromosomes encoding. (a) Encoding of clustering of tasks. (b) Encoding of

task-clusters scheduling.

5.2.2. Fitness function

The optimization-related objective function is the fitness function in GA. The accuracy of tasks

allocation on processors is expressed by the fitness function, which assigns a value to every

chromosome in the population. Optimizing RT, RS and CS are the main goals of the task allocation

issue. By clustering the tasks that are highly communicated via HPSOGAK technique and then

allocating them to appropriate processors via GA technique, the assignment problem has been solved.

For any random number (0,1]  , the following is the fitness function for the allocation algorithm GA:

575

Mathematics in Engineering Volume 6, Issue 4, 559–606.

, ,

1 1

 1/ .
r m

fet i k i k

i k

f x e
= =

 
= + 

 
 . (13)

The purpose of this fitness function is to effectively evaluate the quality of solutions, guide the

optimization process towards optimal results, and helps to improve the convergence speed.

5.2.3. Selection

Pick the best, dismiss the rest, is the guiding idea of the selection operator. The process of

selection determines which chromosomes should be maintained and allowed to regenerate and which

ones should be eliminated. A selection operator’s primary goal is to maintain the population dimension

while decreasing the proportion of low-quality chromosomes and increasing the proportion of high-

quality chromosomes in a population. The roulette-wheel selection approach is used in this research

article, where each and every time a single chromosome is chosen for a new population. This procedure

takes place on a spinning wheel, and the spinning numbers are commensurate with the size of the

population. The following is the given selection probability for task scheduling onto processor:

()

()() ()
1

_
 1

_ _ 1

feti

rob m

fet fet

i

f chromosome i
P

f chromosome i f chromosome i
=

 
  

= −  
 − +
  


. (14)

From the foremost population, eliminate the chromosomes with the lowest selection probability.

Furthermore, include a chromosome by replicating one chromosome with higher selection probability

to new population.

5.2.4. Crossover

The most essential part of a genetic algorithm is crossover. By combining information from the

two chromosomes of parents, it produces the two chromosomes of the offspring. In GA, the crossover

operator is employed on the chromosomes with the lowest probability rather than the chromosomes

with the highest probability in the population. The crossover probability, which ranges between 0 and

1, determines how frequently crossover occurs between chromosomes in each generation, meaning the

likelihood of two chromosomes exchanging parts. A 100% crossover rate implies that all offspring are

produced through crossover, while a 0% rate means no crossover occurs, resulting in a new generation

nearly identical to the old one. The present article proposes a novel crossover strategy with a

probability of 0.8, based on several experimental studies such as [38,39]. Tests show that a 0.8

crossover probability offers a balance between rapid convergence and high-quality results. Lower

probabilities slow convergence, whereas higher one risk losing genetic diversity or causing premature

convergence. This impacts GA and PSO convergence rates and aids in achieving optimal clustering

outcomes. The presented crossover operator selects two parents with equal probability for the next

generation. The goal of this crossover operator is to produce offspring who inherit groups with a

significant level of variety from two chosen parents. In Algorithm 1, the suggested crossover operator

is described as follows:

576

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Algorithm 1: Proposed crossover operator.

Input:
Select two distinct parents

()t
A and

()t
B of dimension m from parent pool

Output: Two distinct offspring
()1t

C
+

 and
()1t

D
+

Create offspring

()1t
C

+
 and

()1t
D

+
 respectively as follows:

 # For offspring
()1t

C
+

,
()1t

C
+

= Reverse ()()' 1t

C
+

1: While ()k m

2: {

3: if (k==1)
4: {

5: ()' 1

1 1

t tC B
+

==

6: }

7: if ()1 k m 

8: {

9: t

kx = (image (
'(1)

1

t

kC
+

−)) IN
()t

B

10: t

ky = (image (t

k
x)) IN

()t
A

11: if ((t

k
y IN

()1' t
C

+
)=True)

12: {

13: '(1)t

kC
+

=min
() ()()' 1t t

B C
+

−

14: }

15: else

16: {

17: '(1)t

kC +
= t

ky

18: }

19: }

20: }

21: ()1t
C

+

=Reverse ()()' 1t
C

+

22: # For offspring
()1t

D
+

23: While ()k m do

24: {

25: if (k=1)
26: {

27: ()1

1 1

t tD A
+

==

28: }

29: if ()1 k m 

30: {

31: t

kw = (image (
(1)

1

t

kD +

−)) IN
()t

A

31: t

kv = (image (t

kw)) IN
()t

B

32: if ((t

kv IN
()1t

D
+

)=True)

577

Mathematics in Engineering Volume 6, Issue 4, 559–606.

33: {

34: (1)t

kD +
=min

() ()()1t t
A D

+
−

35: }

36: else
37: {

38: (1)t

kD +
= t

kv

39: }

40: }

41: }

In this Algorithm 1, (t) represents the generation count and the image of any bit in a chromosome

is the bit after it. An example of the developed crossover technique is shown below. Through use of

the procedures in Algorithm 1, the two offsprings C and D that were produced from the parents’

chromosomes A and B are as follows in Figure 3:

Figure 3. An example of the proposed crossover technique.

5.2.5. Mutation

Following crossover, the chromosomes undergo a mutation operation. GA uses mutations in

chromosome populations as a genetic operator to preserve genetic diversity from one generation to the

succeeding. A mutation operator's major purpose is to prevent chromosomes from becoming too

identical to each other as well after a certain number of iterations. A novel mutation technique with a

probability of 0.1 is used in this article. This technique can be comprehended with the help of the

subsequent Algorithm 2.

Algorithm 2: Proposed mutation operator.

Input: Select an offspring chromosome
()1t

C
+

 of dimension m

Output: A mutated offspring
()1t

E
+

Create mutated offspring
()1t

E
+

 as follows:

1: Select two random cut-points over
()1t

C
+

say, cut-point1 and cut-point2 respectively

578

Mathematics in Engineering Volume 6, Issue 4, 559–606.

2: 'x =
()1t

C
+

(cut-point1 to cut-point2)

3: 'x =Shuffle ()'x

4: Place
'x in

()1t
C

+
between cut-point1 and cut-point2

5: While (k m)

6: {

7: if (k==1)
8: {

9: () ()1' '

1 min
t

E x
+
=

10: }

11: if ()1 k m 

12: {

13: ()' 1t
y

+
=(image ('(1)

1

t

kE +

−
)) IN

()1t
C

+

14: if ((()' 1t
y

+
IN

()1' t
E

+
)=True)

15: {

16: ()' 1t

kE
+

=image (()' 1t
y

+
)

17: else

18: {

19: ()' 1t

kE
+

= ()' 1t
y

+

20: }

21: }

22: Reshuffle the bits of ()' 1t

kE
+

 to their original position from Step 2 to get mutated

offspring
()1t

E
+

In this Algorithm 2, (t+1) represents the generation count and the image of any bit in a

chromosome is the bit after it. Below is an example that demonstrates this operator's process. Through

use of the procedures in Algorithm 2, the mutated offspring E that was produced is as follows in

Figure 4:

Figure 4. An example of the proposed mutation technique.

579

Mathematics in Engineering Volume 6, Issue 4, 559–606.

5.3. Stopping criteria

The stopping condition is used to prevent PSO and GA from running indefinitely. Both the

algorithms run until they converge in order to obtain a better quality of solution, and the result is the

best solution as far obtained. A terminating criterion is needed to determine this convergence behavior.

Convergence happens when the most ideal reported value does not change during the maximum

number of generations. In this work, two distinct categories of stopping criteria are used.

• An upper bound on the maximum number of iterations (generations).

• The algorithm keeps running for a specified number of generations until the best result obtained

throughout the evolution process does not improve.

5.4. Developed algorithms

To address the task allocation issue, the suggested model uses a PSO-based hybrid model

HPSOGAK to generate task-clusters and GA to find the task-clusters’ assignment onto processors. The

proposed technique is appropriate for both fuzzy and crisp time. The proposed task scheduling method

is divided into two phases. The HPSOGAK and GA techniques are discussed in the first and second

phases, respectively.

5.4.1. Phase I

The HPSOGAK algorithm is developed in this phase by integrating PSO, GA and k-means. In the

suggested approach, centroids are taken as particles that are improved using the PSO-GA technique

and then used like initial centroids in the k-means algorithm. The method elevates the 'p best and g

best' position of particles determined from PSO using genetic operators and then k-means clustering

approach is employed to acquire a finite number of task-clusters. To create the task-clusters using k-

means clustering approach ,T i jITC M c =   is renewed from ,T i jFITC M c =   . To provide the best

outcomes for all data points, the k-means algorithm repeatedly reduces the distances between each data

point and its centroid. To make a one-to-one correlation, the number of processors ‘m’ and task-

clusters ‘k’ must be the same. Here kn and
k

Cd indicates the tasks’ number in
thk cluster and the

centroid of the
thk cluster respectively, where

(),1 ,2 ,, ,...,k k k k rCd cd cd cd= .

By implementing the HPSOGAK, TITC is minimized by clustering together the extremely

communicative tasks.

To address various allocation issues based on PSO, several authors have proposed their

mechanisms, wherein the inertia weight remains either constant or decreases linearly during the

process. Based on existing knowledge, the assignment of tasks in DRTS has been categorized as NP-

hard problems, and the complexity of these assignments further increases with the increase in the

number of deployed processors and the tasks that have been submitted. So, balancing the local search

and the global search is important, and for that, in the present work, the inertia weight,  is

determined based on the calculation in Eq (15).

580

Mathematics in Engineering Volume 6, Issue 4, 559–606.

 min
max

- current iter.
0.5

max iter.


 

 
= +  

 
 (15)

where,

max Maximum weight  = ,

min Minimum weight = ,

Max iter. = Maximum iteration number.

The inertia weight is set to decrease linearly from a high initial value ()max 0.9 = to a lower

final value ()min 0.4 = as the algorithm progresses through its iterations. This approach enhances

global exploration at the start of the iterative process and promotes a more localized, fine-tuned search

towards the end of the iterations.

Phase I is described in detail as in Algorithm 3.

Algorithm 3: Formation of task-clusters by employing HPSOGAK.

1: Initialize 1 2 1 2, , , , , , , TFITC Mr m     

2: Defuzzification of ,T i jFITC M c =   into crisp ,T i jITC M c =   through using

Robust’s ranking approach

3: for 0 i j r   do

4: {

5:
, ,ˆ

,

max max , if

 0 , otherwise

i j i j
i j

T

n

i j

c c i j
NITC M c

− 
= =

   


6: }

7: end for

8: Generate ‘m’ number of task-clusters of ‘r’ tasks randomly named as  1 2, ,... mcl cl cl

9: for () cluster 1 th
k mk   do

10: {

11: Calculate the initial kCd for PSO-GA as follows:

ˆ

, ,

, 1

1
.

r
n

k i j i k

i jk

Cd c u
n =

= 

12: }

13: end for

14: t=0

15: for ()1 k m  do

16: {

17: Initialize ()kV t and ()kCd t

18: ()k tP = ()kCd t

19: }

581

Mathematics in Engineering Volume 6, Issue 4, 559–606.

20: end for

21: Formation of new centroids using PSO-GA technique

22: if (PSO-GA stopping criteria = false) do
23: for () particle 1

th
k mk   do

24: {

25: Evaluate the fitness value Cdg of each particle by using Eq (10)

26: Determine the p best for each particle based on its fitness value

27: Implement the crossover operator to update p best
28: Implement the mutation operator to update p best

29: Determine the g best based on its fitness value
30: Implement the mutation operator to update g best

31: Update ()1kV t + by using Eq (11)

32: Update ()1kCd t + by using Eq (12)

33: }

34: end for

35: end if

36: Assign the centroids obtained in Step 32 as the initial centroids for the k-means
algorithm

37: Repeat

 (a) for (1 1i r and k m   ) do

 {

Distance ˆ

ikd between task it and the cluster centre kCd

()
2

,
1

ˆ

,
ˆ =

r

ik k j
j

n

i j
d cdc

=

−

 }

 end for

 (b) Create new task-clusters by allocating each task to its closest cluster centroid
 # Update novel clusters as follows

 (c) for ()1 k m  do

 {

,

, 1

ˆ
,

1
.

r

k i k

i jk

n
i jCd c u

n =

= 

 }
 end for

 (d) Apply 37 (a), (b) steps and encore the process until the stopping criteria are met

38: end

5.4.2. Phase II

Throughout this phase, GA has been implemented to schedule task-clusters into processors.

During the program’s execution, the clusters obtained from the preceding Algorithm 3 will remain

unchanged. Identical clustered tasks perform similarly to a single task and might be assigned to the

same processor. The
thi and

thj rows of the TFE M must be added and represented as a new row

in the TNFE M if tasks it and jt do belong to the same cluster. Only one processor may be

assigned to all of the tasks that are present in one cluster at once. According to the task-clusters that

582

Mathematics in Engineering Volume 6, Issue 4, 559–606.

are acquired from algorithm HPSOGAK, ,T i kE M e =   is updated into
ˆ

,

n

T i kNE M e =   . Phase II is

described in detail as an algorithm. Algorithm 4 provides a summary of this stage’s numerous steps:

Algorithm 4: To determine the assignment of task-clusters onto processors.

1: Input ,T i kFE M e =  

2: Defuzzification of ,T i kFE M e =   into crisp ,T i kE M e =   through using Robust’s ranking

approach

3: Modify ,T i kE M e =   into
ˆ

,

n

T i kNE M e =   by fusing the rows based on the cluster

acquired from Algorithm 3

4: To produce the initial population, encode ‘m’ chromosomes

5: Start

6: Size of population=m

7: for k=1 to size of population ‘m’

8: chromosome
kch =select in random order

9: end

10: Through using the following formula, compute the fitness value of each chromosome in the

population:

, ,

1 1

 1/ .
r m

fet i k i k

i k

f x e
= =

 
= + 

 


11: Assess the probability of each chromosome in the population through using following

formula:

()

()() ()
1

_
 1

_ _ 1

feti

rob m

fet fet

i

f chromosome i
P

f chromosome i f chromosome i
=

 
  

= −  
 − +
  


12: New population to be produced-

13: For the new population, select the chromosome having high probability

14: Select the chromosomes with the least probability and apply the proposed crossover operator

to them

15: Implement the proposed mutation operator

16: If the prerequisites for stopping are met, stop; otherwise go to Step 10

17: Applying Eqs (4) – (6) to determine CS, RT, and RS respectively.

18: End

In Figure 5, the whole processes of Algorithms 3 and 4 are shown, providing a succinct

understanding of the algorithms’ processes.

583

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 5. Flowchart depicting the procedure of Algorithms 3 and 4.

5.5. Performance parameter

If the setting of PSO and GA algorithm parameter is improper, it will slow down the solution

speed and have an impact on the outcomes' quality. Each population-based technique may converge to

the global best location in a realistic period of time by maintaining a proper balance between local

search and global search. Inertia weight () and crossover-mutation, respectively, are the coefficients

that keep this balance in the PSO and GA algorithms. Therefore, the developed technique yields new

crossover and mutation strategies for GA and an updated  -equation (Eq (15)) for PSO. Where the

value of  steadily decreased throughout the iteration and balanced the rate of PSO convergence. This

section provides details on a few significant parameters that the proposed task assignment algorithm

considers for analytical evaluation. The articles by Kumar and Tyagi [39], Agarwal and Srivastava [41],

and Shatz et al. [61] are taken into consideration for determining the parameters. Following Table 4

presents the parameters:

584

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Table 4. Input parameters and the corresponding values.

System parameters Values

Inertia weight  0.4–0.9

1 2and  [0,1]

1 2and  1.49

Failure rate of processor, k [0.0002–0.00012]

Failure rate of kl communicating path,
,k l [0.0005–0.00015]

Maximum iteration of GA 50
Crossover probability 0.8

Mutation probability 0.1
Maximum iteration of PSO 100

6. Performance assessment

Let's assess the technique which is presented by considering the four real-applications-based

examples. All four examples are drawn from proven existing models. In two examples, time is regarded

in the crisp form, however in the other two examples; time is viewed as a fuzzy number. Fuzzy numbers

can be of any form, including Gaussian, bell-shaped, triangular, trapezoidal, and so on. Table 5

illustrates the test setup, employing the presented HPSOGAK and GA algorithms for solving task

scheduling problems. It represents the solutions of RS, RT, and CS of the system, along with the

allocation onto processors for all four analyzed examples. Additionally, the effectiveness of the

presented PSO-based task scheduling technique has been assessed in terms of resource utilization

(Abdelkader and Omara [62]). The resource utilization is carried out in terms of RT and is contrasted

with other models. According to Table 5, it is vivid that in order to reduce the RT and CS and maximize

the RS and utilization, the proposed model produces a better quality of results than any existing models

for allocation.

Table 5. Comparison of the aforementioned examples' outcomes with those of existing methods.

Example Reference Used

Technique

Tasks

Assignment

RS CS RT Resource

Utilization

(%)

1 Djigal

et al. [63]

List based

scheduling

algorithm

{t1,t2,t3,t7}→p1

{t4,t6,t8,t10}→p2

{t5,t9}→p3

- 304 181 75.32

 Proposed

model

Hybrid

PSO

{t8,t10}→p1

{t2,t5,t9}→p3

{t1,t3,t4,t6,t7}→p

2

0.98074 275 162 79.39

2 Kumar

et al. [64]

Heuristic

approach

{t1,t4}→p1

{t5}→p2

{t2,t3}→p3

0.97096 (145, 240,

360)

(110,175,250) 68.06

 Continued on next page

585

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Example Reference Used

Technique

Tasks

Assignment

RS CS RT Resource

Utilization

(%)

2 Proposed

model

Hybrid

PSO

{t1}→p2

{t2,t3,t5}→p1

{t4}→p3

0.98780 (145,230,3

20)

(95,165,240) 74.35

3 Sharma

et al. [65]

Clustering

approach

{t4,t5}→p1

{t2,t3}→p2

{t1}→p3

0.9956 123 97 77.89

 Proposed

model

Hybrid

PSO

{t3,t4,t5}→p2

{t1}→p1

{t2}→p3

0.9979 81 68 81.34

4 Chauhan

et al. [43]

Hybrid GA {t1,t8}→p1

{t4,t9}→p2

{t2,t5}→p3

{t6,t7}→p4

{t3}→p5

(0.9349,0.95

06,0.9693)

(403.8,634

.8,965.8)

(32,53,78) 51.29

 Proposed

model

Hybrid

PSO

{t3}→p5

{t4,t9}→p2

{t1,t8}→p1

{t2,t5}→p3

{t6,t7}→p4

(0.9349,0.95

06,0.9693)

(403.8,634

.8,965.8)

(32,53,78) 51.29

Example 1. Here, the problem is grabbed from Djigal et al. [63] model. In which DRTS consist ten

tasks  1 2 10, ,......,t t t that have to be allocated on three processors  1 2 3, ,p p p . In this problem ,i ke

and ,i jc have been assessed as crisp number shown in Figures 6 and 7 respectively.

Figure 6. Tasks crisp execution time (,i ke) on processors.

586

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 7. Crisp inter-task communication time (,i jc) between tasks.

The following chromosome in Figure 8 gives the final task-clusters as a result of carrying out the

steps of Algorithm 3:

Figure 8. Final task-clusters of Example 1.

The optimal allocation of task-clusters onto worthy processors has been achieved employing the

steps in Algorithm 4, that is displayed by the following chromosome in Figure 9:

Figure 9. Allocation of task-clusters onto processors of Example 1.

The task-clusters and their allotment on processors can be written as follows using the two

chromosomes mentioned above:

 1 8 10 1,cl t t p= → ,  2 2 5 9 3, ,cl t t t p= → and  3 1 3 4 6 7 2, , , ,cl t t t t t p= → .

587

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Task-clusters assignments are shown in Figure 10.

Figure 10. Solution graph of Example 1.

In Figure 10, the processors are enclosed by solid circles and depict the corresponding ,i ke on

them, while the figures with dotted lines in parenthesis depict ,i jc . Now, based on the information

gleaned from the optimal allocation; the RT is 162 and the CS is 275 of the system. Equation (6)

determines the system’s reliability (RS), that is 0.98074.

Example 2. Here, the problem is acquired from Kumar et al. [64] model. In which DRTS consist five

tasks  1 2 5, ,...,t t t that have to be allocated on three processors  1 2 3, ,p p p . In this problem ,i ke

and ,i jc have been assessed as fuzzy triangular number shown in Figures 11 and 12 respectively.

Figure 11. Fuzzy execution time (,i ke) on processors.

588

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 12. Fuzzy inter-task communication time (,i jc) between tasks.

To resolve the aforementioned example, first use Robust’s ranking technique to defuzzify the

,i ke and ,i jc times into crisp times ,i ke and ,i jc respectively, and then generate
TE M and

TITC M by inserting ,i ke and ,i jc , respectively in them.

The following chromosome in Figure 13 gives the final task-clusters as a result of carrying out

the steps of Algorithm 3:

Figure 13. Final task-clusters of Example 2.

The optimal allocation of task-clusters onto worthy processors has been achieved employing the

steps in Algorithm 4, that is displayed by the following chromosome in Figure 14:

Figure 14. Allocation of task-clusters onto processors of Example 2.

589

Mathematics in Engineering Volume 6, Issue 4, 559–606.

The task-clusters and their allotment on processors can be written as follows using the two

chromosomes mentioned above:

 1 1 2cl t p= → ,  2 2 3 5 1, ,cl t t t p= → and  3 4 3cl t p= → .

Task-clusters assignments are shown in Figure 15.

Figure 15. Solution graph of Example 2.

Now, based on the information gleaned from the optimal allocation in Figure 15; the RT is (95,165,240)

and the CS is (145,230,320) of the system. Eq (6) determines the system’s reliability (RS) that is

0.98780.

Example 3. Here, the problem is grabbed from Sharma et al. [65] model. In which DRTS consist five

tasks  1 2 5, ,...,t t t that have to be allocated on three processors  1 2 3, ,p p p . In this problem ,i ke

and ,i jc have been assessed as crisp number shown in Figures 16 and 17 respectively.

Figure 16. Tasks crisp execution time (,i ke) on processors.

590

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 17. Crisp inter-task communication time (,i jc) between tasks.

The following chromosome in Figure 18 gives the final task-clusters as a result of carrying out the

steps of Algorithm 3:

Figure 18. Final task-clusters of Example 3.

The optimal allocation of task-clusters onto worthy processors has been achieved employing the steps

in Algorithm 4, that is displayed by the following chromosome in Figure 19:

Figure 19. Task-clusters allocation on processors of Example 3.

The task-clusters and their allotment on processors can be written as follows using the two

chromosomes mentioned above:

 1 3 4 5 2, ,cl t t t p= → ,  2 1 1cl t p= → and  3 2 3cl t p= → .

Task-clusters assignments are shown in Figure 20.

591

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 20. Solution graph of Example 3.

In Figure 20, the processors are enclosed by dotted circles and depict the corresponding ,i ke on

them, while the figures with solid lines depict ,i jc . Now, based on the information gleaned from the

optimal allocation; the RT is 68 and the CS is 81 of the system. Eq (6) determines the system’s

reliability (RS), that is 0.9979.

Example 4. Here, the problem is acquired from Chauhan et al. [43] model. In which DRTS consist

nine tasks  1 2 9, ,...,t t t that have to be allocated on five processors  1 2 5, ,...,p p p . In this problem

,i ke and ,i jc have been assessed as fuzzy triangular number shown in the matrices TFE M and

TFITC M respectively.

1 2 3 4 5

1

2

3

4

, 59 5

6

7

8

9

t (7,9,11) (8,13,15) (12,14,15) (5,8,10)

t

t

t

t

t

t

t

t

T i k

p p p p p

FE M e


 = = 

(11,12,14)

(1,3,4) (2,7,10) (9,11,12) (6,8,9) (12,14,16)

(10,12,14) (6,8,10) (3,7,10) (3,5,7) (4,6,10)

(3,7,10) (4,5,7) (11,14,17) (8,10,12) (7,9,10)

(10,12,13) (10,13,15) (6,8,9) (6,7,9) (4,6,8)

(1,3,5) (4,5,6) (10,11,12) (6,8,10) (7,9,10)

(10,14,15) (10,12,13) (8,10,11) (6,9,10) (8,13,15)

(5,7,9) (6,8,10) (8,10,12) (9,11,13) (12,14,16)

(9,11,13) (6,10,14) (5,8,11) (5,7,9) (10,13,16)

 
 
 
 
 
 
 
 
 
 
 
 
 
 

.

592

Mathematics in Engineering Volume 6, Issue 4, 559–606.

1 2 3 4 5 6 7 8 9

1

2

3

4

, 59 9

6

7

 t t t t t t t t t

t

t

t

t

t

t

t

T i jFITC M c


 = = 

8

9

(0,0,0) (1,2,4) (2,3,5) (6,7,8) (4,5,7) (4,6,7) (0,0,0) (5,6,9) (3,4,7)

(1,2,4) (0,0,0) (3,5,6) (0,0,0) (6,8,9) (1,3,4) (1,2,3) (3,4,5) (2,3,4)

(2,3,5) (3,5,6) (0,0,0) (1,3,5) (2,4,6) (1,3,5) (0,2,4) (3,5,7) (6,7,8)

(6,7,8)

t

t

(0,0,0) (1,3,5) (0,0,0) (1,3,4) (1,2,3) (4,6,7) (1,3,7) (6,9,10)

(4,5,7) (6,8,9) (2,4,6) (1,3,4) (0,0,0) (1,5,6) (4,7,8) (0,0,0) (2,3,4)

(4,6,7) (1,3,4) (1,3,5) (1,2,3) (1,5,6) (0,0,0) (8,9,10) (5,7,9) (3,4,5)

(0,0,0) (1,2,3) (0,2,4) (4,6,7) (4,7,8) (8,9,10) (0,0,0) (6,7,8) (4,5,7)

(5,6,9) (3,4,5) (3,5,7) (1,3,7) (0,0,0) (5,7,9) (6,7,8) (0,0,0) (2,3,4)

(3,4,7) (2,3,4) (6,7,8) (6,9,10) (2,3,4) (3,4,5) (4,5,7) (2,3,4) (0,0,0)

 
 
 
 
 
 
 
 
 
 



 





.

To resolve the aforementioned example, first use Robust’s ranking technique to defuzzify the

,i ke and ,i jc times into crisp times ,i ke and ,i jc respectively, and then generate
TE M and

TITC M by inserting ,i ke and ,i jc , respectively in them.

The following chromosome in Figure 21 gives the final task-clusters as a result of carrying out

the steps of Algorithm 3:

Figure 21. Final task-clusters of Example 4.

The optimal allocation of task clusters onto worthy processors has been achieved employing the steps

in Algorithm 4, that is displayed by the following chromosome in Figure 22:

Figure 22. Task-clusters allocation on processors of Example 4.

The task-clusters and their allotment on processors can be written as follows using the two

chromosomes mentioned above:

 1 3 5cl t p= → ,  2 4 9 2,cl t t p= → ,  3 1 8 1,cl t t p= → ,

 4 2 5 3,cl t t p= → and  5 6 7 4,cl t t p= → .

Task-clusters assignments are shown in Figure 23.

593

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 23. Solution graph of Example 4.

In Figure 23, the processors are enclosed by rounded rectangles and depict the corresponding

,i ke on them, while the figures with solid lines in parenthesis depict ,i jc . Now, based on the

information gleaned from the optimal allocation; the RT is (32, 53, 78) and the CS is (403.8, 634.8,

965.8) of the system. Eq (6) determines the system’s reliability (RS), that is (0.9349, 0.9506, 0.9693).

7. Comparison

In several situations with variable numbers of tasks and processors, we compared the proposed

meta-heuristic based method to well-established approaches in order to assess its effectiveness. CS,

RT, RS, PIR, (discussed in Subsections 3.4.–3.7.) efficiency [62] and, resource utilization is being

taken into account as performance measures for analytical assessment to analyze the performance of

the proposed task assignment algorithm in DRTS. Efficiency is defined as the ratio of sequential

computation time to scheduling time, taking the number of processors into consideration. Efficiency

and PIR are incredibly beneficial in assessing the accuracy of the outcomes produced by the given

approach. In terms of these metrics, the given approach performs better than existing techniques. Also,

to examine the quality of outcomes from a statistical perspective, Friedman’s test is carried out. Data

of different task assignment problems have been accumulated from the articles of Kumar et al. [38],

Kumar and Tyagi [39], Chauhan et al. [43], Ilavarasan et al. [66], Kumar and Tyagi [67], Topcuoglu

et al. [68]. The following five scenarios have been taken into consideration in this study.

7.1. Scenario 1

In this scenario, 30 real-world issues from the existing methods have been taken into

consideration in order to evaluate the proposed technique. Table 6 shows a comparison of the outcomes

of these issues based on CS and RT which is also depicted in Figure 24. As per shown in Figure 24,

the developed method provides superior quality outcomes than other available task scheduling

methods used to reduce CS and RT.

594

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Table 6. Output comparison from different exploratory articles.

S. No. References Size of

the

model

(r, m)

Technique used By reference

technique

By proposed

technique

CS RT CS RT

1 Dai and Zhang [69] (10,3) Heuristic approach 218 147 199 126

2 Yadav et al. [70] (4,4) Heuristic approach 29 27 23 21

3 Kumar et al. [64] (5,3) Heuristic approach 246.25 177.5 231.25 166.25

4 Attiya and

Hamam [46]

(6,4) Simulated annealing

approach

145 51 60 21

5 Sharma et al. [65] (5,3) Clustering approach 123 97 81 68

6 Daoud and

Kharma [71]

(5,2) List based

scheduling

algorithm

36 27 33 18

7 Topcuoglu et al. [68] (10,3) List based

scheduling

algorithm

230 172 203 128

8 Ilavarasan et al. [66] (10,3) HPS approach 236 131 203 128

9 Khandelwal [72] (8,3) Clustering approach 122 58 76 46

10 Govil and Kumar [73] (10,4) Heuristic approach 163 89 154 77

11 Yadav et al. [74] (9,3) Heuristic approach 2563.9 1272.6 2475.70 1181.20

12 Kafil and Ahmad [75] (5,3) A* technique 65 28 62 28

13 Kumar and Yadav [76] (8,3) Heuristic approach 83 54 76 46

14 Lo [77] (4,3) Graph theoretic

approach

38 30 35 30

15 Kaushal and

Kumar [78]

(10,4) Heuristic approach 400 200 154 77

16 Kumar et al. [19] (9,3) Clustering approach 1094 422 963 415

17 Koppiddakis et al. [79] (3,2) Heuristic approach 30 24 14 13

18 Shatz et al. [61] (4,4) Heuristic approach 33 21 23 21

19 Akbari and

Rashidi [80]

(8,3) Genetic algorithm 170 111 154 88

20 Bittencourt et al. [81] (9,3) DAG scheduling 474 347 474 336

21 Daoud and

Kharma [71]

(11,2) List based

scheduling

algorithm

188.5 142 157 115

22 Kumar et al. [38] (5,3) Genetic algorithm 246.25 177.5 231.25 166.25

23 Yadav et al. [82] (9,3) Artificial neural

network approach

1372 479 963 415

24 Djigal et al. [63] (10,3) List based

scheduling

algorithm

304 181 275 162

25 Kumar and Tyagi [21] (6,4) Clustering approach 84 36 60 21

26 Yadav et al. [83] (8,4) Clustering approach 83.8 37 80.2 37

27 Ucar et al. [84] (7,3) Heuristic approach 270 195 270 185

28 Kumar and Tyagi [39] (5,3) Hybrid Genetic

algorithm

246.25 177.5 231.25 166.25

29 Gupta and Yadav [85] (9,3) Heuristic approach 2525 1221.9 2475.70 1181.20

30 Elsadek and

Wells [86]

(9,3) Heuristic approach 1372 479 963 415

595

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 24. Graphical presentation of Table 6.

7.2. Scenario 2

In this subsection, we will assess the performance of the proposed algorithm by comparing it to

that of other well-known algorithms, focusing on PIR %. Table 7 displays the results acquired for

PIR %, and it is clear that the developed PSO-based algorithm is superior to these other existing

approaches. The hybrid PSO's capability to attain the minimum value for RT in this study, coupled

with the close correlation between PIR% and RT, constitutes the primary factors contributing to its

performance. In most instances, the proposed algorithm significantly outperforms its well-known

competitors, as demonstrated by the PIR values presented in Table 7 and illustrated in Figure 25. The

overall average PIR % for the proposed approach, GA-B&B, Clustering approach, GA, and B&B are

22.64%, 19.90%, 17.03%, 20.21%, and 16.19%, respectively.

Figure 25. Graphical presentation of Table 7.

596

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Table 7. PIR of the proposed approach in terms of RT for various problem sizes compared

to other algorithms.

Size of the

model (r, m)

B&B GA Clustering

approach

GA-B&B Proposed

approach

(6,4) 39.21 58.82 29.41 58.82 58.82

(10,3) 11.56 18.16 10.20 8.16 14.28

(4,4) 9.52 10.52 19.04 9.52 0

(9,3) 11.69 11.89 11.27 11.69 13.36

(8,3) 18.91 29.72 16.76 19.81 20.72

(11,2) 1.16 4.92 2.81 1.16 19.01

(9,3) 11.52 10.52 11.10 11.11 13.53

(10,3) 23.46 30.81 24.41 24.41 25.58

(8,4) 0 5.40 0 16.21 18.91

(10,4) 62.5 70.45 67.23 67.5 61.50

(5,3) 1.97 2.98 4.61 2.98 6.33

(7,3) 2.05 4.87 1.02 0 5.12

(3,2) 41.66 40.83 25 41.66 45.83

(9,3) 2.97 3.33 2.97 3.33 3.33

(5,2) 4.81 0 29.62 22.22 33.33

7.3. Scenario 3

The performance study of the suggested method based on RS and CS is presented in this sub-

section. By resolving the running problem from Topcuoglu et al. [68] article, the effectiveness of the

developed approach has been demonstrated. In Table 8, which is provided below, are the outcomes for

this problem using the proposed algorithm, the Chauhan et al. [43] algorithm, the Kumar et al. [19]

algorithm, the Kumar and Tyagi [39] algorithm, and the algorithm of Ilavarasan et al. [66]. In light of

this, it can be said that the proposed algorithm produces optimal allocation when compared to the other

algorithms listed in Table 8.

Table 8. Comparative results of Topcuoglu et al. [68] algorithm with proposed and other

existing algorithms.

S. No. Algorithms Tasks Processors RS CS

1 Topcuoglu et al. [68] {t3,t7} 𝑝1 0.9614 230

{t4,t6,t8} 𝑝3

{t1,t2,t5,t9,t10} 𝑝2

2 Kumar et al. [19] {t3,t7,t10} 𝑝1 0.9629 224

{t4,t8,t9} 𝑝2

{t1,t2,t5,t6} 𝑝3

3 Chauhan et al. [43] {t3,t7,t10} 𝑝1 0.9629 224

{t4,t8,t9} 𝑝2

{t1,t2,t5,t6} 𝑝3

4 Ilavarasan et al. [66] {t3,t7,t8} 𝑝1 - 236

{t1,t2,t6} 𝑝3

{t4,t5,t9,t10} 𝑝2

 Continued on next page

597

Mathematics in Engineering Volume 6, Issue 4, 559–606.

S. No. Algorithms Tasks Processors RS CS

5 Kumar and Tyagi [39] {t4,t8,t9} 𝑝2 0.9629 224

{t3,t7,t10} 𝑝1

{t1,t2,t5,t6} 𝑝3

6 Proposed algorithm {t3,t7,t10}
{t2,t4,t8,t9}

{t1,t5,t6}

𝑝2

𝑝1

𝑝3

0.9840 203

7.4. Scenario 4

This subsection presents the performance analysis of the specified approach based on RT,

efficiency, and resource utilization. The article by Chauhan et al. [43] has been used to consider various

task assignment issues where GA-based mechanisms were generated. These problems are also

implemented on the proposed model and the obtained results are tabulated in Table 9. From the study

of Table 9, it can be concluded that the developed method produces finer results in terms of considered

parameters. Table 9 concludes that proposed PSO-GA algorithm generates results of higher quality

than to GA algorithm having RT with an average 170.16 and 181.04 respectively. Results are also

depicted in Figure 26 with respect to efficiency. The outcomes of Figure 26 shows that the suggested

PSO-GA based model performs better than the GA based model in terms of efficiency for the majority

of the processor quantities, while for the remaining processor quantities, both models deliver similar

results. The average efficiency of the GA and PSO-GA algorithms is 0.6387 and 0.7013, respectively.

Table 9. Comparison study of GA with proposed PSO-GA in terms of RT, efficiency &

utilization under different size of problems.

S. No. Tasks &

Processors

GA PSO-GA

RT Efficiency Utilization

(%)

RT Efficiency Utilization

(%)

1 (9,3) 422 0.7867 81.37 415 0.8001 83.69

2 (6,4) 21 0.7976 78.66 21 0.7976 78.66

3 (4,3) 65 0.5246 - 30 0.6105 67.31

4 (6,4) 34 0.6126 52.94 21 0.7976 78.66

5 (9,3) 120 0.5629 - 118 0.5801 61.13

6 (8,4) 37 0.7901 - 37 0.7901 78.38

7 (9,3) 1181.2 0.6183 - 1181.20 0.6183 69.23

8 (4,3) 19 0.6140 63.25 19 0.6140 63.25

9 (5,2) 86 0.3139 - 18 0.7502 79.33

10 (10,4) 85 0.5973 - 77 0.6421 71.77

11 (7,3) 195 0.4708 - 185 0.5954 63.13

12 (10,4) 65 0.7803 - 58 0.7992 81.02

13 (10,3) 130 0.5385 55.38 128 0.5891 78.41

14 (8,3) 78 0.7629 77.38 78 0.7629 77.38

15 (5,3) 177.5 0.7102 - 166.25 0.7732 81.79

598

Mathematics in Engineering Volume 6, Issue 4, 559–606.

Figure 26. Graphical presentation of Table 9 in terms of efficiency.

7.5. Scenario 5

In this subsection, to examine the quality of outcomes from a statistical perspective, Friedman

test is carried out. This test analysis whether there are statistically significant differences between the

dependent groups. The Friedman's test is a non-parametric statistical test which is used to assess the

significance of the data given in Tables 7 and 10 displays the results of this test.

Table 10. Outcomes of Friedman’s test in terms of PIR.

S. No. Problem’s

size

Ranks of the algorithms

B&B GA Clustering

approach

GA-B&B Proposed

technique

1 6 4 4 2 5 2 2

2 10 3 3 1 4 5 2

3 4 4 3.5 2 1 3.5 5

4 9 3 3.5 2 5 3.5 1

5 8 3 4 1 5 3 2

6 11 2 4.5 2 3 4.5 1

7 9 3 2 5 4 3 1

8 10 3 5 1 3.5 3.5 2

9 8 4 4.5 3 4.5 2 1

10 10 4 4 1 3 2 5

11 5 3 5 3.5 2 3.5 1

12 7 3 3 2 4 5 1

13 3 2 2.5 4 5 2.5 1

14 9 3 3.5 2 3.5 2 2

15 5 2 4 5 2 3 1

Sum of ranks 56 36.5 54.5 48 28

Sum of ranks squared 3136 1332.25 2970.25 2304 784

Average of ranks 3.73 2.43 3.63 3.2 1.86

599

Mathematics in Engineering Volume 6, Issue 4, 559–606.

It is noticeable that the developed method yields the best average of ranks as compared to B&B,

GA, Clustering method, and GA-B&B. It is clear proof that the proposed PSO-GA based algorithm is

a promising technique for tasks scheduling. In the outcomes of Table 7, the 2

r statistic is 10.686 (4,

N=15) and the p-value is 0.00226. Hence the results of the proposed method are significant at p< 0.05.

8. Conclusions

The problem of task scheduling is resolved in this article using a PSO-based approach. The

purpose of this technique is to use evolutionary algorithms for static task scheduling onto

heterogeneous processors in DRTS. The present research demonstrates an efficient method for

handling the scheduling issue with different objectives simultaneously, such as response time, total

cost, and system reliability optimization. So far, hybrid PSO-GA model has not been applied in this

manner to solve this type of problem to handle all these objectives simultaneously. Throughout this

article, two algorithms have been developed: HPSOGAK, a combination of PSO, GA, and k-means

for task-cluster formation to minimize TITC , and GA for allocation of tasks to processors to minimize

total CS, RT and maximize RS of the system. The following are the essential contributions of this work:

(i) In this study, a scheduling mechanism based on the evolutionary algorithms PSO and GA is

designed to deal with the real-life applications.

(ii) PSO is employed in this study as it is the best approach for all size problems, and PSO and

GA are integrated to enhance traditional PSO's functionality and address its primary shortcomings.

(iii) By providing new encoding, population initialization, new crossover and mutation approaches,

the convergence rate of GA is improved.

(iv) Both crisp and fuzzy times can be used with the model presented in heterogeneous system.

(v) Numerous real-world problems have been solved in order to compare the proposed model's

performance to that of existing methods.

(vi) In terms of PIR %, RT, CS, RS, efficiency, and resource utilization, the accuracy of the

presented model is examined. In all of these, as discussed in the comparison section, the proposed

technique delivers superior results when compared to different meta-heuristics and traditional

algorithms.

(vii) Friedman's test is applied to statistically evaluate the quality of results.

(viii) The run time complexity of various existing techniques, including those by Elsadek and

Wells [86], Kumar et al. [19], Kumar and Tyagi [39], are O (r2+m2+r2m), O (r2+rm) and O

(rm+m2+m) respectively. Whereas the proposed technique’s run time complexity is O (m2 +rm),

which is lower than that of existing approaches, when (r>m).

(ix) In DRTS, the described model is applicable any number of jobs/tasks and processors.

Implementation results demonstrate that the developed model is more effective than existing

methods. From the obtained results, it can be concluded that proposed approach is suitable to deal with

the issues of tasks scheduling. According to these results, the proposed technique is a worthwhile

substitute for resolving the task allocation issue but the given model also has some limitations. The

PSO can easily fall into the local optimum because of its slow convergence rate during the iterative

procedure. Consequently, the HPSOGAK algorithm also has certain limitations. In future study we

shall address the comparison of the algorithm’s performance using both fuzzy and crisp times.

Specifically, case studies will be conducted to compare the same tasks and processors with and without

defuzzification applied. This approach will help to further evaluate the robustness and versatility of

600

Mathematics in Engineering Volume 6, Issue 4, 559–606.

the algorithm, enhancing the comprehensiveness of the findings. Additionally, the advantages of

various algorithms, such as DE algorithm, WOA, and GWO, will be utilized for further algorithm

enhancement. By employing these techniques, the algorithm’s overall scheduling performance can be

improved. To continually enhance the task assignment strategy, the task scheduling policy in the

dynamic environment of the DRTS will be considered, and the implications of PSO parameters and

local search techniques on the system's overall performance will be examined.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this

article.

Acknowledgments

The authors are grateful to the Editor-in-Chief, associate editor, and learned reviewers for their

critical comments and valuable suggestions, which led to a fine version of the manuscript.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. R. Mall, Real-time systems: theory and practice, Pearson Education India, 3 Eds., 2009.

2. H. Jin, P. Tan, A novel dynamic allocation and scheduling scheme with CPNA and FCF algorithms

in distributed real-time systems, 11th International Conference on Parallel and Distributed

Systems (ICPADS'05), 1 (2005), 550–556. https://doi.org/10.1109/ICPADS.2005.38

3. Y. Singh, M. Popli, S. S. P. Shukla, Energy reduction in weakly hard real time systems, 2012 1st

International Conference on Recent Advances in Information Technology (RAIT), 2012, 909–915.

https://doi.org/10.1109/RAIT.2012.6194555

4. V. Jeyakrishnan, P. Sengottuvelan, A hybrid strategy for resource allocation and load balancing in

virtualized data centers using BSO algorithms, Wireless Pers. Commun., 94 (2017), 2363–2375.

https://doi.org/10.1007/s11277-016-3481-8

5. V. M. A. Xavier, S. Annadurai, Chaotic social spider algorithm for load balance aware task

scheduling in cloud computing, Cluster Comput., 22 (2019), 287–297.

https://doi.org/10.1007/s10586-018-1823-x

6. X. Huang, C. Li, H. Chen, D. An, Task scheduling in cloud computing using particle swarm

optimization with time varying inertia weight strategies, Cluster Comput., 23 (2020), 1137–1147.

https://doi.org/10.1007/s10586-019-02983-5

7. L. Abualigah, M. A. Elaziz, P. Sumari, Z. W. Geem, A. H. Gandomi, Reptile search algorithm

(RSA): a nature-inspired meta-heuristic optimizer, Expert Syst. Appl., 191 (2022), 116158.

https://doi.org/10.1016/j.eswa.2021.116158

8. R. I. Davis, A. Burns, A survey of hard real-time scheduling for multiprocessor systems, ACM

Comput. Surv. (CSUR), 43 (2011), 1–44. https://doi.org/10.1145/1978802.1978814

https://doi.org/10.1109/ICPADS.2005.38
https://doi.org/10.1109/RAIT.2012.6194555
https://doi.org/10.1007/s11277-016-3481-8
https://doi.org/10.1007/s10586-018-1823-x
https://doi.org/10.1007/s10586-019-02983-5
https://doi.org/10.1016/j.eswa.2021.116158
https://doi.org/10.1145/1978802.1978814

601

Mathematics in Engineering Volume 6, Issue 4, 559–606.

9. Y. Zhang, A. Sivasubramaniam, J. Moreira, H. Franke, Impact of workload and system parameters

on next generation cluster scheduling mechanisms, IEEE Trans. Parall. Distr. Syst., 12 (2001),

967–985. https://doi.org/10.1109/71.954632

10. H. Casanova, A. Legrand, D. Zagorodnov, F. Berman, Heuristics for scheduling parameter sweep

applications in grid environments, Proceedings 9th Heterogeneous Computing Workshop (HCW

2000), 2000, 349–363. https://doi.org/10.1109/HCW.2000.843757

11. J. Kennedy, R. C. Eberhart, Particle swarm optimization, Proceedings 9th Heterogeneous

Computing Workshop (HCW 2000), 4 (1995), 1942–1948.

https://doi.org/10.1109/ICNN.1995.488968

12. D. E. Goldberg, Genetic algorithm in search, optimization and machine learning, Boston:

Addison-Wesley Longman Publishing Co., Inc., 1989.

13. Z. Wu, X. Liu, Z. Ni, D. Yuan, Y. Yang, A market-oriented hierarchical scheduling strategy in

cloud workflow systems, J. Supercomput., 63 (2011), 256–293. https://doi.org/10.1007/s11227-

011-0578-4

14. M. Naderam, M. Dehgham, H. Pedram, Upper and lower bounds for dynamic cluster assignment

for multi-agent tracking in heterogeneous WSNs, J. Parall. Distr. Com., 73 (2012), 1389–1399.

https://doi.org/10.1016/j.jpdc.2013.04.007

15. L. Wang, S. U. Khan, D. Chen, J. Kolodziej, R. Ranian, C. Z. Xu, et al., Energy-aware parallel

task scheduling in a cluster, Future Gener. Comp. Sy., 29 (2013), 1661–1670.

https://doi.org/10.1016/j.future.2013.02.010

16. B. Tripathy, S. Dash, S. K. Padhy, Dynamic task scheduling using a directed neural network, J.

Parall. Distr. Com., 75 (2015), 101–106. https://doi.org/10.1016/j.jpdc.2014.09.015

17. Y. Xiao, Z. Ren, H. Zhang, C. Chen, C. Shi, A novel task allocation for maximizing reliability

considering fault-tolerant in VANET real time systems, 2017 IEEE 28th Annual International

Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017, 1–7.

https://doi.org/10.1109/PIMRC.2017.8292511

18. P. Neamatollahi, S. Abrishami, M. Naghibzadeh, M. H. Y. Moghaddam, O. Younis, Hierarchical

clustering-task scheduling policy in cluster-based wireless sensor networks, IEEE Trans. Ind.

Inform., 14 (2018), 1876–1886. https://doi.org/10.1109/TII.2017.2757606

19. H. Kumar, N. K. Chauhan, P. K. Yadav, A high performance model for task allocation in

distributed computing system using k-means clustering technique, In: Research anthology on

architectures, frameworks, and integration strategies for distributed and cloud computing, 9

(2021), 1244–1268. https://doi.org/10.4018/978-1-7998-5339-8.ch060

20. T. K. Dao, T. S. Pan, T. T. Nguyen, J. S. Pan, Parallel bat algorithm for optimizing makespan in

job shop scheduling problems, J. Intell. Manuf., 29 (2018), 451–462.

https://doi.org/10.1007/s10845-015-1121-x

21. H. Kumar, I. Tyagi, Implementation and comparative analysis of k-means and fuzzy c-means

clustering algorithms for tasks allocation distributed real time system, Int. J. Embedded Real-Time

Commun. Syst., 10 (2019), 66–86. https://doi.org/10.4018/IJERTCS.2019040105

22. A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. Chen, Harris Hawks optimization:

algorithm and applications, Future Gene. Comput. Syst., 97 (2019), 849–872.

https://doi.org/10.1016/j.future.2019.02.028

https://doi.org/10.1109/71.954632
https://doi.org/10.1109/HCW.2000.843757
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1007/s11227-011-0578-4
https://doi.org/10.1007/s11227-011-0578-4
https://doi.org/10.1016/j.jpdc.2013.04.007
https://doi.org/10.1016/j.future.2013.02.010
https://doi.org/10.1016/j.jpdc.2014.09.015
https://doi.org/10.1109/PIMRC.2017.8292511
https://doi.org/10.1109/TII.2017.2757606
https://doi.org/10.4018/978-1-7998-5339-8.ch060
https://doi.org/10.1007/s10845-015-1121-x
https://doi.org/10.4018/IJERTCS.2019040105
https://doi.org/10.1016/j.future.2019.02.028

602

Mathematics in Engineering Volume 6, Issue 4, 559–606.

23. F. Alkhateeb, B. H. Abed-alguni, A hybrid cuckoo search and simulated annealing algorithm, J.

Intell. Syst., 28 (2019), 683–898. https://doi.org/10.1515/jisys-2017-0268

24. E. B. Tirkolaee, A. Goli, G. W. Weber, Fuzzy mathematical programming and self-adaptive

artificial fish swarm algorithm for just-in-time energy-aware flow shop scheduling problem with

outsourcing option, IEEE Trans. Fuzzy Syst., 28 (2020), 2772–2783.

https://doi.org/10.1109/TFUZZ.2020.2998174

25. H. Kanemitsu, M. Hanada, H. Nakazato, Clustering-based task scheduling in a large number of

heterogeneous processors, IEEE Trans. Parall. Distr. Syst., 27 (2016), 3144–3157.

https://doi.org/10.1109/TPDS.2016.2526682

26. K. Mishra, S. K. Majhi, A binary bird swarm optimization based load balancing algorithm for

cloud computing environment, Open Comput. Sci., 11 (2021), 146–160.

https://doi.org/10.1515/comp-2020-0215

27. N. A. Alawad, B. H. Abed-alguni, Discrete Jaya with refraction learning and three mutation

methods for the permutation flow shop scheduling problem, J. Supercomput., 78 (2022), 3517–

3538. https://doi.org/10.1007/s11227-021-03998-9

28. M. Haris, S. Zubair, Mantaray modified multi-objective Harris hawk optimization algorithm

expedites optimal load balancing in cloud computing, J. King Sau. Univ.-Comput. Inf. Sci., 34

(2022), 9696–9709. https://doi.org/10.1016/j.jksuci.2021.12.003

29. M. Agarwal, G. M. S. Srivastava, Genetic algorithm-enabled particle swarm optimization

(PSOGA)-based task scheduling in cloud computing environment, Int. J. Inf. Tech. Dec. Making,

17 (2018), 1237–1267. https://doi.org/10.1142/S0219622018500244

30. Y. Kang, H. Lu, J. He, A PSO-based genetic algorithm for scheduling of tasks in a heterogeneous

distributed system, J. Soft., 8 (2013), 1443–1450. https://doi.org/10.4304/jsw.8.6.1443-1450

31. A. K. Samal, R. Mall, C. Tripathy, Fault tolerant scheduling of hard real-time tasks on

multiprocessor system using a hybrid genetic algorithm, Swarm Evol. Comput., 14 (2014), 92–

105. https://doi.org/10.1016/j.swevo.2013.10.002

32. I. R. K. Raju, P. S. Varma, M. V. R. Sundari, G. J. Moses, Deadline aware two stage scheduling

algorithm in cloud computing, Indian J. Sci. Tech., 9 (2016), 1–10.

https://doi.org/10.17485/ijst/2016/v9i4/80553

33. M. Mutingi, C. Mbohwa, Modeling supplier selection using multi-criterion fuzzy grouping

genetic algorithm, In: Grouping genetic algorithms: studies in computational intelligence, Cham:

Springer, 666 (2017), 213–228. https://doi.org/10.1007/978-3-319-44394-2_12

34. Z. Zhou, J. Chang, Z. Hu, J. Yu, F. Li, A modified PSO algorithm for task scheduling optimization

in cloud computing, Concur. Comput.: Pract. Exper., 30 (2018), e4970.

https://doi.org/10.1002/cpe.4970

35. J. Luan, Z. Yao, F. Zhao, X. Song, A novel method to solve supplier selection problem: Hybrid

algorithm of genetic algorithm and ant colony optimization, Math. Comput. Simul., 156 (2018),

294–309. https://doi.org/10.1016/j.matcom.2018.08.011

36. L. Tang, X. Zhang, Z. Li, Y. Zhang, A new hybrid task scheduling algorithm designed based on

ACO and GA, J. Inf. Hiding Multim. Signal. Process., 9 (2018), 1585–1594.

37. J. P. B. Mapetu, Z. Chen, L. Kong, Low-time complexity and low-cost binary particle swarm

optimization algorithm for task scheduling and load balancing in cloud computing, Appl. Intell.,

49 (2019), 3308–3330. https://doi.org/10.1007/s10489-019-01448-x

https://doi.org/10.1515/jisys-2017-0268
https://doi.org/10.1109/TFUZZ.2020.2998174
https://doi.org/10.1109/TPDS.2016.2526682
https://doi.org/10.1515/comp-2020-0215
https://doi.org/10.1007/s11227-021-03998-9
https://doi.org/10.1016/j.jksuci.2021.12.003
https://doi.org/10.1142/S0219622018500244
https://doi.org/10.4304/jsw.8.6.1443-1450
https://doi.org/10.1016/j.swevo.2013.10.002
https://doi.org/10.17485/ijst/2016/v9i4/80553
https://doi.org/10.1007/978-3-319-44394-2_12
https://doi.org/10.1002/cpe.4970
https://doi.org/10.1016/j.matcom.2018.08.011
https://doi.org/10.1007/s10489-019-01448-x

603

Mathematics in Engineering Volume 6, Issue 4, 559–606.

38. H. Kumar, N. K. Chauhan, P. K. Yadav, Hybrid genetic algorithm for task scheduling in distributed

real-time system, Inter. J. Syst., Cont., Commun., 10 (2019), 32–52.

https://doi.org/10.1504/IJSCC.2019.097417

39. H. Kumar, I. Tyagi, Hybrid model for tasks scheduling in distributed real time system, J. Ambient

Intell. Human Comput., 12 (2021), 2881–2903. https://doi.org/10.1007/s12652-020-02445-6

40. S. Devi, D. Garg, Hybrid genetic and particle swarm algorithm: redundancy allocation problem, Int.

J. Syst. Assur. Eng. Manag., 11 (2020), 313–319. https://doi.org/10.1007/s13198-019-00858-x

41. M. Agarwal, G. M. S. Srivastava, Opposition-based learning inspired particle swarm optimization

(OPSO) scheme for task scheduling problem in cloud computing, J. Ambient Intell. Human.

Comput., 12 (2020), 9855–9875. https://doi.org/10.1007/s12652-020-02730-4

42. H. Zhang, F. Liu, Y. Zhou, Z. Zhang, A hybrid method integrating an elite genetic algorithm with

tabu search for the quadratic assignment problem, Inf. Sci., 539 (2020), 347–374.

https://doi.org/10.1016/j.ins.2020.06.036

43. N. K. Chauhan, I. Tyagi, H. Kumar, D. Sharma, Tasks scheduling through hybrid genetic

algorithm in real‑time system on heterogeneous environment, SN Comput. Sci., 3 (2022), 75.

https://doi.org/10.1007/s42979-021-00959-0

44. A. Amirteimoori, I. Mahdavi, M. Solimanpur, S. S. Ali, E. B. Tirkolaee, A parallel hybrid PSO-

GA algorithm for the flexible flow-shop scheduling with transportation, Comput. Ind. Eng., 173

(2022), 108672. https://doi.org/10.1016/j.cie.2022.108672

45. Karishma, H. Kumar, A new hybrid particle swarm optimization algorithm for optimal tasks

scheduling in distributed computing system, Intell. Syst. Appl., 18 (2023), 200219.

https://doi.org/10.1016/j.iswa.2023.200219

46. G. Attiya, Y. Hamam, Task allocation for maximizing reliability of distributed systems: a

simulating annealing approach, J. Parallel Distr. Com., 66 (2006), 1259–1266.

https://doi.org/10.1016/j.jpdc.2006.06.006

47. M. Jiang, J. Zhou, M. Hu, Fuzzy reliability analysis of disk array systems, 2007 Chinese Control

Conference, 2007, 314–317. https://doi.org/10.1109/CHICC.2006.4347012

48. Q. M. Kang, H. He, H. M. Song, R. Deng, Task allocation for maximizing reliability of distributed

computing systems using honeybee mating optimization, J. Syst. Soft., 83 (2010), 2165–2174.

https://doi.org/10.1016/j.jss.2010.06.024

49. S. S. Donight, S. Khanmohammadi, A fuzzy reliability model for series-parallel system, J. Ind.

Eng. Int., 7 (2011), 10–18.

50. K. Noori, K. Jenab, Fuzzy reliability-based traction control model for intelligent transportation

systems, IEEE Trans. Syst. Man Cybern.: syst., 43 (2012), 229–234.

https://doi.org/10.1109/TSMCA.2012.2204047

51. L. Cederholm, N. Petterson, Distributed real time system survey, Sweden: Mälardalen University,

2009.

52. J. Li, R. Guo, Z. Shao, The research of scheduling algorithm in real-time system, 2010

International Conference on Computer and Communication Technologies in Agriculture

Engineering, 2010, 333–336. https://doi.org/10.1109/CCTAE.2010.5544771

53. Y. Li, A. M. K. Cheng, Transparent real-time task scheduling on temporal resource partitions,

IEEE Trans. Comput., 65 (2015), 1646–1655. https://doi.org/10.1109/TC.2015.2449857

https://doi.org/10.1504/IJSCC.2019.097417
https://doi.org/10.1007/s12652-020-02445-6
https://doi.org/10.1007/s13198-019-00858-x
https://doi.org/10.1007/s12652-020-02730-4
https://doi.org/10.1016/j.ins.2020.06.036
https://doi.org/10.1007/s42979-021-00959-0
https://doi.org/10.1016/j.cie.2022.108672
https://doi.org/10.1016/j.iswa.2023.200219
https://doi.org/10.1016/j.jpdc.2006.06.006
https://doi.org/10.1109/CHICC.2006.4347012
https://doi.org/10.1016/j.jss.2010.06.024
https://doi.org/10.1109/TSMCA.2012.2204047
https://doi.org/10.1109/CCTAE.2010.5544771
https://doi.org/10.1109/TC.2015.2449857

604

Mathematics in Engineering Volume 6, Issue 4, 559–606.

54. S. A. Narale, P. K. Butey, Throttled load balancing scheduling policy assist to reduce grand total

cost and data center processing time in cloud environment using cloud analyst, 2018 Second

International Conference on Inventive Communication and Computational Technologies

(ICICCT), 2018, 1464–1467. https://doi.org/10.1109/ICICCT.2018.8473062

55. M. Adhikari, S. Nandy, T. Amgoth, Meta heuristic-based task deployment mechanism for load

balancing in IaaS cloud, J. Netw. Comput. Appl., 128 (2019), 64–77.

https://doi.org/10.1016/j.jnca.2018.12.010

56. G. Li, Z. Wu, Ant colony optimization task scheduling algorithm for SWIM based on load

balancing, Future Internet, 11 (2019), 90. https://doi.org/10.3390/fi11040090

57. Z. Shao, D. Pi, W. Shao, Hybrid enhanced discrete fruit fly optimization algorithm for scheduling

blocking flow-shop in distributed environment, Expert Syst. Appl., 145 (2020).

https://doi.org/10.1016/j.eswa.2019.113147

58. P. Hosseinioun, M. Kheirabadi, S. R. K. Tabbakh, R. Ghaemi, A new energy-aware tasks

scheduling approach in fog computing using hybrid meta-heuristic algorithm, J. Parallel. Distr.

Com., 143 (2020), 88–96. https://doi.org/10.1016/j.jpdc.2020.04.008

59. S. Negi, M. M. S. Rauthan, K. S. Vaisla, N. Panwar, CMODLB: an efficient load balancing

approach in cloud computing environment. J. Supercomp., 77 (2021), 8787–8839.

https://doi.org/10.1007/s11227-020-03601-7

60. G. A. P. Princess, A. S. Radhamani, A hybrid meta-heuristic for optimal load balancing in cloud

computing, J. Grid Comput., 19 (2021), 21. https://doi.org/10.1007/s10723-021-09560-4

61. S. M. Shatz, J. P. Wang, M. Goto, Task allocation for maximizing reliability of distributed

computing system, IEEE Trans. Comput., 41 (1992), 1156–1168.

https://doi.org/10.1109/12.165396

62. D. M. Abdelkader, F. Omara, Dynamic task scheduling algorithm with load balancing for

heterogeneous computing system, Egypt. Inform. J., 13 (2012), 135–145.

https://doi.org/10.1016/j.eij.2012.04.001

63. H. Djigal, J. Feng, J. Lu, Task scheduling for heterogeneous computing using a predict cost matrix,

ICPP Workshops '19: Workshop Proceedings of the 48th International Conference on Parallel

Processing, 2019, 1–10. https://doi.org/10.1145/3339186.3339206

64. H. Kumar, M. P. Singh, P. K. Yadav, A tasks allocation model with fuzzy execution and fuzzy

inter-tasks communication times in a distributed computing system, Int. J. Comput. Appl., 72

(2013), 24–31.

65. M. Sharma, H. Kumar, D. Garg, An optimal task allocation model through clustering with inter-

processor distances in heterogeneous distributed computing systems, Int. J. Soft Comput. Eng.

(IJSCE), 2 (2012), 50–55.

66. E. Ilavarasan, P. Thambidurai, R. Mahilmannan, High performance task scheduling algorithm for

heterogeneous computing system, In: M. Hobbs, A. M. Goscinski, W. Zhou, Distributed and

parallel computing. ICA3PP 2005, Lecture Notes in Computer Science, Springe, 3719 (2005),

193–203. https://doi.org/10.1007/11564621_22

67. H. Kumar, I. Tyagi, A new hybrid optimization technique for scheduling of periodic and non-

periodic tasks, Augment Hum. Res., 6 (2021), 11. https://doi.org/10.1007/s41133-021-00049-z

https://doi.org/10.1109/ICICCT.2018.8473062
https://doi.org/10.1016/j.jnca.2018.12.010
https://doi.org/10.3390/fi11040090
https://doi.org/10.1016/j.eswa.2019.113147
https://doi.org/10.1016/j.jpdc.2020.04.008
https://doi.org/10.1007/s11227-020-03601-7
https://doi.org/10.1007/s10723-021-09560-4
https://doi.org/10.1109/12.165396
https://doi.org/10.1109/12.165396
https://doi.org/10.1016/j.eij.2012.04.001
https://doi.org/10.1145/3339186.3339206
https://doi.org/10.1007/11564621_22
https://doi.org/10.1007/s41133-021-00049-z

605

Mathematics in Engineering Volume 6, Issue 4, 559–606.

68. H. Topcuoglu, S. Hariri, M. Y. Wu, Performance-effective and low complexity task scheduling for

heterogeneous computing, IEEE Trans. Parallel Distr. Syst., 13 (2002), 260–274.

https://doi.org/10.1109/71.993206

69. Y. Dai, X. Zhang, A synthesized heuristic task scheduling algorithm, Sci. World J., 2014 (2014),

465702. https://doi.org/10.1155/2014/465702

70. P. K. Yadav, M. P. Singh, K. Sharma, Task allocation model for reliability and cost optimization

in distributed computing system, Int. J. Model. Simul. Sci. Comput., 2 (2011), 131–149.

https://doi.org/10.1142/S179396231100044X

71. M. I. Daoud, N. Kharma, A high performance algorithm for static task scheduling in

heterogeneous distributed computing systems, J. Parallel Distr. Comput., 68 (2008), 399–409.

https://doi.org/10.1016/j.jpdc.2007.05.015

72. A. Khandelwal, Optimal execution cost of distributed system: through clustering, Int. J. Eng. Sci.

Tech., 3 (2011), 2320–2328.

73. K. Govil, A. Kumar, A modified and efficient algorithm for static task assignment in distributed

processing environment, Int. J. Comput. Appl., 23 (2011), 1–5.

74. P. K. Yadav, P. P. Singh, P. Pradhan, A task allocation algorithm for optimum utilization of

processor in heterogeneous distributed system, Int. J. Res. Rev. Eng. Sci. Tech., 2 (2013), 153–

160.

75. M. Kafil, I. Ahmad, Optimal task assignment in heterogeneous distributed computing systems,

IEEE Concurrency, 6 (1998), 42–50. https://doi.org/10.1109/4434.708255

76. A. Kumar, P. K. Yadav, Task management algorithm for distributed system, The 15th International

Conference of International Academy of Physical Sciences, 2014.

77. V. M. Lo, Heuristic algorithms for task assignment in distributed system, IEEE Trans. Comput.,

37 (1988), 1384–1397. https://doi.org/10.1109/12.8704

78. U. Kaushal, A. Kumar, Improving the performance of DRTS by optimal allocation of multiple

tasks under dynamic load sharing scheme, Int. J. Sci. Eng. Res., 4 (2013), 1316–1321.

79. Y. Kopiddakis, M. Lamari, V. Zissimopoulos, On the task assignment problem: two new heuristic

algorithms, J. Parallel Dist. Comput., 42 (1997), 21–29. https://doi.org/10.1006/jpdc.1997.1311

80. M. Akbari, H. Rashidi, A multi objectives scheduling algorithm based on cuckoo optimization for

task allocation problem at compile time in heterogeneous systems, Expert Syst. Appl., 60 (2016),

234–248. https://doi.org/10.1016/j.eswa.2016.05.014

81. L. F. Bittencourt, R. Sakellariou, E. R. M. Madeira, DAG scheduling using a lookahead variant

of the heterogeneous earliest finish time algorithm, 2010 18th Euromicro Conference on Parallel,

Distributed and Network-based Processing, 2010, 27–34. https://doi.org/10.1109/PDP.2010.56

82. P. K. Yadav, M. P. Singh, A. Kumar, B. Agarwal, An efficient tasks scheduling model in distributed

processing systems using ANN, Int. J. Circuits Syst., 1 (2011), 53–66.

83. P. K. Yadav, P. Pradhan, P. P. Singh, A fuzzy clustering method to minimize the inter task

communication effect for optimal utilization of processor’s capacity in distributed real time

systems, In: K. Deep, A. Nagar, M. Pant, J. Bansal, Proceedings of the International Conference

on Soft Computing for Problem Solving (SocProS 2011) December 20–22, 2011, Advances in

Intelligent and Soft Computing, Springer, 130 (2012), 159–168. https://doi.org/10.1007/978-81-

322-0487-9_16

https://doi.org/10.1109/71.993206
https://doi.org/10.1155/2014/465702
https://doi.org/10.1142/S179396231100044X
https://doi.org/10.1016/j.jpdc.2007.05.015
https://doi.org/10.1109/4434.708255
https://doi.org/10.1109/12.8704
https://doi.org/10.1006/jpdc.1997.1311
https://doi.org/10.1016/j.eswa.2016.05.014
https://doi.org/10.1109/PDP.2010.56
https://doi.org/10.1007/978-81-322-0487-9_16
https://doi.org/10.1007/978-81-322-0487-9_16

606

Mathematics in Engineering Volume 6, Issue 4, 559–606.

84. B. Ucar, C. Aykanat, K. Kaya, M. Ikinci, Task assignment in heterogeneous computing systems,

J. Parallel Dist. Comput., 66 (2006), 32–46. https://doi.org/10.1016/j.jpdc.2005.06.014

85. R. Gupta, P. K. Yadav, Task allocation model for balance utilization of available resource in

multiprocessor environment, J. Comput. Eng., 17 (2015), 94–99. https://doi.org/10.9790/0661-

17419499

86. A. A. Elsadek, B. E. Wells, A heuristic model for task allocation in heterogeneous distributed

computing system, Int. J. Comput. Appl., 6 (1999), 1–36.

© 2024 the author(s), licensee AIMS Press. This is an open access

article distributed under the terms of the Creative Commons

Attribution License (http://creativecommons.org/licenses/by/4.0)

https://doi.org/10.1016/j.jpdc.2005.06.014
https://doi.org/10.9790/0661-17419499
https://doi.org/10.9790/0661-17419499

