Research article Special Issues

Singular Kähler-Einstein metrics on $ \mathbb Q $-Fano compactifications of Lie groups

  • Received: 04 November 2021 Revised: 14 March 2022 Accepted: 21 March 2022 Published: 26 April 2022
  • In this paper, we prove an existence result for Kähler-Einstein metrics on $ \mathbb Q $-Fano compactifications of Lie groups by the variational method, provided their moment polytopes satisfy a fine condition. As an application, we prove that there is no $ \mathbb Q $-Fano $ {\rm SO}_4(\mathbb C) $-compactification which admits a Kähler-Einstein metric with the same volume as that of a smooth K-unstable Fano $ {\rm SO}_4(\mathbb C) $-compactification.

    Citation: Yan Li, Gang Tian, Xiaohua Zhu. Singular Kähler-Einstein metrics on $ \mathbb Q $-Fano compactifications of Lie groups[J]. Mathematics in Engineering, 2023, 5(2): 1-43. doi: 10.3934/mine.2023028

    Related Papers:

  • In this paper, we prove an existence result for Kähler-Einstein metrics on $ \mathbb Q $-Fano compactifications of Lie groups by the variational method, provided their moment polytopes satisfy a fine condition. As an application, we prove that there is no $ \mathbb Q $-Fano $ {\rm SO}_4(\mathbb C) $-compactification which admits a Kähler-Einstein metric with the same volume as that of a smooth K-unstable Fano $ {\rm SO}_4(\mathbb C) $-compactification.



    加载中


    [1] M. Abreu, Kähler metrics on toric orbifolds, J. Differential Geom., 58 (2001), 151–187. https://doi.org/10.4310/jdg/1090348285 doi: 10.4310/jdg/1090348285
    [2] A. D. Aleksandrov, Additive set-functions in abstract spaces, Matematicheski$\check{i}$ Sbornik, 50 (1940), 307–348.
    [3] V. A. Alexeev, M. Brion, Stable reductive varieties I: Affine varieties, Invent. Math., 157 (2004), 227–274. https://doi.org/10.1007/s00222-003-0347-y doi: 10.1007/s00222-003-0347-y
    [4] V. A. Alexeev, M. Brion, Stable reductive varieties II: Projective case, Adv. Math., 184 (2004), 382–408. https://doi.org/10.1016/S0001-8708(03)00164-6 doi: 10.1016/S0001-8708(03)00164-6
    [5] V. A. Alexeev, L. V. Katzarkov, On K-stability of reductive varieties, GAFA, Geom. Funct. Anal., 15 (2005), 297–310. https://doi.org/10.1007/s00039-005-0507-x doi: 10.1007/s00039-005-0507-x
    [6] H. Azad, J. J. Loeb, Plurisubharmonic functions and Kählerian metrics on complexification of symmetric spaces, Indagat. Math., 3 (1992), 385–390. https://doi.org/10.1016/0019-3577(92)90017-F doi: 10.1016/0019-3577(92)90017-F
    [7] R. Bamler, Convergence of Ricci flows with bounded scalar curvature, Ann. Math., 188 (2018), 753–831. https://doi.org/10.4007/annals.2018.188.3.2 doi: 10.4007/annals.2018.188.3.2
    [8] R. Berman, K-stability of $\mathbb Q$-Fano varieties admitting Kähler-Einstein metrics, Invent. Math., 203 (2015), 973–1025. https://doi.org/10.1007/s00222-015-0607-7 doi: 10.1007/s00222-015-0607-7
    [9] R. Berman, B. Berndtsson, Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, 22 (2013), 649–711. https://doi.org/10.5802/afst.1386 doi: 10.5802/afst.1386
    [10] R. Berman, S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi, Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties, J. Reine Angew. Math., 751 (2019), 27–89. https://doi.org/10.1515/crelle-2016-0033 doi: 10.1515/crelle-2016-0033
    [11] R. Berman, S. Boucksom, M. Jonsson, A variational approach to the Yau-Tian-Donaldson conjecture, J. Amer. Math. Soc., 34 (2021), 605–652. https://doi.org/10.1090/jams/964 doi: 10.1090/jams/964
    [12] B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry, Invent. Math., 200 (2015), 149–200. https://doi.org/10.1007/s00222-014-0532-1 doi: 10.1007/s00222-014-0532-1
    [13] S. Boucksom, T. Hisamoto, M. Jonsson, Uniform K-stability and asymptotics of energy functionals in Kähler geometry, J. Eur. Math. Soc., 21 (2019), 2905–2944. https://doi.org/10.4171/JEMS/894 doi: 10.4171/JEMS/894
    [14] M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke. Math. J., 58 (1989), 397–424. https://doi.org/10.1215/S0012-7094-89-05818-3 doi: 10.1215/S0012-7094-89-05818-3
    [15] M. Brion, Curves and divisors in spherical varieties, In: Algebraic groups and Lie groups, Cambridge Univ. Press, 1997, 21–34.
    [16] X.-X. Chen, B. Wang, Space of Ricci flows (II)–Part B: Weak compactness of the flows. J. Differential Geom., 116 (2020), 1–123. https://doi.org/10.4310/jdg/1599271253
    [17] D. Coman, V. Guedj, S. Sahin, A. Zeriahi, Toric pluripotential theory, Ann. Pol. Math., 123 (2019), 215–242. https://doi.org/10.4064/ap180409-3-7 doi: 10.4064/ap180409-3-7
    [18] T. Darvas, The Mabuchi geometry of finite energy classes, Adv. Math., 285 (2015), 182–219. https://doi.org/10.1016/j.aim.2015.08.005 doi: 10.1016/j.aim.2015.08.005
    [19] T. Darvas, Y. Rubinstein, Tian's properness conjectures and Finsler geometry of the space of Kähler metrics, J. Amer. Math. Soc., 30 (2017), 347–387. https://doi.org/10.1090/jams/873 doi: 10.1090/jams/873
    [20] T. Delcroix. Kähler-Einstein metrics on group compactifications, Geom. Funct. Anal., 27 (2017), 78–129. https://doi.org/10.1007/s00039-017-0394-y
    [21] T. Delcroix, K-Stability of Fano spherical varieties, Ann Sci Éc Norm Supér., 53 (2020), 615–662. https://doi.org/10.24033/asens.2430
    [22] W.-Y. Ding, Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann., 282 (1988), 463–471. https://doi.org/10.1007/BF01460045 doi: 10.1007/BF01460045
    [23] W.-Y. Ding, G. Tian, Kähler-Einstein metrics and the generalized Futaki invariants, Invent. Math., 110 (1992), 315–335. https://doi.org/10.1007/BF01231335 doi: 10.1007/BF01231335
    [24] S. Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom., 62 (2002), 289–349. https://doi.org/10.4310/jdg/1090950195 doi: 10.4310/jdg/1090950195
    [25] S. Donaldson, Interior estimates for solutions of Abreu's equation, Collect. Math., 56 (2005), 103–142.
    [26] G. Gagliardi, J. Hofscheier, Gorenstein spherical Fano varieties, Geom. Dedicata, 178 (2015), 111–133. https://doi.org/10.1007/s10711-015-0047-y doi: 10.1007/s10711-015-0047-y
    [27] R. J. Gardner, The Brunn-Minkowski inequality, Bull. Amer. Math. Soc., 39 (2002), 355–405. https://doi.org/10.1090/S0273-0979-02-00941-2 doi: 10.1090/S0273-0979-02-00941-2
    [28] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, New York-London: Academic Press, Inc., 1978. http://dx.doi.org/10.1090/gsm/034
    [29] T. Hisamoto, Stability and coercivity for toric polarizations, arXiv: 1610.07998v3.
    [30] A. W. Knapp, Representation theory of semisimple groups, Princeton, NJ: Princeton Univ. Press, 1986. http://dx.doi.org/10.1515/9781400883974
    [31] A. W. Knapp, Lie groups beyond an introduction, Boston: Birkhäuser, 2002. http://dx.doi.org/10.1007/978-1-4757-2453-0
    [32] C. Li, $G$-uniform stability and Kähler-Einstein metrics on Fano varieties, Invent. Math., 227 (2022), 661–744. http://dx.doi.org/10.1007/s00222-021-01075-9 doi: 10.1007/s00222-021-01075-9
    [33] C. Li, G. Tian, F. Wang, On Yau-Tian-Donaldson conjecture for singular Fano varieties, Commun. Pure Appl. Math., 74 (2021), 1748–1800. http://dx.doi.org/10.1002/cpa.21936 doi: 10.1002/cpa.21936
    [34] C. Li, G. Tian, F. Wang, The uniform version of Yau-Tian-Donaldson conjecture for singular Fano varieties, Peking Math. J., in press. http://dx.doi.org/10.1007/s42543-021-00039-5
    [35] Y. Li, Z.-Y. Li, Equivariant $\mathbb R$-test configurations and semistable limits of $\mathbb Q$-Fano group compactifications, arXiv: 2103.06439.
    [36] Y. Li, B. Zhou, X.-H. Zhu, K-energy on polarized compactifications of Lie groups, J. Funct. Anal., 275 (2018), 1023–1072. http://dx.doi.org/10.1016/j.jfa.2018.04.009 doi: 10.1016/j.jfa.2018.04.009
    [37] Y. Li, B. Zhou, Mabuchi metrics and properness of modified Ding functional, Pac. J. Math., 302 (2019), 659–692. http://dx.doi.org/10.2140/pjm.2019.302.659 doi: 10.2140/pjm.2019.302.659
    [38] Y. Li, G. Tian, X.-H. Zhu, Singular limits of Kähler-Ricci flow on Fano $G$-manifolds, arXiv: 1807.09167.
    [39] Y. Li, X.-H. Zhu, Tian's $\alpha_{m, k}^{\hat K}$-invariants on group compactifications, Math. Z., 298 (2021), 231–259. https://doi.org/10.1007/s00209-020-02591-9 doi: 10.1007/s00209-020-02591-9
    [40] S. Paul, Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics, Ann. Math., 175 (2012), 255–296. http://dx.doi.org/10.4007/annals.2012.175.1.7 doi: 10.4007/annals.2012.175.1.7
    [41] A. Ruzzi, Fano symmetric varieties with low rank, Publ. Res. Inst. Math. Sci., 48 (2012), 235–278. http://dx.doi.org/10.2977/PRIMS/69 doi: 10.2977/PRIMS/69
    [42] Y.-L. Shi, X.-H. Zhu, Kähler-Ricci solitons on toric Fano orbifolds, Math. Z., 271 (2012), 1241–1251. http://dx.doi.org/10.1007/s00209-011-0913-8 doi: 10.1007/s00209-011-0913-8
    [43] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C_1(M)>0$, Invent. Math., 89 (1987), 225–246. https://doi.org/10.1007/BF01389077 doi: 10.1007/BF01389077
    [44] G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math., 130 (1997), 1–37. https://doi.org/10.1007/s002220050176 doi: 10.1007/s002220050176
    [45] G. Tian, K-stability implies CM-stability, In: Geometry, analysis and probability, Cham: Birkhäuser, 2017,245-261. http://dx.doi.org/10.1007/978-3-319-49638-2_11
    [46] G. Tian, K-stability and Kähler-Einstein metrics, Commun. Pure Appl. Math., 68 (2015), 1085–1156. https://doi.org/10.1002/cpa.21578 doi: 10.1002/cpa.21578
    [47] D. A. Timashëv, Equivariant compactification of reductive groups, Mat. Sb., 194 (2003), 119–146. https://doi.org/10.4213/sm731 doi: 10.4213/sm731
    [48] F. Wang, X.-H. Zhu, Tian's partial $C^0$-estimate implies Hamilton-Tian's conjecture, Adv. Math., 381 (2021), 107619. http://dx.doi.org/10.1016/j.aim.2021.107619 doi: 10.1016/j.aim.2021.107619
    [49] B. Zhou, X.-H. Zhu, Minimizing weak solutions for Calabi's extremal metrics on toric manifolds, Calc. Var., 32 (2008), 191–217. http://dx.doi.org/10.1007/s00526-007-0136-3 doi: 10.1007/s00526-007-0136-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2101) PDF downloads(275) Cited by(5)

Article outline

Figures and Tables

Figures(9)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog