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1. Introduction

Let G be an n-dimensional connected, linear complex reductive Lie group which is the
complexification of a compact Lie group K. Let T be a maximal torus of K, which has dimension
r and Lie algebra t. Then TC is a maximal complex torus of G. Denote by Φ+ a chosen positive roots
system associated to TC. Put

ρ =
1
2

∑
α∈Φ+

α. (1.1)
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It can be regarded as a character in a∗, where a∗ is the dual space of the non-compact part a =
√
−1t of

tC. Let π be a function on a∗ defined by

π(y) =
∏
α∈Φ+

〈α, y〉2, y ∈ a∗,

where 〈·, ·〉 ∗ denotes the Cartan-Killing inner product on a∗.
Let M be a Q-Fano G-compactification (cf. [4]). Denote by Z the closure of TC in M. Then

(Z,−KM |Z) is a polarized toric variety. Hence there is an associated moment polytope P of (Z,−KM |Z)
induced by (M,−KM) [3, 4]. Let P+ be the positive part of P defined by P+ = P ∩ a∗+, where

a+ = {y ∈ a∗|〈α, y〉 > 0, ∀ α ∈ Φ+}

is the positive Weyl chamber in a∗ defined by Φ+. Denote by 2P+ a dilation of P+ at rate 2. We define
the barycenter of 2P+ with respect to the weighted measure π(y)dy by

bar(2P+) =

∫
2P+

yπ(y) dy∫
2P+

π(y) dy
.

In [20], Delcroix proved the following existence theorem for Kähler-Einstein metrics on smooth
Fano G-compactifications.

Theorem 1.1. Let M be a smooth Fano G-compactification. Then M admits a Kähler-Einstein metric
if and only if

bar(2P+) ∈ 4ρ + Ξ, (1.2)

where Ξ is the relative interior of the cone generated by Φ+.

There is an alternative proof of Theorem 1.1 given by Li, Zhou and Zhu via the variation
method [36]. They also showed that (1.2) is actually equivalent to the K-stability condition in terms
of [44] and [24] by constructing C∗-action through piecewisely rationally linear function which is
invariant under the Weyl group action. In particular, it implies that M is K-unstable if bar(2P+) <
4ρ + Ξ. A more general construction of C∗-action was also discussed in [21].

In the present paper, we extend the above theorem to Q-Fano compactifications of G which may
be singular. It is well known that any Q-Fano G-compactification has klt-singularities [4, Section 5].
For a Q-Fano variety M with klt-singularities, there is naturally a class of admissible Kähler metrics
induced by the Fubini-Study metric (cf. [23]). In [10], Berman, Boucksom, Eyssidieux, Guedj and
Zeriahi introduce a class of Kähler potentials associated to admissible Kähler metrics and refer it as
the E1(M,−KM) space. Then they define the singular Kähler-Einstein metric on M with the Kähler
potential in E1(M,−KM) via the complex Monge-Ampère equation, which is the usual Kähler-Einstein
metric on the smooth part of M. It is a natural problem to establish an extension of the Yau-Tian-
Donaldson conjecture we have solved for smooth Fano manifolds [44, 46], that is, an equivalence
relation between the existence of such singular Kähler-Einstein metrics and the K-stability on a Q-
Fano variety M with klt-singularities. Actually, there are many recent works on this fundamental
problem in terms of uniform K-stability. We refer the reader to [10, 11, 32–34], etc..

We assume that the associated polytope P of (Z,K−1
M |Z) is fine in sense of [25], namely, each vertex

of P is the intersection of precisely r facets. Then we prove
∗Without of confusion, we also write it as α(y) for simplicity.
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Theorem 1.2. Let M be aQ-Fano G-compactification such that the associated polytope P is fine. Then
M admits a singular Kähler-Einstein metric if and only if (1.2) holds.

By a result of Abreu [1], the assumption that the polytope P being fine is equivalent to that the metric
induced by the Guillemin function can be extended to a Kähler orbifold metric on Z.† It follows that the
Guillemin function of 2P in Theorem 1.2 induces a K×K-invariant singular metric ω2P in E1(M,−KM)
(cf. Lemma 3.4). Moreover, we can prove that the Ricci potential of ω2P on M is uniformly bounded
above. We note that P is always fine when rank(G) = 2. Thus for a Q-Fano compactification of
G with rank(G) = 2, M admits a singular Kähler-Einstein metric if and only if (1.2) holds. As an
application of Theorem 1.2, we show that there is only one example of non-smooth Gorenstein Fano
SO4(C)-compactifications which admits a singular Kähler-Einstein metric (cf. Section 7.1).

On the other hand, it has been shown in [41] that there are only three smooth Fano compactifications
of SO4(C), i.e., Case-1.1.2, Case-1.2.1 and Case-2 in Section 7.1. The first two manifolds do not admit
any Kähler-Einstein metric [20, 36]. By Theorem 1.2, we further prove

Theorem 1.3. There is noQ-Fano compactification of SO4(C) which admits a singular Kähler-Einstein
metric with the same volume as Case-1.1.2 or Case-1.2.1 in Section 7.1.

Theorem 1.3 gives a partial answer to a question proposed in [38] about limit of Kähler-Ricci flow
on either Case-1.1.2 or Case-1.2.1. It has been proved there that the flow has type II singularities on
each of Case-1.1.2 and Case-1.2.1. By the Hamilton-Tian conjecture [7, 16, 44, 48], the limit should
be a singular Kähler-Ricci soliton on a Q-Fano variety with the same volume as that of initial metric.
However, by Theorem 1.3, the limit can not be a Q-Fano compactification of SO4(C) with a singular
Kähler-Einstein metric. This implies that the limiting soliton of flow on either Case-1.1.2 or Case-
1.2.1 will have less symmetric than the initial one, which is totally different from the situation of
smooth convergence of K × K-invariant metrics on a smooth compactification of Lie group [38].

As in [9, 36, 49], we use the variational method to prove Theorem 1.2. More precisely, we will
prove that a modified version of the Ding functional D(·) is proper under the condition (1.2). This
functional is defined for a class of convex functions E1

K×K(2P) associated to K × K-invariant metrics
on the orbit of G (cf. Section 4, 6). The key point is that the Ricci potential h0 of the Guillemin
metric ω2P is bounded from above when P is fine (cf. Proposition 5.1). This enables us to control
the nonlinear part F (·) of D(·) by modifying D(·) as done in [24, 37] (cf. Section 6.1). We shall note
that it is in general impossible to get a lower bound of h0 if the compactification is a singular variety
(cf. Remark 5.2). However, by a recent deep result of Li in [32], the additional fine condition in
Theorem 1.2 can be actually dropped. For the completeness, we will also improve the theorem at the
end of paper, Appendix 2.

The minimizer of D(·) corresponds to a singular Kähler-Einstein metric. We will prove the semi-
continuity ofD(·) and derive the Kähler-Einstein equation for the minimizer (cf. Proposition 6.6). Our
proof is similar with what Berman and Berndtsson studied on toric varieties in [9].

The proof of the necessity part of Theorem 1.2 is the same as one in Theorem 1.1. In fact, a Q-Fano
compactification of G is not K-polystable if (1.2) is not satisfied [36, Proposition 3.4] (also see [21]).
This will be a contradiction to the K-polystability of Q-Fano variety with a singular Kähler-Einstein
metric (cf. [8, 33]). We omit this part.

†It can not be guaranteed that the G–compactification is smooth even if Z is smooth, see an examples for G = S O2n+1(C) in [47,
Section 11].
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The organization of paper is as follows. In Section 2, we recall some notations in [10] for singular
Kähler-Einstein metrics on Q-Fano varieties. In Section 3, we introduce a subspace E1

K×K(M,−KM) of
E1(M,−KM) and prove that the Guillemin function lies in this space (cf. Lemma 3.4). In Section 4, we
prove that E1

K×K(M,−KM) is equivalent to a dual space E1
K×K(2P) of Legendre functions (cf. Theorem

4.2). In Section 5, we compute the Ricci potential h0 of ω2P and show that it is bounded from above
(cf. Proposition 5.1). The sufficient part of Theorem 1.2 will be proved in Section 6. In Section 7, we
construct many Q-Fano compactifications of S O4(C) and in particular, we will prove Theorem 1.3.

2. Preliminary on Q-Fano varieties

For a Q-Fano variety M, by Kodaira’s embedding, there is an integer ` > 0 such that we can embed
M into a projective space CPN by a basis of H0(M,K−`M ), for simplicity, we assume M ⊂ CPN and
K−`M = OCPN (1). Then we have a metric

ω0 =
1
`
ωFS |M ∈ 2πc1(M),

where ωFS is the Fubini-Study metric of CPN . Moreover, there is a Ricci potential h0 of ω0 such that

Ric(ω0) − ω0 =
√
−1∂∂̄h0, on Mreg.

In the case that M has only klt-singularities, eh0 is Lp-integrable for some p > 1 (cf. [10, 23]). We
call ω an admissible Kähler metric on M if there are an embedding M ⊂ CPN as above and a smooth
function φ on CPN such that

ω = ωφ = ω0 +
√
−1 ∂∂̄φ|M.

In particular, φ is a function on M with φ ∈ L∞(M) ∩ C∞(Mreg), called an admissible Kähler potential
associated to ω0. ‡

For a general (possibly unbounded) Kähler potential φ, we define its complex Monge-Ampère
measure ωn

φ by
ωn
φ = lim

j→∞
ωn
φ j
,

where φ j = max{φ,− j}. According to [10], we say that φ (or ωn
φ) has full Monge-Ampère (MA) mass

if ∫
M
ωn
φ =

∫
M
ωn

0.

The MA-measure ωn
φ with a full MA-mass has no mass on the pluripolar set of φ in M. Thus we need

to consider the measure on Mreg. Moreover, e−φ is Lp-integrable for any p > 0 associated to ωn
0.

Definition 2.1. We call ωφ a (singular) Kähler-Einstein metric on M with full MA-mass if φ satisfies
the following complex Monge-Ampère equation,

ωn
φ = eh0−φωn

0. (2.1)

It has been shown in [10] that φ is C∞ on Mreg if it is a solution of (2.1). Thus ωφ satisfies the
Kähler-Einstein equation on Mreg,

Ric(ωφ) = ωφ.
‡For simplicity, we will denote a Kähler metric by its Kähler form thereafter.
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2.1. The space E1(M,−KM) and the Ding functional

On a smooth Fano manifold, there is a well-known Euler-Lagrange functional for Kähler potentials
associated to (2.1), often referred as the Ding functional or F-functional, defined by (cf. [22, 43]),

F(φ) = −
1

(n + 1)V

n∑
k=0

∫
M
φωk

φ ∧ ω
n−k
0 − log

(
1
V

∫
M

eh0−φωn
0

)
. (2.2)

In case of Q-Fano manifold with klt-singularities, Berman-Boucksom-Eyssidieux-Guedj-Zeriahi [10]
extended F(·) to the space E1(M,−KM) defined by

E1(M,−KM) = {φ| φ has full MA mass and

sup
M
φ = 0, I(φ) =

∫
M
−φωn

φ < ∞}.

They showed that E1(M,−KM) is compact in certain weak topology. By a result of Darvas [18],
E1(M,−KM) is in fact compact in the topology of L1-distance. It provides a variational approach to
study (2.1).

Definition 2.2. [10, 44] The functional F(·) is called proper if there is a continuous function p(t) on
R with the property limt→+∞ p(t) = +∞, such that

F(φ) ≥ p(I(φ)), ∀φ ∈ E1(M,−KM). (2.3)

In [10], Berman-Boucksom-Eyssidieux-Guedj-Zeriahi proved the existence of solutions for (2.1)
under the properness assumption (2.3) of F(·). However, this assumption does not hold in the case of
existence of non-zero holomorphic vector fields such as in our case of Q-Fano G-compactifications.
So we need to consider a modified version of properness of the Ding functional instead to overcome
this new difficulty as done on toric varieties [9, 37].

3. Associated polytopes and K × K-invariant metrics

Let M be a Q-Fano compactification of G with Z being the closure of a maximal complex torus
TC-orbit. We first characterize the polytope P of Z associated to (M,−KM). Denote byM the lattice of
G-weights and W the Weyl group of (G,TC). Then P is an r-dimensional W-invariant, convex, rational
polytope in a∗ = MR. Let {FA}A=1,...,d0 be the facets of P and {FA}A=1,...,d+

be those whose relative interior
intersects a∗+. Suppose that

P = ∩
d0
A=1{l

o
A := λA − uA(y) ≥ 0} (3.1)

for some primitive vector uA ∈ N and the facet

FA ⊆ {lo
A = 0}, A = 1, ..., d0.

By the W-invariance, for each A ∈ {1, ..., d0}, there is some wA ∈ W such that wA(FA) ∈ {FB}B=1,...,d+
.

Denote by ρA = w−1
A (ρ), where ρ ∈ a∗+ is given by (1.1). Then ρA(uA) is independent of the choice of

wA ∈ W and hence it is well-defined.
The following Lemma can be derived from a general result [26, Theorem 1.9] on polytopes of

Q-Fano spherical varieties. For readers’ convenience, we sketch a direct proof in cases of group
compactifications below by using [15, Section 4].

Mathematics in Engineering Volume 5, Issue 2, 1–43.
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Lemma 3.1. Let M be a Q-Fano compactification of G with P being the associated moment polytope.
Then for each A = 1, ..., d0, it holds

λA = 1 + 2ρA(uA). (3.2)

Conversely, a W-invariant convex polytope P given by (3.1) is the associated polytope of some Q-Fano
G-compactification if (3.2) holds.

Sketch of proof. Suppose that −mKM is a Cartier divisor for some m ∈ N+. Up to a dilation of the
polytope, it suffices to consider the case when m = 1. Denote by B+ the (positive) Borel subgroup
of G corresponding to (TC,Φ+) and B− be the opposite one. Then by [15, Section 4], there exists a
B+ × B−-semiinvariant section of −KM whose divisor is

d =

d+∑
A=1

XA + 2
∑
αi∈Φ+,s

Yαi , (3.3)

where {XA′} is the set of G ×G-invariant prime divisors and Yαi is the prime B+ × B−-invariant divisor
corresponds to the weight αi in Φ+,s, the set of simple roots in Φ+. Note that the corresponding B+×B−-
weight of this divisor is 2ρ (cf. [21, Section 3.2.4]). Thus by adding the divisor of a B+ × B−-semi-
invariant rational function fo with weight −2ρ, we have

d + div( fo) =

d+∑
A=1

(1 + 2ρ(uA))XA (3.4)

is a G × G-invariant divisor. On the other hand, by [5, Theorem 2.4 (3)], the prime G × G-invariant
divisors of M are in bijections with W-orbits of prime toric divisors of Z. Restricting the above divisor
to Z, we get (3.2).

Conversely, suppose that there is a W-invariant polytope P given by (3.1) and (3.2). Then P is
rational and there is an m ∈ N+ so that mP is integral. The support function of mP is W-invariant and
strictly convex. Hence it corresponds to an ample Cartier divisor md′, where (cf. [14, Section 3.3])

d
′ =

d+∑
A=1

(1 + 2ρ(uA))XA.

Obviously d′−div( fo) equals to the divisor d defined by (3.3), which is a divisor of −KM by [15, Section
4]. We conclude the Lemma. �

3.1. K × K-invariant metrics

On a Q-Fano compactification of G, we may regard the G ×G-action as a subgroup of PGLN+1(C)
which acts holomorphically on the hyperplane bundle L = OCPN (1). Then any admissible K × K-
invariant Kähler metric ωφ ∈

2π
`

c1(L) can be regarded as a restriction of K × K-invariant Kähler metric
of CPN . Thus the moment polytope P associated to (Z, L|Z) is a W-invariant rational polytope in a∗. By
the K × K-invariance, the restriction of ωφ on TC is an open toric Kähler metric. Hence, it induces a
strictly convex, W-invariant function ψφ on a [6] (also see Lemma 3.3 below) such that

ωφ =
√
−1∂∂̄ψφ, on TC. (3.5)

Mathematics in Engineering Volume 5, Issue 2, 1–43.
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By the KAK-decomposition ( [31, Theorem 7.39]), for any g ∈ G, there are k1, k2 ∈ K and x ∈ a
such that g = k1 exp(x)k2. Here x is uniquely determined up to a W-action. This means that x is unique
in ā+. Thus there is a bijection between K × K-invariant functions Ψ on G and W-invariant functions ψ
on a which is given by

Ψ(exp(·)) = ψ(·) : a→ R.

Without of confusion, we will not distinguish ψ and Ψ, and call Ψ (or ψ) convex on G if ψ is convex
on a.

The following KAK-integration formula can be found in [31, Proposition 5.28].

Proposition 3.2. Let dVG be a Haar measure on G and dx the Lebesgue measure on a. Then there
exists a constant CH > 0 such that for any K × K-invariant, dVG-integrable function ψ on G,∫

G
ψ(g) dVG = CH

∫
a+

ψ(x)J(x) dx,

where
J(x) =

∏
α∈Φ+

sinh2 α(x).

Without loss of generality, we may normalize CH = 1 for simplicity.
Next we recall a local holomorphic coordinate system on G used in [20]. By the standard Cartan

decomposition, we can decompose g as

g = (t ⊕ a) ⊕ (⊕α∈ΦVα) ,

where t is the Lie algebra of T and

Vα = {X ∈ g| adH(X) = α(H)X, ∀H ∈ t ⊕ a}

is the root space of complex dimension 1 with respect to α. By [28], one can choose Xα ∈ Vα such
that X−α = −ι(Xα) and [Xα, X−α] = α∨, where ι is the Cartan involution and α∨ is the dual of α by the
Killing form. Let Eα = Xα − X−α and E−α = J(Xα + X−α). Denoted by kα, k−α the real line spanned by
Eα, E−α, respectively. Then we get the Cartan decomposition of Lie algebra k of K as follows,

k = t ⊕
(
⊕α∈Φ+

(kα ⊕ k−α)
)
.

Choose a real basis {E0
1, ..., E

0
r } of t, where r is the dimension of T . Then {E0

1, ..., E
0
r } together with

{Eα, E−α}α∈Φ+
forms a real basis of k, which is indexed by {E1, ..., En}. We can also regard {E1, ..., En} as

a complex basis of g. For any g ∈ G, we define local coordinates {zi
(g)}i=1,...,n on a neighborhood of g by

(zi
(g))→ exp(zi

(g)Ei)g.

It is easy to see that θi|g = dzi
(g)|g, where the dual θi of Ei is a right-invariant holomorphic 1-form. Thus

dVG|g := ∧n
i=1

(
dzi

(g) ∧ dz̄i
(g)

)
|g, ∀g ∈ G (3.6)

is also a right-invariant (n, n)-form, which defines a Haar measure.
For a K×K-invariant function ψ, Delcroix computed the Hessian of ψ in the above local coordinates

as follows [20, Theorem 1.2].

Mathematics in Engineering Volume 5, Issue 2, 1–43.
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Lemma 3.3. Let ψ be a K × K invariant function on G. Then for any x ∈ a+, the complex Hessian
matrix of ψ in the above coordinates is diagonal by blocks, and equals to

HessC(Ψ)(exp(x)) =



1
4HessR(ψ)(x) 0 0

0 Mα(1)(x) 0

0 0 . . .
...

...
...

. . . 0
0 0 Mα( n−r

2 )
(x)


, (3.7)

where Φ+ = {α(1), ..., α( n−r
2 )} is the set of positive roots and

Mα(i)(x) =
1
2
α(i)(∂ψ(x))

(
cothα(i)(x)

√
−1

−
√
−1 cothα(i)(x)

)
.

By (3.7) in Lemma 3.3, we see that ψφ induced by an admissible K ×K-invariant Kähler form ωφ is
convex on a. The complex Monge-Ampère measure is given by

ωn
φ =: (

√
−1∂∂̄ψφ)n = MAC(ψφ) dVG. (3.8)

By (3.6), for any x ∈ a+ we have

MAC(ψφ)(exp(x)) =
1

2r+n MAR(ψφ)(x)
1

J(x)

∏
α∈Φ+

α2(∂ψφ(x)) (3.9)

in (3.8). In particular, by Proposition 3.2,

Vol(M) =

∫
M
ωn
φ =

∫
2P+

π dy = V. (3.10)

Clearly, (3.9) also holds for any Kähler potential in E1(M,−KM), which is smooth and K × K-invariant
on G. For the completeness, we introduce a subspace of E1(M,−KM) by

E1
K×K(M,−KM) ={φ ∈ E1(M,−KM)| ψ0 + φ is K × K-invariant and convex on G}. (3.11)

Here ψ0 is a convex function on a associated to a background admissible K × K-invariant metric ω0 as
in (3.5). E1

K×K(M,−KM) is locally precompact in terms of convex functions on a. In Sections 4 and 6,
we will prove its completeness by using the Legendre dual.

3.2. Fine polytope P

In this subsection, we show that the Legendre dual of Guillemin function u2P on 2P lies in
E1

K×K(M,−KM) when P is fine.
Recall (3.1). For convenience, we set

lA(y) = 2λA − uA(y).

Then
2P = ∩

d0
A=1{lA(y) ≥ 0}.

Mathematics in Engineering Volume 5, Issue 2, 1–43.
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Thus, u2P is given by (cf. [1])

u2P =
1
2

d0∑
A=1

lA log lA(y).

Clearly, it is W-invariant, so its Legendre function ψ2P is also W-invariant, where

ψ2P(x) = sup
y∈2P

(〈x, y〉 − u2P(y)), ∀ x ∈ a. (3.12)

Hence, by [1, Theorem 2] and [6] (also see Lemma 3.3), § we can extend

ω2P =
√
−1∂∂̄ψ2P, on a,

to a K × K-invariant metric on G.

Lemma 3.4. Let ψ0 be the background K × K-invariant Kähler potential in (3.11). Assume that P
is fine. Then the Kähler potential (ψ2P − ψ0) of ω2P lies in φ ∈ L∞(M) ∩ C∞(Mreg). In particular,
(ψ2P − ψ0) ∈ E1

K×K(M,−KM).

Proof. Fix an m0 ∈ Z+ such that −m0KX is very ample. We consider the projective embedding

ι : M → CPN

given by | − m0KM |, where N = h0(M,−m0KM) − 1. By [39, Section 2.3], the pull back of the Fubini-
Study metric on CPN gives a K × K-invariant, Hermitian metric h on L = OCPN (−1)|M. Moreover, we
have

h|TC(x) =
∑

λ∈mP∩M

n̄(λ)e2λ(x), (3.13)

where n̄(λ) ∈ Z+. Thus we have a Kähler potential on TC by

ψFS =
1
m

log h|TC .

Since P is fine, one can show directly that

ψFS ∈ V(2P) = {ψ ∈ C0(a)| ψ is convex, W-invariant
and max

a
|v2P − ψ| < ∞},

where v2P(·) is the support function on a defined by

v2P(x) = sup
y∈2P
〈x, y〉. (3.14)

Recall that the Legendre function uψ of ψ is defined as in (3.12) by

uψ(y) = sup
x∈a

(〈x, y〉 − ψ(x)), y ∈ 2P. (3.15)

§The corresponding moment map is given by 1
2∇ψ2P, whose image is P.

Mathematics in Engineering Volume 5, Issue 2, 1–43.



10

It is known that ψ ∈ V(2P) if and only if uψ is uniformly bounded on 2P since the Legendre function of
v2P is zero (cf. [42]). Thus the Legendre function uh of h|TC(x) is uniformly bounded on 2P. It follows
that

|uh − v2P| ≤ C.

Hence, we get
max
a
|ψFS − ψ2P| < +∞.

Consequently,
max
a
|ψ2P − ψ0| < +∞.

By (3.10), (ψ2P − ψ0) has full MA-mass, so we have completed the proof. �

4. The space E1
K×K(2P)

In this section, we describe the space E1
K×K(M,−KM) in (3.11) via Legendre functions as in [17] for

Q-Fano toric varieties. Recall the background K×K-invariant Kähler potential ψ0 in Lemma 3.4. Then
we can normalize ψ0 up to an action of the centre Z(G) of G as follows (cf. [38]),

inf
a
ψ0 = ψ0(O) = 0, (4.1)

where O is the origin of a. Similarly, for any φ ∈ E1
K×K(M,−KM), ψφ = ψ0 + φ can be also normalized

as in (4.1).
The following lemma is elementary.

Lemma 4.1. For any K × K-invariant potential φ normalized as in (4.1), it holds

∂(ψφ) ⊆ 2P, and ψφ ≤ v2P,

where ∂(ψφ)(·) is the normal mapping of ψφ.

Proof. We choose a sequence of decreasing and uniformly bounded K × K-invariant potential φi

normalized as in (4.1) such that
ω0 +

√
−1∂∂̄φi > 0, on Mreg

and
φi → φ, as i→ +∞.

Then
√
−1∂∂̄ψφi > 0 in G.

It follows that
∂ψφi ⊆ 2P.

This implies that ∂ψφ ⊆ 2P. By the convexity, we also get ψφ ≤ v2P.
�
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It is easy to see that the Legendre function uφ of ψφ with φ ∈ E1
K×K(M,−KM) satisfies

inf
2P

uφ = uφ(O) = 0. (4.2)

We set a class of W-invariant convex functions on 2P by

E1
K×K(2P) = {u| u is convex, W-invariant on 2P which satisfies (4.2) and∫

2P+

uπ dy < +∞}.

Our main goal in this section is to prove

Theorem 4.2. A Kähler potential φ ∈ E1
K×K(M,−KM) with normalized ψφ satisfying (4.1) if and only

if the Legendre function uφ of ψφ lies in E1
K×K(2P). In particular, uφ is locally bounded in Int(2P) if

φ ∈ E1
K×K(M,−KM).

As in [17], we need to establish a comparison principle for the complex Monge-Ampère measure
in E1

K×K(M,−KM). For our purpose, we will introduce a weighted Monge-Ampère measure on a in the
following.

4.1. Weighted Monge-Ampère measure

Definition 4.3. Let Ω ⊆ a be a W-invariant domain and ψ any W-invariant convex function on Ω.
Define a weighted Monge-Ampère measure on Ω by∫

Ω′
MAR;π(ψ)dx =

∫
∂ψ(Ω′)

π dy, ∀ Ω′ b Ω,

where ∂ψ(·) is the normal mapping of ψ.

Remark 4.4. Let {ψk} be a sequence of convex functions which converges locally uniformly to ψ on Ω,
then MAR;π(ψk) converges to MAR;π(ψ) (cf. [2, Section 15]).

We have the following KAK-integration for the measure ωn
φ with φ ∈ E1

K×K(M,−KM).

Lemma 4.5. Let ωφ =
√
−1∂∂̄ψφ with φ ∈ E1

K×K(M,−KM). Then for any K × K-invariant continuous
uniformly bounded function f on G, it holds∫

M
fωn

φ =

∫
a+

f MAR;π(ψφ)dx. (4.3)

Proof. First we assume that f is a K ×K-invariant continuous function with compact support on a. We
take a sequence of smooth W-invariant convex functions ψk ↘ ψ and let ωk =

√
−1∂∂̄ψk. Then for any

W-invariant Ω′ b a, it holds∫
Ω′

MAR;π(ψk)dx :=
∫

Ω′
det(∇2ψk)π(∇ψk) dy.

By the standard KAK-integration formula in Proposition 3.2, it follows that∫
M

fωn
k =

∫
a+

f det(∇2ψk)π(∇ψk)dx =

∫
a+

f MAR;π(ψk)dx.
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Since ∫
M

fωn
k →

∫
M

fωn,

we get (4.3) by Remark 4.4.
Next we choose a sequence of exhausting W-invariant convex domains Ωk in a and a sequence of

W-invariant convex functions with the support on Ωk+1 such that fk = f |Ωk . Since ωn has full MA-mass,
we get ∫

M
fωn = lim

k

∫
M

fkω
n

= lim
k

∫
a+

fkMAR;π(ψφ)dx

=

∫
a+

f MAR;π(ψφ)dx.

�

4.2. Comparison principles

In this subsection, we establish an ordinary comparison principle for the weighted Monge-Ampère
measure MAR;π(ψ). As showed in [17], this will then lead a global comparison principle (see
Proposition 4.7 below) which can be used to estimate the MA mass of Kähler potential. We will
only prove Proposition 4.6 and omit other proofs, since the others follow directly from Proposition 4.6
by corresponding arguments in [17].

Proposition 4.6. Let Ω ⊆ a be a W-invariant domain and ϕ, ψ be two convex functions on Ω such that

ϕ ≥ ψ and (ϕ − ψ)|∂Ω = 0. (4.4)

Then ∫
Ω

MAR;π(ϕ)dx ≤
∫

Ω

MAR;π(ψ)dx. (4.5)

Proof. It is sufficient to prove (4.5) when ϕ and ψ are smooth, since we can approximate general ϕ and
ψ by smooth W-invariant convex functions by Lemma 4.5. Let

ϕt = tϕ + (1 − t)ψ.

Then
MAR;π(ϕt) = det(∇2ϕt)

∏
α∈Φ+

α2(∇ϕt)

and

d
dt

∫
Ω

det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dx

=

∫
Ω

(∇2ϕt)−1,i j∇2ϕ̇t,i j det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dx
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+

∫
Ω

∑
α∈Φ+

2α(∇ϕ̇t)
α(∇ϕt)

 det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dx. (4.6)

Using the fact that (
det(∇2ϕt)(∇2ϕt)−1,i j

)
, j

= 0

and integration by parts, we have∫
Ω

(∇2ϕt)−1,i j∇2ϕ̇t,i j det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dx

=

∫
∂Ω

(∇2ϕt)−1,i j∇ϕ̇t,iν j det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dσ

−

∫
∂Ω

[(∇2ϕt)−1,i j det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)], jνiϕ̇tdσ

+

∫
Ω

(∇2ϕt)−1,i jϕ̇t det(∇2ϕt)

∏
α∈Φ+

α2(∇ϕt)


,i j

dx. (4.7)

Also ∫
Ω

∑
α∈Φ+

2α(∇ϕ̇t)
α(∇ϕt)

 det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dx

=2
∫
∂Ω

∑
α∈Φ+

αiνi

α(∇ϕt)
det(∇2ϕt)

∏
α∈Φ+

α2(∇ϕt)ϕ̇tdσ

= − 2
∫

Ω

det(∇2ϕ)
∏
α∈Φ+

α2(∇ϕt)
∑
α∈Φ+

αi

α(∇ϕ)


,i

ϕ̇tdx. (4.8)

Note that (∏
α∈Φ+

α2(∇ϕt)
)
,i j∏

α∈Φ+
α2(∇ϕt)

= − 2
∑
α∈Φ+

αkαlϕt,ikϕt, jl

α2(∇ϕt)
+ 2

∑
α∈Φ+

αkϕt,i jk

α(∇ϕt)
+ 4

∑
α,β∈Φ+

αkβlϕt,ikϕt, jl

α(∇ϕt)β(∇ϕt)

=2

(
det(∇2ϕ)

∏
α∈Φ+

α2(∇ϕt)
∑
α∈Φ+

αi

α(∇ϕ)

)
,i

det(∇2ϕ)
∏

α∈Φ+
α2(∇ϕt)

. (4.9)

Plugging (4.7)–(4.9) into (4.6) and using the boundary condition (4.4), we have

d
dt

∫
Ω

det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dx =

∫
∂Ω

∇ϕ̇t,iνi det(∇2ϕt)
∏
α∈Φ+

α2(∇ϕt)dσ ≤ 0.

Hence we get (4.5). �

By the above Proposition, we get the following analogue of [17, Lemma 2.3], which gives a global
comparison principle for the weighted Monge-Ampère measures.
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Proposition 4.7. Let ϕ, ψ be two W-invariant convex functions on a so that

ϕ ≥ ψ

and
lim
|x|→+∞

ϕ(x) = +∞.

Then ∫
a+

MAR;π(ϕ)dx ≥
∫
a+

MAR;π(ψ)dx.

As an application of Proposition 4.7, we get by the argument of [17, Lemma 2.7],

Lemma 4.8. Let ψ be a W-invariant convex function on a and u its Legendre function. Suppose that
for some constant C,

ψ ≤ v2P + C, (4.10)

where v2P is the support function of 2P. Then∫
a+

MAR;π(ψ)dx =

∫
2P
π dy, (4.11)

if u < +∞ everywhere in the interior of 2P.

The inverse of Lemma 4.8 is also true as an analogue of [17, Theorem 3.6]. In fact, we have

Proposition 4.9. Let φ be a K ×K-invariant potential. Then ψφ satisfies (4.11) if and only if uφ is finite
everywhere in Int(2P).

Proposition 4.9 will be used in the proof of Theorem 4.2 in next subsection.

4.3. Proof of Theorem 4.2

It is easy to see that (4.1) is equivalent to (4.2). Thus, to prove Theorem 4.2, we only need to show
that

φ ∈ E1
K×K(M,−KM)⇐⇒

∫
2P+

|uφ|π dy < +∞.

The following lemma can be found in [9, Lemma 2.7] (proved in [9, Appendix]).

Lemma 4.10. Let ψ be a convex function on a and uψ its Legendre dual on P.

(1) uψ is differentiable at p if and only if the sup defining uψ is attained at a unique point xp ∈ a and
xp = ∇uψ(p);

(2) Suppose that (ψ − ψ0) ∈ E1
K×K(M,−KM). Let p ∈ P at which uψ is differentiable. Then for any

continuous uniformly bounded function v on a, it holds

d
dt

∣∣∣∣∣
t=0

uψ+tv(p) = −v(∇uψ(p)), (4.12)

where uψ+tv is the Legendre function of ψ + tv as in (3.15) which is well-defined since v is
continuous and uniformly bounded on a.
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Remark 4.11. By Lemma 4.5 and Part (1) in Lemma 4.10, we can prove the following: Let φ ∈
E1

K×K(M,−KM), then for any K × K-invariant continuous uniformly bounded function f on G, it holds∫
M

fωn
φ =

∫
2P

f (∂uφ)πdy. (4.13)

Proof of Theorem 4.2. We will follow the arguments in [17, Proposition 3.9] to prove the theorem.
Necessary part. First we show that φ has full MA-mass by Proposition 4.9. In fact, by a result

in [36, Lemma 4.5], we see that for any W-invariant convex polytope 2P′ ⊆ 2P, there is a constant
C = C(P′) such that for any W-invariant convex uφ ≥ 0,∫

2P′
uφ dy ≤ C

∫
2P

uφπ dy < +∞.

This implies that uφ is finite everywhere in Int(2P) by the convexity of uφ. Thus we get what we want
from Proposition 4.9.

Next we prove that φ is L1-integrate associated to the MA-measure ωn
φ. Let ψ1 = ψ0 + φ (φ may be

different to a constant) be satisfying (4.1). We define a distance between ψ0 and ψ1 for p ≥ 1,

dp(ψ0, ψ1) = inf
φt

∫ 1

0

(∫
M
|φ̇t|

pωn
φt

) 1
p

dt,

where φt ∈ E
1(M,−KM) (t ∈ [0, 1]) runs over all curves joining 0 and φ with ωφt ≥ 0. Choose a special

path φt such that the corresponding Legendre functions of ψt = ψ0 + φt are given by

ut = tu1 + (1 − t)u0, (4.14)

where u1 and u0 are the Legendre functions of ψ1 and ψ0, respectively. Note that by Lemma 4.10,

ψ̇t = −u̇t = u0 − u1, almost everywhere.

Then by Lemma 4.5 (or Remark 4.11), we get

dp(ψ0, ψ1) ≤
∫ 1

0

(∫
2P+

|u̇t|
pπ dy

) 1
p

dt

≤ C(p)
(∫

2P+

|u1|
pπ dy

) 1
p

+ C′(p.ψ0). (4.15)

On the other hand, by a result of Darvas-Rubinstein [19], there are uniform constant C0 and C1 such
that for any Kähler potential φ with full MA-measure it holds,

−

∫
M
φωn

φ ≤ C0d1(ψ0, ψ1) + C1.

Thus we obtain
−

∫
M
φωn

φ ≤ C.
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Hence, φ ∈ E1
K×K(M,−KM).

Sufficient part. Assume that φ ∈ E1
K×K(M,−KM). We first deal with the case of φ ∈ L∞(M)∩C∞(G).

Then

v2P −C ≤ ψφ ≤ v2P ≤ ψ0 + C, (4.16)

and
∇ψφ : a→ 2P

is a bijection. Thus

−φ = (ψ0 − ψφ)(∇uφ)
≥ v2P(∇uφ) − ψφ(∇uφ) −C2 ≥ −C2.

Moreover,

(ψ0 − ψφ)(∇uφ) ≥v2P(∇uφ) − ψφ(∇uφ) −C

= sup
y′∈2P
〈∇uφ, y′〉 − ψ(∇uφ) −C

≥〈∇uφ, y〉 − ψ(∇uφ) −C

=uφ(y) −C.

Hence, ∫
2P+

uφπ dy ≤
∫

2P+

(ψ0 − ψφ)(∇uφ)π dy + C

=

∫
M
|φ|ωn

φ + C < +∞. (4.17)

Next for an arbitrary φ ∈ E1
K×K(M,−KM), we choose a sequence of smooth K×K-invariant functions

{φ j} decreasing to φ such that φ j ∈ C∞(G) and
√
−1∂∂̄(ψ0 + φ j) > 0, in G.

Then as in (4.17), we have ∫
2P+

u jπ dy ≤
∫

2P+

(ψ0 − ψ j)(∇u j)π dy

=

∫
M
|φ j|ω

n
j + C,

where u j is the Legendre function of ψ j = ψ0 + φ j. Note that∫
M
|φ j|ω

n
j →

∫
M
|φ|ωn

φ

and u j ↗ uφ. Thus by taking the above limit as j→ +∞, we also get (4.17).
�
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5. Computation of the Ricci potential

In this section, we assume that the associated polytope P is fine. Then by Lemma 3.4, (ψ2P − ψ0) ∈
E1

K×K(M,−KM) is a smooth K × K-invariant Kähler potential on G. It follows that

− log det(∂∂̄ψ2P) − ψ2P = h0 (5.1)

gives a Ricci potential h0 of ω2P, which is smooth and K × K-invariant on G.
The following proposition gives an upper bound of h0.

Proposition 5.1. The Ricci potential h0 of ω2P is uniformly bounded from above on G. In particular,
eh0 is uniformly bounded on G.

Proof. As in [36, Sections 3.2 and 4.3], the proof is based on a direct computation of asymptotic
behavior of h0 near every point of ∂(2P+). Recall that

J(x) =
∏
α∈Φ+

sinh2 α(x), x ∈ a and π(y) =
∏
α∈Φ+

α2(y), y ∈ 2P.

Since the Ricci potential of h0 is also K × K-invariant, by (5.1) and (3.9),

h0 = − log det(ψ2P,i j) − ψ2P + log J(x) − log
∏
α∈Φ+

α2(∇ψ2P)

= log det(u2P,i j) − yiu2P,i + u2P + log J(∇u2P) − log π(y).
(5.2)

Here in the second line we take the Legendre transformation

u2P(y(x)) = yi(x)xi − ψ2P(x) and y(x) = ∇ψ2P(x).

Note that

u2P,i =
1
2

d0∑
A=1

(−ui
A)(1 + log lA),

u2P,i j =
1
2

d0∑
A=1

ui
Au j

A

lA

and

log J(t) = 2
∑
α∈Φ+

log sinh(t).

Thus we have

h0 = −

d0∑
A=1

log lA +
1
2

d0∑
A=1

(ui
Ayi) log lA

+ 2
∑
α∈Φ+

log sinh(−
1
2

d0∑
A=1

α(uA) log lA) − 2
∑
α∈Φ+

logα(y) + O(1). (5.3)
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By (5.3), h0 is locally bounded in the interior of 2P+. Thus we need to prove that h0 is bounded
above near each y0 ∈ ∂(2P+). There will be three cases as follows.

Case-1. y0 ∈ ∂(2P+) and is away from any Weyl wall (see Figure 1).

•

+
y0

WαWα′

Figure 1. Case-1: y0 is away from any Weyl wall.

Note that

log sinh(t) =

t + O(1), t → +∞,

log t + O(1), t → 0+.
(5.4)

Then we get as y→ y0,∑
α∈Φ+

log sinh(−
1
2

d0∑
A=1

α(uA) log lA) = −
∑

A

ρ(uA) log lA + O(1).

By (5.3), it follows that

h0 = −
∑

{A|lA(y0)=0}

(
1 −

1
2

yiui
A + 2ρiui

A

)
log lA(y) + O(1).

However, by Lemma 3.1, we have

h0 = −
1
2

∑
{A|lA(y0)=0}

lA(y) log lA(y) + O(1).

Hence h0 is bounded near y0.
Case-2. y0 lies on some Weyl walls but away from any facet of 2P (see Figure 2).

•

×y0

WαWα′

Figure 2. Case-2: y0 lies on a Weyl wall but away from the facets.
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In this case it is direct to see that h0 is bounded near y0 since

log det(u2P,i j), yiu2P,i,
J(∇u2P)
π(y)

are all bounded.
Case-3. y0 lies on the intersection of ∂(2P) with some Weyl walls. In this case, by (3.1), we rewrite

(5.3) as

h0 =2
d0∑

A=1

ρA(uA) log lA + 2
∑
α∈Φ+

log sinh(−
1
2

d0∑
A=1

α(uA) log lA)

− 2
∑
α∈Φ+

logα(y) + O(1)

=
∑
α∈Φ+

 d0∑
A=1

|α(uA)| log lA + 2 log sinh(−
1
2

d0∑
A=1

α(uA) log lA)

−2 logα(y)
]
+ O(1), y→ y0.

Here we used a fact that

2ρA(uA) =
∑
α∈Φ+

|α(uA)|.

Set

Iα(y) =

d0∑
A=1

|α(uA)| log lA + 2 log sinh(−
1
2

d0∑
A=1

α(uA) log lA) − 2 logα(y)

for each α ∈ Φ+. Then

h0(y) =
∑
α∈Φ+

Iα(y) + O(1), y→ y0. (5.5)

Note that each Iα(y) involves only one root α. Thus, without loss of generality, we may assume that y0

lies on only one Weyl wall.
Assume that y0 ∈ ∂(2P) ∩Wα0 for some simple Weyl wall Wα0 , α0 ∈ Φ+ and it is away from other

Weyl walls. Now we estimate each Iα(y) in (5.5). When β , α0, it is easy to see that

β(y)→ cβ > 0, as y→ y0.

Then, by (5.4), we have

log sinh(−
1
2

d0∑
A=1

β(uA) log lA) = −
1
2

∑
{A|lA(y0)=0}

β(uA) log lA + O(1),∀β , α0.

Note that y0 ∈ {β(y) > 0}. Thus any facet FA passing through y0 lies in {β(y) > 0} or is orthogonal
to Wβ. Since 2P is convex and sβ-invariant, where sβ is the reflection with respect to Wβ, these facets
must satisfy

β(uA) ≥ 0.
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Hence, for any β , α0, we get

Iβ(y) =

d0∑
A=1

|β(uA)| log lA − 2
d0∑

A=1

|β(uA)| log lA − 2 log β(y)

=O(1), as y→ y0. (5.6)

It remains to estimate the second term in Iα0(y),

log sinh(−
1
2

∑
A

α0(uA) log lA). (5.7)

We first consider a simple case that y0 lies on the intersection of Wα0 with at most two facets of 2P.
Then there will be two subcases: y0 ∈ Wα0 ∩ F1 or y0 ∈ Wα0 ∩ F1 ∩ F2, where F1, F2 are two facets of
P.

Case-3.1. y0 ∈ Wα0 ∩ F1 is away from other facets of 2P. Then F1 is orthogonal to Wα0 (see Figure
3).

•

+

y0

F1

Wα0

Figure 3. Case-3.1: y0 ∈ F1 ∩Wα0 and F1 ⊥ Wα0 .

It follows that lA(y0) , 0 for any A , 1. Thus

〈α0, y〉 = o(lA(y)), y→ y0, A , 1. (5.8)

Let {F1, ..., Fd1} be all facets of P such that α0(uA) ≥ 0, A = 1, ..., d1. Let sα0 be the reflection with
respect to Wα0 . Then by sα0-invariance of P, for each A′ < {1, ..., d1} there is some A ∈ {1, ..., d1} such
that

lA′ = lA + 2
α0(uA)〈α0, y〉
|α0|

2 .

It follows that

α0(∇u2P) = −
1
2

d0∑
A=1

α0(uA) log lA

=
1
2

d1∑
A=2

α0(uA) log
(
1 + 2

α0(uA)〈α0, y〉
|α0|

2lA(y)

)
.
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Thus, by (5.8) and the fact that α0(u1) = 0, we obtain

log sinh(−
1
2

d0∑
A=1

α0(uA) log lA)

= log sinh
d1∑

A=2

α0(uA) log
(
1 + 2

α0(uA)〈α0, y〉
|α0|

2lA(y)

)
= log〈α0, y〉 + O(1).

Hence

Iα0(y) = O(1), as y→ y0.

Together with (5.6), we see that h0 is bounded near y0.
Case-3.2. y0 ∈ Wα0 ∩ F1 ∩ F2 and is away from other facets of 2P (see Figure 4).

•

×
y0

F2F1

Wα0

Figure 4. Case-3.2: y0 ∈ Wα0 ∩ F1 ∩ F2 and is away from other facets.

By the W-invariance of 2P, it must hold F1 = sα0(F2). We may assume that F2 ⊆ a+ and then

l1 = l2 +
2α0(u2)〈α0, y〉
|α0|

2 .

As y→ y0 we have

α0(y), l1(y), l2(y)→ 0,
lA(y) 6→ 0, ∀A , 1, 2.

It follows that

d0∑
A=1

|α0(uA)| log lA =α0(u2)(log l1 + log l2) + O(1). (5.9)

Then the second term in Iα0(y) becomes

log sinh(−
1
2

d0∑
A=1

α0(uA) log lA) = log sinh
1
2

[
α0(u2) log

(
1 + 2

α0(u2)〈α0, y〉
|α0|

2l2(y)

)
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+

d1∑
A,2,α0(uA)>0

α0(uA) log
(
1 + 2

α0(uA)〈α0, y〉
|α0|

2lA(y)

) .

We will settle it down according to the different rate of α0(y)
l2(y) below.

Case-3.2.1. α0(y) = o(l2(y)). Then

log sinhα0(∇u2P) = logα0(y) − log l2(y). (5.10)

Note that sα0(u1) = u2 ∈ a+, we have∑
A=1,2

|α0(uA)| log lA = α0(u2)(log l1 + log l2).

Using the above relation, (5.9) and (5.10), we get

Iα0(y) =α0(u2) log l1 + (α0(u2) − 2) log l2 + O(1)
=2(α0(u2) − 1) log l2 + O(1). (5.11)

Here we used l1 = l2(1 + o(1)) in the last equality.
Note that by our assumption α0(u2) > 0. Then

α0(u2) ≥ 1,

since α0(u2) ∈ Z. Hence, as l1(y), l2(y)→ 0+, by (5.5), (5.6) and (5.11), we see that h0 is bounded from
above in this case.

Case-3.2.2. c ≤ α0(y)
l2(y) ≤ C for some constants C, c > 0. Then

logα0(y) = log l2 + O(1), log sinhα0(∇u2P) = O(1)

and the right hand side of (5.5) becomes

α0(u2)(log l1 + log l2) − 2 logα0(y) + O(1)
=2(α0(u2) − 1) log l2 + O(1). (5.12)

Again h0 is also bounded from above.
Case-3.2.3. α0(y)

l2(y) → +∞. Then

log sinhα0(∇u2P) =
1
2
α0(u2)(logα0(y) − log l2(y)),

l1(y) =α0(y)(1 + o(1))

and the right hand side of (5.5) becomes

α0(u2)(log l1 + log l2) + α0(u2)(logα0(y) − log l2(y)) − 2 logα0(y) + O(1)
=α0(u2) log l1 + [α0(u2) − 2] logα0(y) + O(1)
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=2(α0(u2) − 1) logα0(y) + O(1). (5.13)

Hence h0 is bounded from above as in Case-3.2.1.
Next we consider the case that there are facets F1..., Fs (s ≥ 3) such that

y0 ∈ Wα0 ∩ F1 ∩ ... ∩ Fs

and it is away from any other facet of 2P. We only need to control the term (5.7) as above. If F1, ..., Fs

are all orthogonal to Wα0 as in Case-3.1, we see that h0(y) is uniformly bounded. Otherwise, for any y
nearby y0 there is a facet F = Fi′ for some i′ ∈ {1, ..., s} such that

li′(y) = min{li(y)| i = 1, ..., s such that α0(ui) , 0}.

As y → y0, up to passing to a subsequence, we can fix this i′. Clearly, y0 ∈ Wα0 ∩ F1 ∩ F2 as in
Case-3.2, where F2 = F ⊆ a+ and F1 = sα0(F) for the reflection sα0 . Hence by following the argument
in Case-3.2, we can also prove that h0(y) is uniformly bounded from above. Therefore, the proposition
is true in Case-3. The proof of our proposition is completed. �

Remark 5.2. We note that h0 is always uniformly bounded in Case-1, Case-2 and Case-3.1.
Furthermore, if rank(G) = 2, there are at most two facets F1, F2 intersecting at a same point y0 of
Wα0 as in Cases-3.2.1–3.2.3, thus, by the asymptotic expressions of h0 in (5.11), (5.12) and (5.13),
respectively, we see that h0 is uniformly bounded if and only if the following relation holds,

α0(u2) = 1. (5.14)

In other words, in Cases-3.2.1–3.2.3,
lim
y→y0

h0 = −∞,

if (5.14) does not hold.

Remark 5.3. (5.14) always holds when M is a smooth G-compactification. This is because the
Guillemin metric can be extended to a global one on M and so h0 is uniformly bounded (cf. [5,
Proposition 3.2]). We also note that in this case (5.14) can come from Lemma 6.1 in [39] directly.

6. Reduced Ding functional and existence criterion

By Theorem 4.2, we see that for any u ∈ E1
K×K(2P), its Legendre function

ψu(x) = sup
y∈2P
{〈x, y〉 − u(y)} ≤ v2P(x)

corresponds to a K ×K-invariant weak Kähler potential φu = ψu−ψ0 which belongs to E1
K×K(M,−KM).

Here we can choose ψ0 to be the Legendre function ψ2P of Guillemin function u2P as in (3.12). As we
know, e−φu ∈ Lp(ω0) for any p ≥ 0. Thus

∫
a+

e−ψuJ(x)dx is well-defined.
We introduce the following functional on E1

K×K(2P) by

D(u) = L(u) + F (u),
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where
L(u) =

1
V

∫
2P+

uπ dy − u(4ρ)

and

F (u) = − log
(∫
a+

e−ψuJ(x)dx
)

+ u(4ρ).

It is easy to see that on a smooth Fano compactification of G,

L(uφ) + uφ(4ρ) = −
1

(n + 1)V

n∑
k=0

∫
M
φωk

φ ∧ ω
n−k
0

and D(uφ) is just the Ding functional F(φ). We note that a similar functional on such Fano manifolds
has been studied for Mabuchi solitons in [37, Section 4]). Hence, for convenience, we call D(·) the
reduced Ding functional on a Q-Fano compactifications of G.

In this section, we will use the variation method to prove Theorem 1.2 by verifying the properness
of D(·). We assume that the associated polytope P is fine so that the Ricci potential h0 is uniformly
bounded above by Proposition 5.1.

6.1. A criterion for the properness ofD(·)

In this subsection, we establish a properness criterion forD(uφ), namely,

Proposition 6.1. Let M be a Q-Fano compactification of G. Suppose that the associated polytope P is
fine and satisfies (1.2). Then there are constants δ and Cδ such that

D(u) ≥ δ

∫
2P+

uπ(y) dy + Cδ, u ∈ E1
K×K(2P). (6.1)

The proof follows the line of argument in [37]. We note that uφ satisfies the normalized condition
u ≥ u(O) = 0. Then we have the following estimate for the linear term L(·) as in [36, Proposition 4.2].

Lemma 6.2. Under the assumption (1.2), there exists a constant λ > 0 such that

L(u) ≥ λ

∫
2P+

uπ(y) dy, ∀ u ∈ E1
K×K(2P). (6.2)

For the non-linear term F (·), we can also get an analogy of [37, Lemma 4.8] as follows.

Lemma 6.3. For any φ ∈ E1
K×K(M,−KM), let

ψ̃φ := ψφ − 4ρixi, x ∈ a+.

Then

F (uφ) = − log

∫
a+

e−(ψ̃φ−infa+ ψ̃φ)
∏
α∈Φ+

1 − e−2αi xi

2

2

dx

 . (6.3)

Consequently, for any c > 0,

F (uφ) ≥ F
( uφ
1 + c

)
− n · log(1 + c). (6.4)
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Let φ0, φ1 ∈ E
1
K×K(M,−KM) and u0, u1 be two Legendre functions of ψ0+φ0 and ψ0+φ1, respectively.

Let ut (t ∈ [0, 1]) be a linear path connecting u0 to u1 as in (4.14). Then by Theorem 4.2, the
corresponding Legendre functions ψt of ut give a path in E1

K×K(M,−KM). The following lemma shows
that F (ψt) is convex in t.

Lemma 6.4. Let
F̂ (t) = − log

∫
a+

e−ψtJ(x)dx, t ∈ [0, 1].

Then F̂ (t) is convex in t and so is F (ψt).

Proof. By definition, we have

ψt(tx1 + (1 − t)x0) = sup
y
{〈y, tx1 + (1 − t)x0〉 − (tu1(y) + (1 − t)u0(y))}

≤t sup
y
{〈y, x1〉 − u1(y)}

+ (1 − t) sup
y
{〈y, x0〉 − u0(y))}

≤tψ1(x1) + (1 − t)ψ0(x0), ∀ x0, x1 ∈ a. (6.5)

On the other hand,

log J(tx1 + (1 − t)x0) ≥ t log J(x1) + (1 − t) log J(x0), ∀x0, x1 ∈ a+.

Combining these two inequalities, we get

(e−ψtJ)(tx1 + (1 − t)x0) ≥ (e−ψ1J)t(x1)(e−ψ0J)1−t(x0), ∀x0, x1 ∈ a+.

Hence, by applying the Prekopa-Leindler inequality to three functions e−ψtJ, e−ψ1J and e−ψ0J (cf. [27,
Theorem 7.1]), we prove

− log
∫
a+

e−ψtJ(x)dx ≤ −t log
∫
a+

e−ψ1J(x)dx − (1 − t) log
∫
a+

e−ψ0J(x)dx.

This means that F̂ (t) is convex. �

Proof of Proposition 6.1. By Proposition 5.1,

A(y) =
V∫

a+
e−ψ0J(x)dx

eh0(∇u0(y))

is bounded, where y(x) = ∇ψ0(x). Then the functional

DA(u) = L0
A(u) + F (u),

is well-defined on E1
K×K(2P), where

L0
A(u) =

1
V

∫
2P+

uA(y)π(y) dy − u(4ρ).
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It is easy to see that u0 is a critical point of DA(·). On the other hand, by Lemma 6.4, F (·) is convex
along any path in E1

K×K(M,−KM) determined by their Legendre functions as in (4.14). Note that L0
A(·)

is convex in E1
K×K(2P). Hence

DA(u) ≥ DA(u0), ∀u ∈ E1
K×K(2P).

Now together with Lemma 6.2 and Lemma 6.3, we can apply arguments in the proof of [37, Proposition
4.9] to proving that there is a constant C > 0 such that for any u ∈ E1

K×K(2P),

D(u) ≥
Cλ

1 + C

∫
2P+

uπ(y) dy +DA(u0) − n log(1 + C).

Therefore, we get (6.1).
�

6.2. Semi-continuity

Write E1
K×K(2P) as

E1
K×K(2P) =

⋃
κ≥0

E1
K×K(2P; κ),

where
E1

K×K(2P; κ) = {u ∈ E1
K×K(2P)|

∫
2P+

uπ dy ≤ κ}.

By [36, Lemma 6.1] and Fatou’s lemma, it is easy to see that any sequence {un} ⊆ E
1
K×K(2P; κ) has a

subsequence which converges locally uniformly to some u∞ ∈ E1
K×K(2P; κ). Thus each E1

K×K(2P; κ),
and so E1

K×K(2P) is complete. Moreover, we have

Proposition 6.5. The reduced Ding functional D(·) is lower semi-continuous on the space E1
K×K(2P).

Namely, for any sequence {un} ⊆ E
1
K×K(2P), which converges locally uniformly to some u∞, we have

u∞ ∈ E1
K×K(2P) and it holds

D(u∞) ≤ lim inf
n→∞

D(un). (6.6)

Proof. By Fatou’s lemma, we have∫
2P+

u∞π dy ≤ lim inf
n→+∞

∫
2P+

unπ dy < +∞. (6.7)

Then u∞ ∈ E1
K×K(2P) and

L(u∞) ≤ lim inf
n→+∞

L(un).

It remains to estimate F (u∞). Note that u∞ is finite everywhere in Int(2P) by the locally uniform
convergence and its Legendre function ψ∞ ≤ v2P. Thus, for any ε0 ∈ (0, 1) there is a constant Mε0 > 0
such that (cf. [17, Lemma 2.3]),

ψ∞(x) ≥ (1 − ε0)v2P(x) − Mε0 ,∀x ∈ a. (6.8)

Mathematics in Engineering Volume 5, Issue 2, 1–43.



27

On the other hand, the Legendre function ψn of un also converges locally uniformly to ψ∞. Then

∂ψn → ∂ψ∞

almost everywhere. Since
ψn(O) = ψ∞(O) = 0,∀n ∈ N+,

we have

ψn(x) ≥ (1 − ε0)v2P(x) − Mε0 ,∀x ∈ a (6.9)

as long as n � 1. Note that
0 ≤ J(x) ≤ e4ρ(x),∀x ∈ a+.

By choosing an ε0 such that 4ρ ∈ (1 − ε0)Int(2P), we get∫
a+

eMε0−(1−ε0)v2P(x)J(x)dx < +∞.

Hence, combining this with (6.8) and (6.9) and using Fatou’s lemma, we derive

− log
(∫
a+

e−ψ∞J(x)dx
)
≤ lim inf

n→+∞

[
− log

(∫
a+

e−ψnJ(x)dx
)]
.

Therefore, we have proved (6.6) by (6.7). �

6.3. Proof of Theorem 1.2

Now we prove the sufficient part of Theorem 1.2. Suppose that (1.2) holds. Then by Propositions 6.1
and 6.5, there is a minimizing sequence {un} of D(·) on E1

K×K(2P), which converges locally uniformly
to some u? ∈ E1

K×K(2P) such that

D(u?) ≤ lim
u∈E1

K×K (2P)
D(u). (6.10)

Let ψ? be the Legendre function of u?. Then by Theorem 4.2, we have

φ? = ψ? − ψ0 ∈ E
1
K×K(M,−KM).

We need to show that φ? satisfies the Kähler-Einstein equation (2.1).

Proposition 6.6. φ? satisfies the Kähler-Einstein equation (2.1).

Proof. Let {ut}t∈[0,1] ⊆ E
1
K×K(2P) be a family of convex functions with u0 = u? and ψt the corresponding

Legendre functions of ut. Then by Part (2) in Lemma 4.10,

ψ̇0 = −u̇0, almost everywhere.

Note that ∫
a+

e−ψ?J(x)dx = V,
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Thus by (4.11) in Lemma 4.8, we get

d
dt

∣∣∣∣∣
t=0
D(ut) =

1
V

∫
2P+

u̇0π dy +

∫
a+
ψ̇0e−ψ?J(x)dx

V

=
1
V

∫
a+

ψ̇0[e−ψ?J(x) −MAR;π(ψ?)]dx. (6.11)

For any continuous, compactly supported W-invariant function η ∈ C0(a), we consider a family
of functions u? + tη. In general, it may not be convex for t , 0 since u? is just weakly convex. In
the following, we use a trick to modify the function D(ut) as in [9, Section 2.6]. Define a family of
W-invariant functions by

ψ̂t = sup
φ∈E1

K×K (M,−KM)
{ψφ|ψφ ≤ ψ? + tη}.

Then it is easy to see that the Legendre function ût of ψ̂t satisfies

|ût − u0| ≤ C, ∀|t| � 1.

By Theorem 4.2, we see that (ψ̂t − ψ0) ∈ E1
K×K(M,−KM). Without loss of generality, we may assume

that ψ̂t satisfies (4.1).
Let

D̃(t) = L(ût) + F (ût).

Then

D̃(0) = D(u?) (6.12)

and

D̃(t) ≥ D(u?). (6.13)

Claim 6.7. L(ût) + ût(4ρ) is differentiable for t. Moreover,

d
dt

∣∣∣∣∣
t=0

(L(ût) + ût(4ρ)) = −
1
V

∫
M
ηωn

φ?
. (6.14)

To prove this claim, we let a convex function g(t) = ût(p) for each fixed p ∈ 2P. Then it has left and
right derivatives g′−(t; p), g′+(t; p), respectively. Moreover, they are monotone and g′−(t; p) ≤ g′+(t; p).
Thus, g′−, g

′
+ ∈ L∞loc. It follows that

d
dt

∣∣∣∣∣
t=τ±

∫
2P+

ûτπdy = lim
τ′→0±

1
τ′

∫
2P+

(ûτ+τ′ − ûτ)πdy

and by the Lebesgue monotone convergence theorem,

d
dt

∣∣∣∣∣
t=τ±

∫
2P+

ûτπdy =

∫
2P+

g′±(τ; p)πdy.
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Recall that g′−(t; p) = g′+(t; p) holds almost everywhere. Thus we see that

L(ût) + u(4ρ) =
1
V

∫
2P+

ûtπdy

is differentiable.
Note that

uψ̂t
= uψ?+tη,

where uψ?+tη is the Legendre function of ψ? + tη. It follows from Part (2) in Lemma 4.10 that
˙̂ψ0 = −u̇0 = η, almost everywhere.

Hence by Lemma 4.5 (or Remark 4.11), we get
d
dt

∣∣∣∣∣
t=0

(L(ût) + ût(4ρ)) =
1
V

∫
2P+

˙̂u0πdy

= −
1
V

∫
2P
ηπdy = −

1
V

∫
a+

ηMAR;π(ψ0)dx

= −
1
V

∫
M
ηωn

φ?
,

where φ? = ψ∗ − ψ0. The claim is proved.
Similar with Claim 6.7, we have

d
dt

∣∣∣∣∣
t=0

(F (ût) − ût(4ρ)) =
1
V

∫
a+

ηe−ψ?J(x)dx

=

∫
G
ηe−φ?+h0ωn

0. (6.15)

Thus, by (6.12)–(6.15), we derive

0 =
d
dt

∣∣∣∣∣
t=0
D̃(t) =

1
V

∫
G
η[e−φ?+h0ωn

0 − ω
n
φ?

]dx. (6.16)

As a consequence,
ωn
φ∗

= e−ψ?+h0ωn
0, in G.

Therefore, by Lemma 4.5 and KAK-integration formula, we prove that φ? satisfies (2.1) on G.
Next we show that ωφ? can be extended to a singular Kähler-Einstein metric on M. Choose an ε0

such that 4ρ ∈ Int(2(1− ε0)P). Since u? is locally uniformly bounded on 2P, there is a constant C? > 0
such that

ψ? ≥ (1 − ε0)v2P −C?.

Thus
e−ψ?(x)J(x)

is bounded on a+. Also π(∂ψ?) is bounded. Therefore, by (4.11), for any ε > 0, we can find a
neighborhood Uε of M \G such that ∣∣∣∣∣∣

∫
Uε

(ωn
φ?
− eh0−ψ?ωn

0)

∣∣∣∣∣∣ < ε.

This implies that φ? can be extended to be a global solution of (2.1) on M. The proposition is proved.
�

Mathematics in Engineering Volume 5, Issue 2, 1–43.



30

7. Q-Fano compactifications of S O4(C)

In this section, we will constructQ-Fano compactifications of S O4(C) as examples and in particular,
we will prove Theorem 1.3. Note that in this case rank(G) = 2. Thus we can use Theorem 1.2 to verify
whether there exists a Kähler-Einstein metric on a Q-Fano S O4(C)-compactification by computing the
barycenter of their associated polytopes P+. For convenience, we will work with P+ instead of 2P+

throughout this section. It is easy to see that the condition (1.2) is equivalent to

bar(P+) ∈ 2ρ + Ξ. (7.1)

Let

R(t) =

 cos t − sin t

sin t cos t

 .
Then we can choose a maximal torus of SO4(C) in GL4(C) as follows,

TC =


R(z1) O

O R(z2)

 |z1, z2 ∈ C

 .
Recall M the lattice of SO4(C)-weights. Denote the basis of N = HomZ(M,Z) by E1, E2 which
generates the actions of R(z1) and R(z2). Thus we have the two positive roots inM,

α1 = (1,−1), α2 = (1, 1).

Also we get
a
∗
+ = {(x, y)| − x < y < x}, 2ρ = (2, 0)

and

2ρ + Ξ = {(x, y)| − x + 2 < y < x − 2}. (7.2)

7.1. Gorenstein Fano SO4(C)-compactifications

In this subsection, we use Lemma 3.1 to exhaust all polytopes associated to the Gorenstein Fano
compactifications. Here by Gorenstein, we mean that K−1

Mreg
can be extended to a holomorphic line

bundle on M. In this case, the whole polytope P is a lattice polytope. Also, since 2ρ = (2, 0), each
outer edge ¶ of P+ must lies on some line

lp,q(x, y) = (1 + 2p) − (px + qy) = 0 (7.3)

for some coprime pair (p, q). Assume that lp,q ≥ 0 on P. By the convexity and W-invariance of P,
(p, q) must satisfy

p ≥ |q| ≥ 0.

Let us start at the outer edge F1 of P+ which intersects the Weyl wall

W1 = {x − y = 0}.
¶An edge of P+ is called an outer one if it does not lie in any Weyl wall, cf. [36].
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There are two cases: Case-1. F1 is orthogonal to W1; Case-2. F1 is not orthogonal to W1.
Case-1. F1 is orthogonal to W1. Then F1 lies on

{(x, y)| l1,1(x, y) = 3 − x − y = 0}.

Consider the vertex A1 = (x1, 3− x1) of P+ on this edge and suppose that the other edge F2 at this point
lies on

{(x, y)| lp2,q2(x, y) = 0}.

Thus

2p2 + 1 = x1 p2 + (3 − x1)q2, (7.4)

and by the convexity of P,

p2 > q2 ≥ 0.

We will have two subcases according to the possible choice A1 = (2, 1) or (3, 0).
Case-1.1. A1 = (2, 1). Then by (7.4),

2p2 + 1 = 2p2 + q2.

Thus q2 = 1 and p2 ≥ 2.
On the other hand, lp2,q2 must pass another lattice point A2 = (x2, y2) as the other endpoint of F2.

It is direct to see that there are only two possible choices p2 = 2, 4 and three choices of A2 = (5,−5),
(3,−1) and (3,−3).

Case-1.1.1. A2 = (5,−5) which lies on the other Weyl wall W2 = {x + y = 0}. There can not be
any other outer edges of P+, and P+ is given by the first case in Figure 5 (we denote it by P(1)

+ ). By
Theorem 1.2 (or equivalently (7.1)), this compactification admits no Kähler-Einstein metric.

Case-1.1.2. A2 = (3,−1). Then we exhaust the third edge F3 which lies on

lp3,q3 = 2p3 + 1 − p3x − q3y,

so that

2p3 + 1 = 3p3 − q3,

p3 > 2q3 ≥ 0.

Hence the only possible choice is p3 = 1, q3 = 0 and the other endpoint of F3 is A3 = (3,−3). Then P+

is given by the second case in Figure 5. Again, this compactification admits no Kähler-Einstein metric.
Case-1.1.3. A2 = (3,−3) which lies on the other Weyl wall W2 = {x + y = 0}. There can not

be any other outer edges of P+, and P+ is given by the third one in Figure 5. By Theorem 1.2, this
compactification admits no Kähler-Einstein metric.
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• •
2ρ

A1

A2

Case-1.1.1: P(1)
+

• •
2ρ

A1

A2

A3

Case-1.1.2: P(2)
+

• •
2ρ

A1

A2

Case-1.1.3: P(3)
+

Figure 5. The three subcases of Case-1.1.

Case-1.2. A1 = (3, 0). By the same exhausting progress as in Case-1.1. There are two possible
polytopes P+, Case-1.2.1 and Case-1.2.2 (see the first two cases of Figure 6).

• •
2ρ

A1

A2

A3

Case-1.2.1: P(4)
+

• •
2ρ

A1

A2

A3

Case-1.2.2: P(5)
+

• •
2ρ

A1

A2

Case-2: P(6)
+

Figure 6. Subcases of Case-1.2 and Case-2.

Case-1.2.1. This compactification admits no Kähler-Einstein metric.
Case-1.2.2. This compactification admits a Kähler-Einstein metric.
Case-2. F1 is not orthogonal to W1. Then its intersection A1 = (x1, x1) with W1 is a vertex of P. We

see that F1 lies on lp1,q1 and

2p1 + 1 = (p1 + q1)x1,

p1 > q1 ≥ 0,

x1 = 2 +
1 − 2q1

p1 + q1
∈ N+.

So the only choice is
p1 = 1, q1 = 0
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and A1 = (3, 3). The only new polytope P+ is given by the last one of Figure 6, which admits a
Kähler-Einstein metric.

It is known that Case-1.1.2, Case-1.2.1 and Case-2 are the only smooth SO4(C)-compactifications
as shown in [41]. We summarize results of this subsection in Table 1.

Table 1. Gorenstein Fano SO4(C)-compactifications.

Cases. Edges, except Weyl walls Volume KE? Smoothness
Case-1.1.1 3-x-y=0; 5-2x-y=0 411

4 No Singular
Case-1.1.2 3-x-y=0; 5-2x-y=0; 3-x=0 10751

180 No Smooth
Case-1.1.3 3-x-y=0; 9-4x-y=0 16349

972 No Singular
Case-1.2.1 3-x-y=0; 3-x=0 1701

20 No Smooth
Case-1.2.2 3-x-y=0; 3-x+y=0 81

2 Yes Singular
Case-2 3-x=0 648

5 Yes Smooth

7.2. Q-Fano SO4(C)-compactifications

In general, for a fixed integer m > 0, it will be hard to give a classification of all Q-Fano
compactifications such that −mKX is Cartier. This is because when m is sufficiently divisible, there
will be too many repeated polytopes according to Lemma 3.1. In the following, we give a way to
exhaust all Q-Fano polytopes according to the intersection point of ∂P+ with x-axis.

We will adopt the notations from the previous subsection. We consider the intersection of P+ with
the positive part of the x-axis, namely (x0, 0). Then

x0 = 2 +
1
p0

for some p0 ∈ N+, and there is an edge which lies on some {lp0,q0 = 0}. Without loss of generality, we
may also assume that {lp0,q0 = 0} ∩ {y > 0} , ∅. Thus by symmetry, it suffices to consider the case

p0 ≥ q0 ≥ 0.

Indeed, by the prime condition, q0 , 0,±p0 if p0 , 1. Hence, we may assume

p0 > q0 > 0, p0 ≥ 2. (7.5)

We associate this number p0 to determine each Q-Fano polytope P (and hence Q-Fano
compactifications of SO4(C)). By the convexity, other edges determined by lp,q must satisfy (see Figure
7 below)

p ≤ p0,

since we assume that

P+ ⊆ ({lp0,q0 ≥ 0} ∩ a+). (7.6)
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• • ×

lp0 ,q0

lp,qP+
x

y

2 + 1
p0

2 + 1
p

2ρ

O

Figure 7. The relation p ≤ p0.

Thus, once p0 is fixed, there are only finitely possible Q-Fano compactifications of SO4(C)
associated to it. In Table 2, we list all possible Q-Fano compactifications with p0 ≤ 2, and test the
existence of Kähler-Einstein metrics on these compactifications. In Appendix 1 we figure out the
associated polytopes P of nine non-smooth examples in Table 2.

Table 2. Q-Fano SO4(C)-compactifications of cases p0 ≤ 2.

No. p0 (p, q) of edges, except Weyl walls Volume KE? Smoothness/Multiple
(1) 1 (1, 0) 648

5 Yes Smooth
(2) (1, 0), (1, 1) 1701

20 No Smooth
(3) (1,−1), (1, 1) 81

2 Yes Multiple=1
(4) 2 (2, 1) 25000

243 No Multiple=3
(5) (2, 1), (1, 1) 411

4 No Multiple=1
(6) (1, 0), (2, 1) 72728

1215 No Multiple=3
(7) (2, 1), (1,−1) 947

36 No Multiple=3
(8) (2,−1), (2, 1) 165625

7776 No Multiple=6
(9) (2, 1), (1, 0), (1, 1) 10751

180 No Smooth
(10) (2, 1), (1,−1), (1, 1) 12721

486 No Multiple=1
(11) (2, 1), (2,−1), (1, 1) 164609

7776 No Multiple=6
(12) (2, 1), (2,−1), (1, 1), (1,−1) 6059

288 No Multiple=6

7.3. Proof of Theorem 1.3

Proof. We introduce some notations for convenience: For any domain Ω ⊂ a∗+, define

Vol(Ω) :=
∫

Ω

πdx ∧ dy,

x̄(Ω) :=
1

V(Ω)

∫
Ω

xπdx ∧ dy,

ȳ(Ω) :=
1

V(Ω)

∫
Ω

yπdx ∧ dy,
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and
c̄(Ω) := x̄ + ȳ.

By Theorem 1.2 and (7.2), we have c̄(P+) > 2 whenever theQ-Fano compactification of SO4(C) admits
a Kähler-Einstein metric.

Recall the numbers p0, q0 introduced in Section 7.2. Consider the line segment It cut by P+ on
{y = x − 2t} for t ≥ 0 (see Figure 8 below). Set

C̄(t) :=

∫
It

c̄(y)π(y)ds∫
It
π(y)ds

and l(t) :=
∫

It

π(y)ds,

where ds is the standard Lebesgue measure on It. Then C̄(t), l(t) are the mean value of c̄(·) and length
of It against the weight π, respectively. Also, since P+ is bounded, there is some 0 ≤ t0 < +∞ so that
It is non-empty only on [0, t0]. Thus we get

c̄(P+) =

∫ t0
0

l(t)C̄(t)dt∫ t0
0

l(t)dt
. (7.7)

• • ×

lp0 ,q0

y = x − 2tP+
x

y

2 + 1
p0

2ρ
O

It

Figure 8. The line segment It = P+ ∩ {y = x − 2t}.

On the other hand, for each 0 ≤ t ≤ t0, the line segment It = {(x0,−x0) + s(1, 1)| 0 ≤ s ≤ S t}, where
(x0,−x0) ∈ P+ and (x0,−x0) + S t(1, 1) ∈ ∂P, satisfies

C̄(t) =
3
2

S t ≤
3
2

S 0 ≤
6p0 + 3

2p0 + 2q0
.

Here in the first equality we use the relation (7.5), and the second follows from the fact that the endpoint
of I0 can not exceed the intersection point

lp0,q0 ∩ {t(1, 1)|t > 0} =

(
2p0 + 1
p0 + q0

,
2p0 + 1
p0 + q0

)
.

Thus by (7.7), we get

c̄(P+) ≤
6p0 + 3

2p0 + 2q0
.
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By the fact c̄(P+) > 2, we derive from the above upper bound of c̄(P+),

q0 <
1
2

p0 +
3
4
. (7.8)

Then

Vol(P+) ≤ Vol({lp0,q0 ≥ 0, x ≥ y ≥ −x})

=
8(1 + 2p0)6

45(p2
0 − q2

0)3

≤
8(1 + 2p0)6

45(p2
0 − ((1/2)p0 + (3/4))2)3

. (7.9)

It turns that for p0 ≥ 9,

Vol(P+) ≤
224755712

4100625
.

However,

Vol(P(4)
+ ) =

1701
20

> Vol(P(2)
+ ) =

10751
180

>
224755712
4100625

,

where Vol(P(2)
+ ) and Vol(P(4)

+ ) are volumes of polytopes in Case-1.1.2 and Case-1.2.1, respectively.
Hence, there is no desired Kähler-Einstein polytope with its volume equals to Vol(P(2)

+ ) or Vol(P(4)
+ )

when p0 ≥ 9.
Since q0 ∈ N, we can improve (7.9) to

Vol(P+) ≤
8(1 + 2p0)6

45(p2
0 − [(1/2)p0 + (3/4)]2)3

.

Here [x] = maxn∈Z{n ≤ x}. By the above estimation, when p0 = 4, 6, 7, 8, we have

Vol(P(4)
+ ) > Vol(P(2)

+ ) > Vol(P+). (7.10)

As a consequence, they are not Kähler-Einstein polytopes. Hence, it remains to deal with the cases
when p0 = 3, 5. In these two cases, we shall rule out polytopes that may not satisfy (7.10).

When p0 = 5, there are three possible choices of q0, i.e., q0 = 1, 2, 3 by (7.8). It is easy to see that
(7.10) still holds for the first two cases by the second relation in (7.9). Thus we only need to consider
all possible polytopes when q0 = 3. In this case, {l5,3 = 0} is an edge of P+.

Case-7.3.1. P+ has only one outer face which lies on {l5,3 = 0}. Then

Vol(P+) =
1771561
23040

.

Case-7.3.2. P+ has two outer edges. Assume that the second one lies on {lp1,q1 = 0}. Then

|q1| ≤ p1 ≤ 4 or p1 = 5, q1 = −3.

By a direct computation, we see that (7.10) holds except the following two subcases:
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Case-7.3.2.1. p1 = 4, q1 = 3,

Vol(P+) =
383478671
5000940

.

Case-7.3.2.2. p1 = 2, q1 = 1,

Vol(P+) =
567779
7680

.

Case-7.3.3. P+ has three outer edges. Then P+ is obtained by cutting one of polytopes in Case-7.3.2
with adding new edge {lp2,q2 = 0}. In fact we only need to consider P+ obtained by cutting Case-7.3.2.1
and Case-7.3.2.2 above, since it obviously satisfies (7.10) in the other cases. By our construction, we
can assume that |q2| ≤ p2 ≤ p1. The only possible P which does not satisfy (7.10) is the case that
p1 = 4, q1 = 3 and p2 = 2, q2 = 1. However,

Vol(P+) =
92167583
1250235

.

Case-7.3.4. P+ has four outer edges. We only need to consider P+ which is obtained by cutting
Case-7.3.3 with adding new edge {lp3,q3 = 0} with |q3| ≤ p3 ≤ 2. One can show that all of these
possible P+ satisfy (7.10). Thus we do not need to consider more polytopes with more than four outer
edges in case of p0 = 5. Hence we conclude that for all polytopes P with p0 = 5,

Vol(P+) , Vol(P(2)
+ ) or Vol(P(4)

+ ).

Theorem 1.3 is true when p0 = 5.
The case p0 = 3 can be ruled out in the same way. We only list the exceptional polytopes such that

the volumes of P+ do not satisfy (7.10):
Case-7.3.1’. P+ has only one outer face {l3,2 = 0}. Then

Vol(P+) =
941192

5625
.

Case-7.3.2’. P+ has two outer face {l3,2 = 0} and {l2,1 = 0}. Then

Vol(P+) =
177064

1875
.

In summary, when p0 ≥ 3, the volume of P+ is not equal to either Vol(P(2)
+ ) or Vol(P(3)

+ ). Finally by
exhausting all possible compactifications for p0 = 1, 2 (see Table-2), we finish the proof of Theorem
1.3.

�

Remark 7.1. If P+ is further symmetric under the reflection with respect to the x-axis, it is easy to see
its barycenter is (x̄(P+), 0) and

x̄(P+) ≤ x̄({−x ≤ y ≤ x, 0 ≤ x ≤ (2 +
1
p0

)}) =
6
7

(2 +
1
p0

).

Thus a Kähler-Einstein polytope of this type must satisfy

p0 ≤ 3.
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A. Appendix 1: Non-smooth Q-Fano SO4(C)-compactifications with p0 ≤ 2

In this appendix we list all polytopes P+ of non-smooth Q-Fano SO4(C)-compactifications with
p0 ≤ 2, namely, (3)–(8) and (10)–(12) labeled as in Table 2 (see Figure 9 below).
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• •
2ρ

(3)

• •
2ρ

(4)

• •
2ρ

(5)

• •
2ρ

(6)

• •
2ρ

(7)

• •
2ρ

(8)

• •
2ρ

(10)

• •
2ρ

(11)

• •
2ρ

(12)

Figure 9. The Cases when p0 ≤ 2. The polytopes are numbered according to Table 2.

B. Appendix 2: An improvement of Theorem 1.2

In this appendix, we show that the fine condition in Theorem 1.2 can be dropped by a recent result
of Li in [32, Theorem 1.2]. Namely, we can generalize Theorem 1.1 to a Q-Fano G-compactification
M.

Let G be the image of G × G embedded in Aut0(M), the identity component of Aut(M). Then the
image T′ of Z(G) × {e} is a subtorus of T = Z(G). Let MNA(·) and JNA

T (·) be the non-Archimedean
Mabuchi K-energy and J-functional defined in [13, 32], respectively. By [32, Theorem 1.2], it
suffices to check that M is G-uniformly K-stable under the assumption (1.2). More precisely, by [36,
Proposition 4.2] (an analogous version of Lemma 6.2), we prove
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Theorem B.1. Suppose that (1.2) holds. Then there is a constant c0 > 0 such that for any G-
equivariant normal test configuration (X,L) of (M,−KM), it holds

MNA(X,L) ≥ c0 · JNA
T (X,L). (B.1)

Consequently, Proposition 6.1 holds and so M admits a (singular) Kähler-Einstein metric.

Proof. We need to compute the two functionals MNA(·) and JNA
T (·). Note that these two functionals can

be computed via the C∗-weights on (X,L) (cf. [13, 40]). Moreover, the first one is also same with the
CM-weight in [40,44,45] when the central fiber is reduced. In our case for a general G-equivariant test
configuration, it can be normalized with a reduced central fiber via a base change as follows.

Recall that the G-equivariant normal test configurations are in one-one correspondence with W-
invariant, convex, piecewise linear functions with rational coefficients on P (cf. [5, Section 2.4]). In
particular, when M is a toric manifold with torus action T, T-equivariant normal test configurations are
same with toric degenerations. Thus there is such a function f associated to π : (X,L)→ C. By a base
change z→ zd on C for sufficiently divisible d ∈ N+, the normalization

(X(d),L(d)) := (X,L)normalization
z→zd

has a reduced central fibre (cf. [13, Proposition 7.16]). In fact, from the proof of [35, Theorem 4.1],
(X(d),L(d)) is still a G-equivariant normal test configuration associated to d f .

By [13, Proposition 2.8], we have

MNA(X(d),L(d)) = Fut(X(d),L(d)). (B.2)

Note that MNA(·) is linear under the base change. It follows

MNA(X,L) =
1
d

Fut(X(d),L(d)).

On the other hand, by (3.11) and (3.13) in [36],

Fut(X(d),L(d)) =
d
V

∫
2P+

〈y − 4ρ,∇ f 〉πdy.

This formula was proved by Donaldson for f with integral coefficients on a toric manifold [24,
Proposition 4.2.1], but the arguments in his proof do not generalize to general cases.‖ Thus

MNA(X,L) =
1
V

∫
2P+

〈y − 4ρ,∇ f 〉πdy (B.3)

Also, by an analogous argument for any toric degeneration on a toric manifold in [29], we can get

JNA(X,L) =
1
V

∫
2P+

( f −min
2P+

f )πdy, (B.4)

‖In fact, by using (B.3) and [13,40,44,45], Proposition 4.2.1 in [24] is equivalent to that the central fiber of (X,L) is reduced. Clearly,
this condition on the central fiber does not hold in general cases.
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and for a twisted test configuration it holds

JNA(Xξ,Lξ) =
1
V

∫
2P+

( f − ξ(y) −min
2P+

{ f − ξ(y)})πdy, (B.5)

where ξ lies in the Lie algebra Lie(T′) of T′ [29, 32].
By [36, Proposition 4.2], we see∫

2P+

〈y − 4ρ,∇u〉πdy

≥ c0

∫
∂(2P+)

u〈y, ν〉πdσ0, ∀ convex, W-invariant u satisfying (4.2). (B.6)

Since u is convex and W-invariant,
∇u(y) ∈ a+, ∀y ∈ P+.

It implies that u(ty) is non-decreasing for t ≥ 0. Thus by (4.2),∫
2P+

uπdy =

∫ 1

0
tn−1

(∫
∂(2P+)

u(ty)〈y, ν〉πdσ0

)
dt

≤
1
n

∫
∂(2P+)

u(y)〈y, ν〉πdσ0.

Combining with (B.6), we get∫
2P+

〈y − 4ρ,∇u〉πdy

≥ c0

∫
2P+

uπdy, ∀ convex, W-invariant u satisfying (4.2). (B.7)

For the function f in (B.3), by the W-invariance, there is always an ξ ∈ Lie(T′) such that

fξ := f − ξ(y) −min{ f − ξ(y)}

satisfies (4.2). Thus applying (B.7) to fξ together with (B.3) and (B.5), we obtain

MNA(X,L) ≥
c0

V

∫
2P+

fξπdy = c0JNA(Xξ,Lξ) ≥ c0JNA
T (X,L).

Hence (B.1) holds. �
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