We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation
$ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $
on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.
Citation: Daniele Castorina, Giovanni Catino, Carlo Mantegazza. A triviality result for semilinear parabolic equations[J]. Mathematics in Engineering, 2022, 4(1): 1-15. doi: 10.3934/mine.2022002
We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation
$ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $
on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.
[1] | D. G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 25 (1967), 81-122. doi: 10.1007/BF00281291 |
[2] | M. F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, In: Équations aux dérivées partielles et applications, Paris: Gauthier-Villars, 1998,189-198. |
[3] | M. F. Bidaut-Véron, T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Commun. Part. Diff. Eq., 21 (1996), 1035-1086. doi: 10.1080/03605309608821217 |
[4] | D. Castorina, C. Mantegazza, Ancient solutions of semilinear heat equations on Riemannian manifolds, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 85-101. doi: 10.4171/RLM/753 |
[5] | D. Castorina, C. Mantegazza, Ancient solutions of superlinear heat equations on Riemannian manifolds, Commun. Contemp. Math., 23 (2021), 2050033. doi: 10.1142/S0219199720500339 |
[6] | S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Springer-Verlag, 1990. |
[7] | C. Gui, W. M. Ni, X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in ${\bf{R}}^n$, Commun. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906 |
[8] | B. Güneysu, Sequences of Laplacian cut-off functions, J. Geom. Anal., 26 (2016), 171-184. doi: 10.1007/s12220-014-9543-9 |
[9] | P. Petersen, Riemannian geometry, 2 Eds., New York: Springer, 2006. |
[10] | P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8 |
[11] | P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908. doi: 10.1512/iumj.2007.56.2911 |
[12] | P. Quittner, Optimal Liouville theorems for superlinear parabolic problems, arXiv: 2003.13223. |
[13] | L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom., 36 (1992), 417-450. doi: 10.4310/jdg/1214448748 |
[14] | G. Talenti, Best constant in Sobolev inequality, Annali di Matematica, 110 (1976), 353-372. doi: 10.1007/BF02418013 |