Research article Special Issues

A triviality result for semilinear parabolic equations

  • Received: 15 July 2020 Accepted: 30 January 2021 Published: 10 March 2021
  • We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation

    $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $

    on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.

    Citation: Daniele Castorina, Giovanni Catino, Carlo Mantegazza. A triviality result for semilinear parabolic equations[J]. Mathematics in Engineering, 2022, 4(1): 1-15. doi: 10.3934/mine.2022002

    Related Papers:

  • We show a triviality result for "pointwise" monotone in time, bounded "eternal" solutions of the semilinear heat equation

    $ \begin{equation*} u_{t} = \Delta u + |u|^{p} \end{equation*} $

    on complete Riemannian manifolds of dimension $ n \geq 5 $ with nonnegative Ricci tensor, when $ p $ is smaller than the critical Sobolev exponent $ \frac{n+2}{n-2} $.



    加载中


    [1] D. G. Aronson, J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rat. Mech. Anal., 25 (1967), 81-122. doi: 10.1007/BF00281291
    [2] M. F. Bidaut-Véron, Initial blow-up for the solutions of a semilinear parabolic equation with source term, In: Équations aux dérivées partielles et applications, Paris: Gauthier-Villars, 1998,189-198.
    [3] M. F. Bidaut-Véron, T. Raoux, Asymptotics of solutions of some nonlinear elliptic systems, Commun. Part. Diff. Eq., 21 (1996), 1035-1086. doi: 10.1080/03605309608821217
    [4] D. Castorina, C. Mantegazza, Ancient solutions of semilinear heat equations on Riemannian manifolds, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 28 (2017), 85-101. doi: 10.4171/RLM/753
    [5] D. Castorina, C. Mantegazza, Ancient solutions of superlinear heat equations on Riemannian manifolds, Commun. Contemp. Math., 23 (2021), 2050033. doi: 10.1142/S0219199720500339
    [6] S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Springer-Verlag, 1990.
    [7] C. Gui, W. M. Ni, X. Wang, On the stability and instability of positive steady states of a semilinear heat equation in ${\bf{R}}^n$, Commun. Pure Appl. Math., 45 (1992), 1153-1181. doi: 10.1002/cpa.3160450906
    [8] B. Güneysu, Sequences of Laplacian cut-off functions, J. Geom. Anal., 26 (2016), 171-184. doi: 10.1007/s12220-014-9543-9
    [9] P. Petersen, Riemannian geometry, 2 Eds., New York: Springer, 2006.
    [10] P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. I. Elliptic equations and systems, Duke Math. J., 139 (2007), 555-579. doi: 10.1215/S0012-7094-07-13935-8
    [11] P. Poláčik, P. Quittner, P. Souplet, Singularity and decay estimates in superlinear problems via Liouville-type theorems. II. Parabolic equations, Indiana Univ. Math. J., 56 (2007), 879-908. doi: 10.1512/iumj.2007.56.2911
    [12] P. Quittner, Optimal Liouville theorems for superlinear parabolic problems, arXiv: 2003.13223.
    [13] L. Saloff-Coste, Uniformly elliptic operators on Riemannian manifolds, J. Diff. Geom., 36 (1992), 417-450. doi: 10.4310/jdg/1214448748
    [14] G. Talenti, Best constant in Sobolev inequality, Annali di Matematica, 110 (1976), 353-372. doi: 10.1007/BF02418013
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2148) PDF downloads(223) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog