
Telehealth is the use of technology to achieve remote care. This technology can be synchronous or asynchronous. The use of Telehealth increased during the pandemic in the developed countries. On the contrary, telehealth is not fully utilized in public healthcare in many Sub-Saharan African states. This editorial explores the benefits of the adoption of virtual care in public healthcare during COVID-19 pandemic. Benefits of telehealth include efficient stretching of healthcare resources, forward triaging, prevention of medical personnel infection, aiding medical students' clinical observation and participation, and assurance of social support for patients. The absence of policy and political will, inadequate funding, cost of sustenance of telehealth services, patient and healthcare personnel bias on telehealth, willingness to pay and the peculiar challenges in each country are identified limiting factors to the use of Telehealth in Sub-Saharan Africa. We affirm that the foundation to full implementation of Telehealth services in Sub-Saharan African states lies within government political will. Further, the creation of policy framework for telehealth, removal of telecommunication company monopoly, utilization of cloud-based processing telehealth systems, development of telehealth software with broadband efficiency that fits Sub-Saharan clime, the introduction of telehealth training into medical school curriculums, and research and development of user-interface that fits the peculiarities of Sub-Saharan Africa are the solutions we propose to change the current narrative of virtual care in Sub-Saharan Africa.
Citation: Dolapo Babalola, Michael Anayo, David Ayomide Itoya. Telehealth during COVID-19: why Sub-Saharan Africa is yet to log-in to virtual healthcare?[J]. AIMS Medical Science, 2021, 8(1): 46-55. doi: 10.3934/medsci.2021006
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Yamin Sayyari, Mana Donganont, Mehdi Dehghanian, Morteza Afshar Jahanshahi . Strongly convex functions and extensions of related inequalities with applications to entropy. AIMS Mathematics, 2024, 9(5): 10997-11006. doi: 10.3934/math.2024538 |
[3] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[4] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[5] | Fangfang Ma . Fractional version of the Jensen-Mercer and Hermite-Jensen-Mercer type inequalities for strongly h-convex function. AIMS Mathematics, 2022, 7(1): 784-803. doi: 10.3934/math.2022047 |
[6] | Asadullah Sohail, Muhammad Adil Khan, Xiaoye Ding, Mohamed Sharaf, Mohammed A. El-Meligy . Improvements of the integral Jensen inequality through the treatment of the concept of convexity of thrice differential functions. AIMS Mathematics, 2024, 9(12): 33973-33994. doi: 10.3934/math.20241620 |
[7] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[8] | Asadullah Sohail, Muhammad Adil Khan, Emad Abouel Nasr, Xiaoye Ding . Further improvements of the Jensen inequality in the integral sense by virtue of 6-convexity along with applications. AIMS Mathematics, 2024, 9(5): 11278-11303. doi: 10.3934/math.2024553 |
[9] | Muhammad Tariq, Hijaz Ahmad, Soubhagya Kumar Sahoo, Artion Kashuri, Taher A. Nofal, Ching-Hsien Hsu . Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Mathematics, 2022, 7(8): 15159-15181. doi: 10.3934/math.2022831 |
[10] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
Telehealth is the use of technology to achieve remote care. This technology can be synchronous or asynchronous. The use of Telehealth increased during the pandemic in the developed countries. On the contrary, telehealth is not fully utilized in public healthcare in many Sub-Saharan African states. This editorial explores the benefits of the adoption of virtual care in public healthcare during COVID-19 pandemic. Benefits of telehealth include efficient stretching of healthcare resources, forward triaging, prevention of medical personnel infection, aiding medical students' clinical observation and participation, and assurance of social support for patients. The absence of policy and political will, inadequate funding, cost of sustenance of telehealth services, patient and healthcare personnel bias on telehealth, willingness to pay and the peculiar challenges in each country are identified limiting factors to the use of Telehealth in Sub-Saharan Africa. We affirm that the foundation to full implementation of Telehealth services in Sub-Saharan African states lies within government political will. Further, the creation of policy framework for telehealth, removal of telecommunication company monopoly, utilization of cloud-based processing telehealth systems, development of telehealth software with broadband efficiency that fits Sub-Saharan clime, the introduction of telehealth training into medical school curriculums, and research and development of user-interface that fits the peculiarities of Sub-Saharan Africa are the solutions we propose to change the current narrative of virtual care in Sub-Saharan Africa.
A set C⊆R is said to be convex, if
(1−ϑ)ς1+ϑς2∈C,∀ς1,ς2∈C,ϑ∈[0,1]. |
A mapping ˉΞ:C→R is said to be convex, if
ˉΞ((1−ϑ)ς1+ϑς2)≤(1−ϑ)ˉΞ(ς1)+ϑˉΞ(ς2),∀ς1,ς2∈C,ϑ∈[0,1]. |
Convex analysis is a vital and extensive branch of mathematics that investigates convex sets and mappings defined over them, as well as their properties. It encompasses both geometric and classical aspects of the problem and has numerous applications in functional analysis, topology, optimization theory, fixed-point theory, economics, engineering, and other fields. The theory of convex mappings is closely linked with the theory of inequalities. Inequalities are crucial in mathematical analysis due to their vast applications. In recent years, the theory of inequalities has attracted many researchers, as it presents various intriguing problems. The development of this theory, in conjunction with convex mapping, has been remarkable over the past few decades. Numerous inequalities can be derived directly from the application of convex mappings. One of the most widely studied results in this context is the Hermite-Hadamard (also known as trapezium) inequality, which provides a necessary and sufficient condition for a mapping to be convex. It reads as:
Let ˉΞ:I=[ς1,ς2]⊆R→R be a convex mapping, then
ˉΞ(ς1+ς22)≤1ς2−ς1ς2∫ς1ˉΞ(x)dx≤ˉΞ(ς1)+ˉΞ(ς2)2. |
One of the fruitful results pertaining to the convexity property of the mappings is Jensen's inequality, which reads as:
Theorem 1.1. [1] Let 0<x1≤x2≤x3≤….≤xn and let μ=(μ1,μ2,…,μn) nonnegative weights such that n∑i=0μ=1. If ˉΞ:I=[ς1,ς2]⊆R→R is a convex mapping, then
ˉΞ(n∑i=1μixi)≤n∑i=1μiˉΞ(xi), |
where xi∈[ς1,ς2] and μi∈[0,1], (i=¯1,n).
In 2001 Mercer, [2] derived the discrete version of the Jensen inequality known as the Jensen-Mercer inequality, and is given as:
Theorem 1.2. Let ˉΞ:I=[ς1,ς2]⊆R→R be a convex mapping, then
ˉΞ(ς1+ς2−n∑i=1μixi)≤ˉΞ(ς1)+ˉΞ(ς2)−n∑i=1μiˉΞ(xi), | (1.1) |
for each xi∈[ς1,ς2] and μi∈[0,1], (i=¯1,n) with ∑ni=1μ=1.
Convex mapping theory has numerous applications in approximation theory, particularly in obtaining error bounds using inequalities. The Hermite-Hadamard inequality (HHI) plays a crucial role in some trapezoidal quadrature rules and estimations. Specifically, the left and right estimations of HHI provide the error bounds for the midpoint rule and trapezoidal rule, respectively. For details, see [3].
Building upon inequality (1.1), Kian and Moslehian [4] proposed a new refinement and extension of the trapezium inequality. Subsequently, Ogulmus et al. [5] derived fractional analogues of TJM-like inequalities based on their work. There have been several recent publications on this inequality. For example, see [6,7,8,9,10].
The h and q calculus was introduced by Euler in the 18th century, and since then has undergone significant developments and gained much attention. It is a type of time scale calculus that focuses on the 0<q<1 domain, with major areas of study including q-derivatives, q-integrals, and their generalizations using various techniques such as pq-calculus, interval valued technique, and trapezoidal strips. This calculus has numerous applications in special mappings, physics, number theory, combinatorics, cryptography, and other fields.
In recent years, the study of inequalities based on q-calculus has become a prominent subject in mathematical analysis. Many researchers have dedicated their efforts to obtaining new q-analogues of classical inequalities. For example, Sudsutad et al. [11] discussed q-Hölder's inequality and Hermite-Hadamard's inequalities via quantum calculus, while Noor et al. [12] derived some q-variants of integral inequalities. In 2018, Alp et al. [13] corrected the q-HHI derived some q-mid-point type inequalities. Other recent developments include Zhang et al. [14] formulating q-integral inequalities via (α,m) convex mappings, Deng et al. [15] investigating a stronger version of q-integral inequalities in terms of preinvex mappings, Kunt [16] deriving fractional quantum variants of HHI, and Cortez et al. [17] deriving fractional quantum integral inequalities involving new generalized convex mappings.
Further research in this field has resulted in Iftikhar et al. [18] proposing new quantum analogies of Simpson's type inequalities, Wang [19] presenting some q-outcomes related to s-preinvexity, Chu et al. [20] introducing the concept of generalized right q-derivatives and integrals and developing new Ostrowski's type inequalities involving n-polynomial convex mappings, and authors in [21] deducing some parametric quantum inequalities with respect to preinvex mappings. Additionally, Kalsoom et al. [22] analyzed the generalized quantum integral inequalities involving preinvex mappings, Ali et al. [23] incorporated with some q-mid-point HHI and derived some trapezoidal type inequalities, and Bin-Mohsin et al. [24] established some new generalized TJM type inequalities in the light of q-calculus. The quantum and post quantum variants of TJM inequalities have also been proven in [25,26], which has opened new avenues for researchers. For more information, refer to [27,28,29].
Our paper aims to explore the mid-point-TJM inequality by utilizing q-concepts and majorization techniques. The theory of majorization plays a significant role in mathematical analysis and has a wide range of applications in information theory and inequality theory. It encompasses both discrete and continuous forms of inequalities, which are detailed in [30,31,32]. Our work is organized as follows: the first section serves as an introduction to the topic, while the subsequent section provides a review of essential definitions and facts that are instrumental in proving our main results. The third section discusses quantum TJM inequalities and presents two new q-integral identities in the first subsection, followed by the presentation of new associated bounds in the third subsection. In the final section, we delve into the applications of our findings, including numerical examples and graphical analysis. The novelty of the current study is that we develop some new generalized TJM inequalities in the frame of quantum calculus by linking the concepts of majorization theory. Results obtained in the current study unifies many known and new results in both continuous and discrete form. We hope that our approach and methods will stimulate further research in this field.
In this section, we discuss some preliminaries which will be helpful during the study of this paper. First of all, we recall some basic concepts from quantum calculus. Tariboon and Ntouyas have defined the q-derivative as:
Definition 2.1. [33] Assume ˉΞ:J=[ς1,ς2]⊆R→R is a continuous mapping and suppose u∈J, then
ς1DqˉΞ(u)=ˉΞ(u)−ˉΞ(qu+(1−q)ς1)(1−q)(u−ς1),u≠ς1,0<q<1. | (2.1) |
We say that ˉΞ is q-differentiable on J provided ς1DqˉΞ(u) exists for all u∈J. Note that if ς1=0 in (2.1), then 0DqˉΞ=DqˉΞ, where Dq is the well-known classical q -derivative of the mapping ˉΞ(u) defined by
DqˉΞ(u)=ˉΞ(u)−ˉΞ(qu)(1−q)u. |
Also, here and further we use the following notation for q-number
[n]q=1−qn1−q=1+q+q2+…+qn−1,q∈(0,1). |
Jackson gave the definition of the q-Jackson integral from 0 to ς2 for 0<q<1 as follows:
∫ς20ˉΞ(ϱ)0dqϱ=(1−q)ς2∞∑n=0qnˉΞ(bqn) | (2.2) |
provided the sum converges absolutely. Jackson also gave the q-Jackson integral on a generic interval [ς1,ς2] as:
∫ς2ς1ˉΞ(ϱ)dqϱ=∫ς20ˉΞ(ϱ)dqϱ+∫ς10ˉΞ(ϱ)dqϱ. |
We now give the definition of the qς1-definite integral.
Definition 2.2. [33] Let ˉΞ:[ς1,ς2]→R be a continuous mapping. Then, the qς1-definite integral on [ς1,ς2] is defined as:
∫ς2ς1ˉΞ(ϱ)ς1dqϱ=(1−q)(ς2−ς1)∞∑n=0qnˉΞ(qnς2+(1−qn)ς1)=(ς2−ς1)∫10ˉΞ((1−ϱ)ς1+ϱς2)dqϱ. |
Now we recall some more important results, which will help us in deriving our main result.
Theorem 2.1. [33] If ˉΞ:[ς1,ς2]→R is a CM and u∈[ς1,ς2], then
ς1Dq∫zς1ˉΞ(u)ς1dqu=ˉΞ(z).∫zcς1DqˉΞ(u)ς1dqu=ˉΞ(z)−ˉΞ(c). |
Now we recall the definitions of the qς2 derivative and definite integrals.
Definition 2.3. [34] Let ˉΞ:[ς1,ς2]→R be a CM and u∈[ς1,ς2], then
bDqˉΞ(u)=ˉΞ(qu+(1−q)ς2)−ˉΞ(u)(1−q)(ς2−u),u<ς2. |
Definition 2.4. [34] Let ˉΞ:[ς1,ς2]→R be a continuous mapping. Then, the qς2-definite integral on [ς1,ς2] is defined as:
∫ς2ς1ˉΞ(ϱ)ς2dqϱ=(1−q)(ς2−ς1)∞∑n=0qnˉΞ(qnς1+(1−qn)ς2)=(ς2−ς1)∫10ˉΞ(ϑς1+(1−ϱ)ς2)dqϱ. |
Now we rewrite some further results.
Theorem 2.2. [34] If ˉΞ:[ς1,ς2]→R is a CM and u∈[ς1,ς2], then
ς2Dq∫ς2zˉΞ(u)ς2dqu=−ˉΞ(z).∫ς2zς2DqˉΞ(u)ς2dqu=ˉΞ(ς2)−ˉΞ(z). |
Lemma 2.1. [34] For a continuous mappings ˉΞ,Φ:[ς1,ς2]→R, then
∫c0Φ(ϑ)ς2DqˉΞ(ϑς1+(1−ϑ)ς2)dqϑ=1ς2−ς1∫c0DqΦ(ϑ)ˉΞ(qϑς1+(1−q_ϑ)ς2)dqϑ−Φ(ϑ)ˉΞ(ϑς1+(1−ϑ)ς2)ς2−ς1|c0. |
Using the Definition 2.4, one can have the following quantum version of the Hermite-Hadamard's inequality.
Theorem 2.3. [13] Let ˉΞ:[ς1,ς2]→R be a convex mapping, then for 0<q<1, we have
ˉΞ(ς1+qς21+q)≤1ς2−ς1∫ς2ς1ˉΞ(u)ς2dqu≤ˉΞ(ς1)+qˉΞ(ς2)1+q. | (2.3) |
Inspired by ongoing research, Ali et al. [23] calculated a new quantum version of the mid-point trapezium inequality.
Theorem 2.4. [23] Let ˉΞ:[ς1,ς2]→R be a convex mapping then
ˉΞ(ς1+ς22)≤1ς2−ς1[∫ς1+ς22ς1ˉΞ(x)ς1dqx+∫ς2ς1+ς22ˉΞ(x)ς2dqx]≤ˉΞ(ς1)+ˉΞ(ς2)2. | (2.4) |
Now we recall some known definitions and results regarding majorization theory.
Definition 2.5. [35] Let ς1=(ς11,ς12,…,ς1l) and ς2=(ς21,ς22,…,ς2l) be two l-tuples of real numbers and ς1[1]≥ς1[2]≥…≥ς2[l],ς2[1]≥ς2[2]≥…≥ς2[l] be their ordered components, then ς1 is said to majorize ς2 (symbolically ς2≺ς1), if
k∑s=1ς2[s]≤k∑s=1ς1[s]k=1,2,3,…,l−1 |
and
l∑s=1ς2[s]=l∑s=1ς1[s]. |
Majorization is a partial ordered relation of two l-tuples ς1=(ς11,ς12,…,ς1l) and ς2=(ς21,ς22,…,ς2l) which explains that ς1 is more nearly equal to ς2. Now we recall majorization theorem due to Hardy, Littlewood and Polya [36].
Theorem 2.5. Let ς1=(ς11,ς12,…,ς1l) and ς2=(ς21,ς22,…,ς2l) be two real l-tuples such that ς1s,ς2s∈I=[ς1,ς2]. Then
l∑s=1f(ς2s)≤l∑s=1f(ς1s) |
is valid for each continuous convex mapping ˉΞ:I→R if and only if ς2≺ς1.
The weighted version of the above theorem is given as:
Theorem 2.6. [37] Let ˉΞ:I→R be a continuous convex mapping and ς1=(ς11,ς12,…,ς1l),ς2=(ς21,ς22,…,ς2l) and p=(p1,p2,…,pl) be the three l-tuples such that ς1s,ς2s∈I,ps≥0,s∈{1,2,3,….,l}. If ς2 is a decreasing l-tuple, then
k∑s=1psς2[s]≤k∑s=1psς1[s]k=1,2,3,…,l−1, | (2.5) |
l∑s=1psς2[s]=l∑s=1psς1[s], |
then
l∑s=1psˉΞ(ς2s)≤l∑s=1psˉΞ(ς1s). |
Theorem 2.7. [38] Suppose that ˉΞ:[ς1,ς2]→R be a real valued convex mapping (xij) is a n×m real matrix and u=(u1,u2,…,ul) is a l-tuple such that uj,xij,wi≥0 for i=1,2,3,…,n with ∑ni=1wi=1. If u every row of xij then
ˉΞ(l∑j=1us−l−1∑j=1n∑i=1wixij)≤l∑j=1ˉΞ(us)−l−1∑j=1n∑i=1wif(xij). |
In this section, we derive q-TJM inequality associated with convex mapping. Furthermore, we also establish q-TJM like inequalities with the help of auxiliary results.
In the following section, we established a new mid-point TJM- inequality involving convexity and q-integrability of ˉΞ.
Theorem 3.1. Suppose that ˉΞ:I=[ς1,ς2]→R is real valued convex mapping and ϖ=(ϖ1,ϖ2,…,ϖl),ξ=(ξ1,ξ2,…,ξl),η=(η1,η2,…,ηl) are three l-tuples ϖs,ξs,ηs for all s∈{1,2,3,…,l}. If ξ≺ϖ and η≺ϖ, then
ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)≤l∑s=1ˉΞ(ϖs)−l−1∑s=11ηs−ξs[∫ξs+ηs2ξsˉΞ(u)ξsdqu+∫ηsξs+ηs2ˉΞ(u)ηsdqu]≤l∑s=1ˉΞ(ϖs)−l−1∑s=1ˉΞ(ξs+ηs2) | (3.1) |
and
ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)≤1∑l−1s=1ηs−ξs[∫∑ls=1ϖs−∑l−1s=1ξs+ηs2∑ls=1ϖs−∑l−1s=1ηsˉΞ(u)∑ls=1ϖs−∑l−1s=1ηsdqu+∫∑ls=1ϖs−∑l−1s=1ξs∑ls=1ϖs−∑l−1s=1ξs+ηs2ˉΞ(u)∑ls=1ϖs−∑l−1s=1ξsdqu]≤l∑s=1ˉΞ(ϖs)−l−1∑s=1ˉΞ(ξs)+ˉΞ(ηs)2. | (3.2) |
Proof. To use Theorem 2.7 we show that ϖ majorizes r and z where r=(r1,r2,…,rl),z=(z1,z2,…,zl),rj=ϑ2ξs+(2−ϑ)2ηs and zj=ϑ2ηs+(2−ϑ)2ξs for s={1,2,3,…,l}.
For this, let ∑kj=1ξ[j]=β1k and ∑kj=1η[j]=β2k for k=1,2,…,l−1. Then
k∑j=1r[j]=ϑ2k∑j=1ξ[j]+(2−ϑ)2k∑j=1η[j]=ϑ2β1k+(2−ϑ)2β2k. |
Since ξ≺ϖ and η≺ϖ then by definition of majorization, we have ∑kj=1ξ[j]≤∑kj=1ϖ[j] and ∑kj=1η[j]≤∑kj=1ϖ[j] that is
β1k≤k∑j=1ϖ[j] | (3.3) |
and
β2k≤k∑j=1ϖ[j]. | (3.4) |
Multiplying (3.3) by ϑ2 and (3.4) by 2−ϑ2 and then adding the resulting inequalities, we get
k∑j=1r[j]=ϑ2β1k+(2−ϑ)2β2k≤k∑j=1ϖ[j]. | (3.5) |
But ∑ls=1ϖs=∑ls=1ξs and ∑ls=1ϖs=∑ls=1ηs, then by using (3.5), we have
l∑s=1rs=l∑s=1ϖs. |
Hence r≺ϖ. Similarly, we can show that z≺ϖ. Then by using Theorem 3.2 for w1=w2=12, we have
ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)≤l∑s=1ˉΞ(ϖs)−l−1∑s=112[ˉΞ(ϑ2ξs+2−ϑ2ηs)+ˉΞ(ϑ2ηs+2−ϑ2ξs)]. | (3.6) |
Now taking the q-integration of (3.6), we have
ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)≤l∑s=1ˉΞ(ϖs)−l−1∑s=112[∫10ˉΞ(ϑ2ξs+2−ϑ2ηs)dqϑ+∫10ˉΞ(ϑ2ηs+2−ϑ2ξs)dqϑ]. |
After simplifying, we obtain the left inequality of (3.1).
For the right inequality of (3.1), using (2.4), we have
−l−1∑s=11ηs−ξs[∫ξs+ηs2ξsˉΞ(u)ξsdqu+∫ηsξs+ηs2ˉΞ(u)ηsdqu]≤−l−1∑s=1ˉΞ(ξs+ηs2). | (3.7) |
Adding ∑l−1s=1ˉΞ(ϖs) on both sides of (3.7), we obtain our required result. In this way, we complete the proof of our (3.1).
To prove (3.2), we apply the definition of convex mapping, we have
ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)=ˉΞ[12{(ϑ2(l∑s=1ϖs−l−1∑s=1ηs)+2−ϑ2(l∑s=1ϖs−l−1∑s=1ξs))+(ϑ2(l∑s=1ϖs−l−1∑s=1ξs)+2−ϑ2(l∑s=1ϖs−l−1∑s=1ηs))}]2ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)≤ˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))+ˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)). | (3.8) |
Now, taking the q-integration of (3.8) on both sides over [0,1] and using the definitions (2.1) and (2.3), then
2ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)≤∫10ˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ+∫10ˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ.=2∑l−1s=1ηs−ξs[∫∑ls=1ϖs−∑l−1s=1ξs+ηs2∑ls=1ϖs−∑l−1s=1ηsˉΞ(u)∑ls=1ϖs−∑l−1s=1ηsdqu+∫∑ls=1ϖs−∑l−1s=1ξs∑ls=1ϖs−∑l−1s=1ξs+ηs2ˉΞ(u)∑ls=1ϖs−∑l−1s=1ξsdqu]. |
Hence we complete the proof of our first inequality of (3.2).
To prove, our second inequality, we use the notion of convex mappings,
ˉΞ(l∑s=1ϖs−ϑ2l−1∑s=1ξs−2−ϑ2l−1∑s=1ηs)≤l∑s=1ˉΞ(ϖs)−ϑ2l−1∑s=1ˉΞ(ξs)−2−ϑ2l−1∑s=1ˉΞ(ηs). | (3.9) |
ˉΞ(l∑s=1ϖs−2−ϑ2l−1∑s=1ξs−ϑ2l−1∑s=1ηs)≤l∑s=1ˉΞ(ϖs)−ϑ2l−1∑s=1ˉΞ(ηs)−2−ϑ2l−1∑s=1ˉΞ(ξs). | (3.10) |
Adding (3.9) and (3.10), then q-integration of resulting inequality yields the required inequality.
∙ If we choose l=2, then
ˉΞ(ϖ1+ϖ2−ηs+ξs2)≤ˉΞ(ϖ1)+ˉΞ(ϖ2)−1η1−ξ1[∫ξ1+η12ξ1ˉΞ(u)ξ1dqu+∫η1ξ1+η12ˉΞ(u)η1dqu]≤ˉΞ(ϖ1)+ˉΞ(ϖ2)−ˉΞ(η1+ξ12) |
and
ˉΞ(ϖ1+ϖ2−ξ1+η12)≤1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]≤ˉΞ(ϖ1)+ˉΞ(ϖ2)−ˉΞ(ξ1)+ˉΞ(η1)2. |
For further demonstration, we discuss a numeric example in the support of Theorem 3.1.
Example 3.1. Considering ˉΞ(u)=u2, with ϖ1=−1,ξ1=1,η1=2,ϖ2=3 and q=0.5, then
ˉΞ(ϖ1+ϖ2−ξ1+η12)=(12)2=14.∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu=∫120u20dqu=114.∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu=∫112u21dqu=521.ˉΞ(ϖ1)+ˉΞ(ϖ2)−ˉΞ(ξ1)+ˉΞ(η1)2=152 |
From above calculations, we can infer that 0.25<0.31<7.5.
In the following subsection, our first target is to derive two new quantum integral identities involving ς1q and ς2q differentiability of the mappings and ordered n-tuples. Here, we propose a new general identity of mid-point type which will play a critical role in order to compute some new error bounds of mid-point schemes.
Lemma 3.1. Let ϖ=(ϖ1,ϖ2,ϖ3,…,ϖl), ξ=(ξ1,ξ2,..,ξl) and η=(η1,η2,…,ηl) be the three l-tuples such that ϖs,ξs,ηs∈[I] for all s∈{1,2,…,l},ϑ∈[0,1] and ˉΞ:J→R be a CM and 0<q<1. If ∑ls=1ϖs−∑l−1s=1ξsDqˉΞ and ∑ls=1ϖs−∑l−1s=1ηsDqˉΞ an integrable mapping on J∘, then
ϑ(ϖs;ξs;ηs)=∑l−1s=1(ηs−ξs)4[∫10qϑ∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ−∫10qϑ∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ], | (3.11) |
where
ϑ(ϖs;ξs;ηs):=1∑l−1s=1(ηs−ξs)[∫∑ls=1ϖs−∑l−1s=1ξs+ηs2∑ls=1ϖs−∑l−1s=1ηsˉΞ(u)∑ls=1ϖs−∑l−1s=1ηsdqu+∫∑ls=1ϖs−∑l−1s=1ξs∑ls=1ϖs−∑l−1s=1ξs+ηs2ˉΞ(u)∑ls=1ϖs−∑l−1s=1ξsdqu]−ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2). |
Proof. Consider the right-hand side of (3.11) as
I=∑l−1s=1(ηs−ξs)4[I1−I2]. | (3.12) |
By Lemma 2.1, we have
I1=∫10qϑ∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ=2q∑l−1s=1(ηs−ξs)∫10ˉΞ((1−qϑ)(l∑s=1ϖs−l−1∑s=1ξs)+qϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))0dqϑ−2q∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)=2(1−q)∑l−1s=1(ηs−ξs)∞∑n=0qn+1ˉΞ((1−qn+1)(l∑s=1ϖs−l−1∑s=1ξs)+qn+1(l∑s=1ϖs−l−1∑s=1ξs+ηs2))−2q∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)=2(1−q)∑l−1s=1(ηs−ξs)∞∑n=1qnˉΞ((1−qn)(l∑s=1ϖs−l−1∑s=1ξs)+qn(l∑s=1ϖs−l−1∑s=1ξs+ηs2))−2q∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)=2(1−q)∑l−1s=1(ηs−ξs)∞∑n=0qnˉΞ((1−qn)(l∑s=1ϖs−l−1∑s=1ξs)+qn(l∑s=1ϖs−l−1∑s=1ξs+ηs2))−2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)=4(∑l−1s=1(ηs−ξs))2∫∑ls=1ϖs−∑l−1s=1ξs∑ls=1ϖs−∑l−1s=1ξs+ηs2ˉΞ(u)∑ls=1ϖs−∑l−1s=1ξsdqu−2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2). | (3.13) |
Similarly, we get
I2=∫10qϑ∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ=4(∑l−1s=1(ηs−ξs))2∫∑ls=1ϖs−∑l−1s=1ξs+ηs2∑ls=1ϖs−∑l−1s=1ηsˉΞ(u)∑ls=1ϖs−∑l−1s=1ηsdqu−2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2). | (3.14) |
Combination of (3.12)–(3.14) yields the required result.
∙ If we choose l=2 in Lemma 3.1, then we have
1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]−ˉΞ(ϖ1+ϖ2−ξ1+η12)=η1−ξ14[∫10qϑϖ1+ϖ2−ξ1DqˉΞ((1−ϑ)(ϖ1+ϖ2−ξ1)+ϑ(ϖ1+ϖ2−ξ1+η12))dqϑ−∫10qϑϖ1+ϖ2−η1DqˉΞ((1−ϑ)(ϖ1+ϖ2−η1)+ϑ(ϖ1+ϖ2−ξ1+η12))dqϑ]. |
Now, we establish a general Dragomir-Agarwal-type inequality, which is crucial to establish some error bounds of the trapezoidal rule.
Lemma 3.2. Let ϖ=(ϖ1,ϖ2,ϖ3,…,ϖl), ξ=(ξ1,ξ2,..,ξl) and η=(η1,η2,…,ηl) be the three l-tuples such that ϖs,ξs,ηs∈[I] for all s∈{1,2,…,l},ϑ∈[0,1] and ˉΞ:J→R be a CM and 0<q<1. If ∑ls=1ϖs−∑l−1s=1ξsDqˉΞ and ∑ls=1ϖs−∑l−1s=1ηsDqˉΞ an integrable mapping on J∘, then
Ω(ϖs;ηs;ξs)=∑l−1s=1(ηs−ξs)4[∫10(1−qϑ)∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ+∫10(qϑ−1)∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ]. | (3.15) |
where
Ω(ϖs;ηs;ξs)=:ˉΞ(∑ls=1ϖs−∑l−1s=1ξs)+ˉΞ(∑ls=1ϖs−∑l−1s=1ηs)2−1∑l−1s=1(ηs−ξs)[∫∑ls=1ϖs−∑l−1s=1ξs+ηs2∑ls=1ϖs−∑l−1s=1ηsˉΞ(u)∑ls=1ϖs−∑l−1s=1ηsdqu+∫∑ls=1ϖs−∑l−1s=1ξs∑ls=1ϖs−∑l−1s=1ξs+ηs2ˉΞ(u)∑ls=1ϖs−∑l−1s=1ξsdqu]. |
Proof. Consider the right-hand side of (3.15) as
J=∑l−1s=1(ηs−ξs)4[J1+J2]. | (3.16) |
By Lemma 2.1, we have
J1=∫10(1−qϑ)∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ=−2q∑l−1s=1(ηs−ξs)∫10ˉΞ((1−qϑ)(l∑s=1ϖs−l−1∑s=1ξs)+qϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))0dqϑ−2(1−q)∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)+2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs)=−2(1−q)∑l−1s=1(ηs−ξs)∞∑n=0qn+1ˉΞ((1−qn+1)(l∑s=1ϖs−l−1∑s=1ξs)+qn+1(l∑s=1ϖs−l−1∑s=1ξs+ηs2))−2(1−q)∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)+2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs)=−2(1−q)∑l−1s=1(ηs−ξs)∞∑n=1qnˉΞ((1−qn)(l∑s=1ϖs−l−1∑s=1ξs)+qn(l∑s=1ϖs−l−1∑s=1ξs+ηs2))−2(1−q)q∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs+ηs2)+2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs)=−2(1−q)∑l−1s=1(ηs−ξs)∞∑n=0qnˉΞ((1−qn)(l∑s=1ϖs−l−1∑s=1ξs)+qn(l∑s=1ϖs−l−1∑s=1ξs+ηs2))+2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs)=−4(∑l−1s=1(ηs−ξs))2∫∑ls=1ϖs−∑l−1s=1ξs∑ls=1ϖs−∑l−1s=1ξs+ηs2ˉΞ(u)∑ls=1ϖs−∑l−1s=1ξsdqu+2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ξs). | (3.17) |
Similarly, we get
J2=∫10(qϑ−1)∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))dqϑ=2∑l−1s=1(ηs−ξs)ˉΞ(l∑s=1ϖs−l−1∑s=1ηs)−4(∑l−1s=1(ηs−ξs))2∫∑ls=1ϖs−∑l−1s=1ξs+ηs2∑ls=1ϖs−∑l−1s=1ηsˉΞ(u)∑ls=1ϖs−∑l−1s=1ηsdqu. | (3.18) |
Comparing (3.16)–(3.18), we conclude our required result.
∙ If we choose l=2 in Lemma 3.2, then
ˉΞ(ϖ1+ϖ2−ξ1)+ˉΞ(ϖ1+ϖ2−η1)2−1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]=η1−ξ14[∫10(1−qϑ)ϖ1+ϖ2−ξ1DqˉΞ((1−ϑ)(ϖ1+ϖ2−ξ1)+ϑ(ϖ1+ϖ2−ξ1+η12))dqϑ+∫10(qϑ−1)ϖ1+ϖ2−η1DqˉΞ((1−ϑ)(ϖ1+ϖ2−η1)+ϑ(ϖ1+ϖ2−ξ1+η12))dqϑ]. |
In this section, we propose some new generalized left and right estimations connecting to newly proved q-TJM inequality proved in the previous section. We use auxiliary results, the convexity property of the mappings, and some well-known inequalities to obtain new refinements of existing results.
Theorem 3.2. Under the assumptions of Lemma 3.1 and if |∑ls=1ϖs−∑l−1s=1ξsDq| and |∑ls=1ϖs−∑l−1s=1ηsDq| are convex mappings, then
|ϑ(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4[q[2]ql∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|−q[[3]q+q2]2[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|−q2[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|+q[2]ql∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|−q2[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|−q[[3]q+q2]2[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ηs)|]. |
Proof. Using Lemma 3.1, property of modulus and the convexity of |∑ls=1ϖs−∑l−1s=1ξsDq| and |∑ls=1ϖs−∑l−1s=1ηsDq|, we have
|ϑ(ϖ;η;ξ)|≤∑l−1s=1(ηs−ξs)4[∫10qϑ|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|dqϑ−∫10qϑ|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|dqϑ]≤∑l−1s=1(ηs−ξs)4[∫10qϑ(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|)dqϑ]+∑l−1s=1(ηs−ξs)4[∫10qϑ(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|)dqϑ]. |
After simple calculations, we achieve our final result.
∙ If we choose l=2 in Theorem 3.2, then
|1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]−ˉΞ(ϖ1+ϖ2−ξ1+η12)|≤η1−ξ14[q[2]q(|ϖ1+ϖ2−ξ1DqˉΞ(ϖ1)|+|ϖ1+ϖ2−ξ1DqˉΞ(ϖ2)|)−q[[3]q+q2]2[2]q[3]q|ϖ1+ϖ2−ξ1DqˉΞ(ξ1)|−q2[3]q|ϖ1+ϖ2−ξ1DqˉΞ(η1)|+q[2]q(|ϖ1+ϖ2−η1DqˉΞ(ϖ1)|+|ϖ1+ϖ2−η1DqˉΞ(ϖ2)|)−q2[3]q|ϖ1+ϖ2−η1DqˉΞ(ξ1)|−q[[3]q+q2]2[2]q[3]q|ϖ1+ϖ2−η1DqˉΞ(η1)|]. |
Theorem 3.3. Under the assumptions of Lemma 3.1 and if |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r are convex mappings with 1r+1s=1, then we have
|ϑ(ϖ;η;ξ)|≤∑l−1s=1(ηs−ξs)4(q[2]q)1−1r[(q[2]q(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r)−q[[3]q+q2]2[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−q2[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)1r+(q[2]q(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r)−q2[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−q[[3]q+q2]2[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ηs)|r)1r]. |
Proof. Using Lemma 3.1, property of modulus, power-mean inequality and the convexity property of |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r with 1r+1s=1, we have
|ϑ(ϖ;η;ξ)|≤∑l−1s=1(ηs−ξs)4(∫10qϑdqϑ)1−1r[(∫10qϑ|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r+(∫10qϑ|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r]≤∑l−1s=1(ηs−ξs)4(q[2]q)1r[(∫10qϑ(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−ϑ2l−1∑s=1l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r+(∫10qϑ(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r]. |
After simple calculations, we achieve our final result.
∙ If we choose l=2 in Theorem 3.3, then
|1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]−ˉΞ(ϖ1+ϖ2−ξ1+η12)|≤η1−ξ14(q[2]q)1−1r[(q[2]q(|ϖ1+ϖ2−ξ1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−ξ1DqˉΞ(ϖ2)|r)−q[[3]q+q2]2[2]q[3]q|ϖ1+ϖ2−ξ1DqˉΞ(ξ1)|r−q2[3]q|ϖ1+ϖ2−ξ1DqˉΞ(η1)|r)1r+(q[2]q(|ϖ1+ϖ2−η1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−η1DqˉΞ(ϖ2)|r)−q2[3]q|ϖ1+ϖ2−η1DqˉΞ(ξ1)|r−q[[3]q+q2]2[2]q[3]q|ϖ1+ϖ2−η1DqˉΞ(η1)|r)1r]. |
Theorem 3.4. Under the assumptions of Lemma 3.1 and if |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r are convex mappings with 1r+1s=1, then we have
|ϑ(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4(qr[r+1]q)1−1r[(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−1+2q2[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−12[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)1r+(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−12[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−1+2q2[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ηs)|r)1r]. |
Proof. Using Lemma 3.1, property of modulus, Hölder's inequality and using the convexity property of |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r with 1r+1s=1, we have
|ϑ(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4(∫10(qϑ)rdqϑ)1−1r×[(∫10|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r+(∫10|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r]≤∑l−1s=1(ηs−ξs)4(qr[r+1]pq)1r[(∫10(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−ϑ2l−1∑s=1l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r+(∫10(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r]. |
After simple calculations, we achieve our final result.
∙ If we choose l=2 in Theorem 3.4, then
1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]−ˉΞ(ϖ1+ϖ2−ξ1+η12)≤η1−ξ14(qr[r+1]q)1−1r[(|ϖ1+ϖ2−ξ1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−ξ1DqˉΞ(ϖ2)|r−1+2q2[2]q|ϖ1+ϖ2−ξ1DqˉΞ(ξ1)|r−12[2]q|ϖ1+ϖ2−ξ1DqˉΞ(η1)|r)1r+(|ϖ1+ϖ2−η1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−η1DqˉΞ(ϖ2)|r−12[2]q|ϖ1+ϖ2−η1DqˉΞ(ξ1)|r−1+2q2[2]q|ϖ1+ϖ2−η1DqˉΞ(η1)|r)1r]. |
Now we derive some new results related to the right side of TJM inequality using Lemma 3.2.
Theorem 3.5. Under the assumptions of Lemma 3.2 and if |∑ls=1ϖs−∑l−1s=1ξsDq| and |∑ls=1ϖs−∑l−1s=1ηsDq| are convex mappings, we have
|Ω(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4[1[2]q(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|)−[2[3]q−1]2[2]q[3]q|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|−12[2]q[3]q|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|+1[2]q(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|)−12[2]q[3]q|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|−[2[3]q−1]2[2]q[3]q|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ηs)|]. |
Proof. Using Lemma 3.2, property of modulus and the convexity property |∑ls=1ϖs−∑l−1s=1ξsDq| and |∑ls=1ϖs−∑l−1s=1ηsDq|, we have
|Ω(ϖs;ηs;ξs)|=∑l−1s=1(ηs−ξs)4[∫10|(1−qϑ)||∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|dqϑ+∫10(1−qϑ)|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|dqϑ]≤∑l−1s=1(ηs−ξs)4[∫10(1−qϑ)(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|)dqϑ]+∑l−1s=1(ηs−ξs)4[∫10(1−qϑ)(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|)dqϑ]. |
After some calculations, we obtain our required result.
∙ If we choose l=2 in Theorem 3.5, then
|ˉΞ(ϖ1+ϖ2−ξ1)+ˉΞ(ϖ1+ϖ2−η1)2−1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]|≤η1−ξ14[1[2]q(|ϖ1+ϖ2−ξ1DqˉΞ(ϖ1)|+|ϖ1+ϖ2−ξ1DqˉΞ(ϖ2)|)−[2[3]q−1]2[2]q[3]q|ϖ1+ϖ2−ξ1DqˉΞ(ξ1)|−12[2]q[3]q|ϖ1+ϖ2−ξ1DqˉΞ(η1)|+1[2]q(|ϖ1+ϖ2−η1DqˉΞ(ϖ1)|+|ϖ1+ϖ2−η1DqˉΞ(ϖ2)|)−12[2]q[3]q|ϖ1+ϖ2−η1DqˉΞ(ξ1)|−[2[3]q−1]2[2]q[3]q|ϖ1+ϖ2−η1DqˉΞ(η1)|], |
where 1r+1s=1.
Theorem 3.6. Under the assumptions of Lemma 3.2 and the convexity property of |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r, we have
|Ω(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4(1[2]q)1−1r[(1[2]ql∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−[2[3]q−1]2[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−12[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)1r+(1[2]ql∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−12[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−[2[3]q−1]2[2]q[3]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ηs)|r)1r]. |
Proof. Using Lemma 3.2, property of modulus, power-mean inequality and the convexity property of |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r, we have
|Ω(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4(∫10(1−qϑ)dqϑ)1−1r×[(∫10(1−qϑ)|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r+(∫10(1−qϑ)|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r]≤∑l−1s=1(ηs−ξs)4(q[2]q)1r[(∫10(1−qϑ)(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r+(∫10(1−qϑ)(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r]. |
After simple calculations, we achieve our final result.
∙ If we choose l=2 in Theorem 3.6, then
|ˉΞ(ϖ1+ϖ2−ξ1)+ˉΞ(ϖ1+ϖ2−η1)2−1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]|≤η1−ξ14(1[2]q)1−1r[(1[2]q(|ϖ1+ϖ2−ξ1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−ξ1DqˉΞ(ϖ2)|r)−[2[3]q−1]2[2]q[3]q|ϖ1+ϖ2−ξ1DqˉΞ(ξ1)|r−12[2]q[3]q|ϖ1+ϖ2−ξ1DqˉΞ(η1)|r)1r+(1[2]q(|ϖ1+ϖ2−η1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−η1DqˉΞ(ϖ2)|r)−12[2]q[3]q|ϖ1+ϖ2−η1DqˉΞ(ξ1)|r−[2[3]q−1]2[2]q[3]q|ϖ1+ϖ2−η1DqˉΞ(η1)|r)1r], |
where 1r+1s=1.
Theorem 3.7. Under the assumptions of Lemma 3.2 and if |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r are convex mappings, we have
|Ω(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4(∫10(1−qϑ)rdqϑ)1−1r[(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−1+2q2[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−12[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)1r+(l∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−12[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−1+2q2[2]ql−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ηs)|r)1r], |
where 1r+1s=1.
Proof. Using Lemma 3.2, property of modulus, Hölder's inequality and using the convexity property of |∑ls=1ϖs−∑l−1s=1ξsDq|r and |∑ls=1ϖs−∑l−1s=1ηsDq|r, we have
|ϑ(ϖs;ηs;ξs)|≤∑l−1s=1(ηs−ξs)4(∫10(1−qϑ)rdqϑ)1−1r×[(∫10|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ξs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r+(∫10|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ((1−ϑ)(l∑s=1ϖs−l−1∑s=1ηs)+ϑ(l∑s=1ϖs−l−1∑s=1ξs+ηs2))|rdqϑ)1r]≤∑l−1s=1(ηs−ξs)4(∫10(1−qϑ)rdqϑ)1−1r[(∫10(l∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ϖs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ξs)|r−ϑ2l−1∑s=1l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r+(∫10(l∑s=1p|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ϖs)|r−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ηsDqˉΞ(ξs)|r−2−ϑ2l−1∑s=1|∑ls=1ϖs−∑l−1s=1ξsDqˉΞ(ηs)|r)dqϑ)1r]. |
After simple calculations, we achieve our final result.
∙ If we choose l=2 in Theorem 3.7, then
|ˉΞ(ϖ1+ϖ2−ξ1)+ˉΞ(ϖ1+ϖ2−η1)2−1η1−ξ1[∫ϖ1+ϖ2−ξ1+η12ϖ1+ϖ2−η1ˉΞ(u)ϖ1+ϖ2−η1dqu+∫ϖ1+ϖ2−ξ1ϖ1+ϖ2−ξ1+η12ˉΞ(u)ϖ1+ϖ2−ξ1dqu]|≤η1−ξ14(∫10(1−qϑ)rdqϑ)1−1r[(|ϖ1+ϖ2−ξ1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−ξ1DqˉΞ(ϖ2)|r−1+2q2[2]q|ϖ1+ϖ2−ξ1DqˉΞ(ξ1)|r−12[2]q|ϖ1+ϖ2−ξ1DqˉΞ(η1)|r)1r+(|ϖ1+ϖ2−η1DqˉΞ(ϖ1)|r+|ϖ1+ϖ2−η1DqˉΞ(ϖ2)|r−12[2]q|ϖ1+ϖ2−η1DqˉΞ(ξ1)|r−1+2q2[2]q|ϖ1+ϖ2−η1DqˉΞ(η1)|r)1r]. |
Finally, we present some applications to bivariate means of non-negative real numbers in the support of main results. For more visualization, we check the validity through numeric examples and a graphical explanation is also mentioned. The arithmetic mean: A(ς1,ς2)=ς1+ς22,
The generalized log-mean: Lp(ς1,ς2)=[ς2p+1−ς1p+1(p+1)(ς2−ς1)]1p.
where p∈R∖{−1,0}, ς1,ς2∈R, ς1≠ς2.
Proposition 4.1. Assume that all the assumptions of Theorem 3.2 are held. Then
|3[3]qL22(ϖ1+ϖ2−η1,ϖ1+ϖ2−ξ1+η12)+12[(ϖ1+ϖ2−ξ1)2+(η1−ξ1)24[3]q−η1−ξ1[2]q]−(ϖ1+ϖ2−A(ξ1,η1))2|≤η1−ξ14[q[2]q(B(ϖ1,ξ1)+B(ϖ2,ξ1))−q[[3]q+q2]2[2]q[3]qB(ξ1,ξ1)−q2[3]qB(η1,ξ1)+q[2]q(C(ϖ1,η1)+C(ϖ2,η1))−q2[3]qC(ξ1,η1)−q[[3]q+q2]2[2]q[3]qC(η1,η1)], |
where
B(z,ξ1)=|(1+q)z+(1−q)(ϖ1+ϖ2−ξ1)|, | (4.1) |
C(z,η1)=|(1+q)z+(1−q)(ϖ1+ϖ2−η1)|. | (4.2) |
Proof. The assertion follows directly from Theorem 3.2 for ˉΞ(u)=u2.
Now we give the numerical verification of Theorem 3.2.
Example 4.1. Taking ϖ1=0,ξ1=1,η1=2 and ϖ2=3 in Proposition 4.1, we have 0.0595<0.5357.
For the graphical explanation of Theorem 3.2, we have
|2+q+q24(1+q+q2)−12(1+q)|≤3q1+q−3q(1+q+q2)4(1+q)(1+q+q2)−3q4(1+q+q2). |
Figure 1 clearly emphasizes the correctness of Theorem 3.2, where the red and blue colours indicate the left-hand and right-hand sides respectively.
Proposition 4.2. Assume that all the assumptions of Theorem 3.3 are held. Then
|3[3]qL22(ϖ1+ϖ2−η1,ϖ1+ϖ2−ξ1+η12)+12[(ϖ1+ϖ2−ξ1)2+(η1−ξ1)24[3]q−η1−ξ1[2]q]−(ϖ1+ϖ2−A(ξ1,η1))2|≤η1−ξ14(q[2]q)1−1r[(q[2]q(Br(ϖ1,ξ1)+Br(ϖ2,ξ1))−q[[3]q+q2]2[2]q[3]qBr(ξ1,ξ1)−q2[3]qBr(η1,ξ1))1r+(q[2]q(Cr(ϖ1,η1)+Cr(ϖ2,η1))−q2[3]qCr(ξ1,η1)−q[[3]q+q2]2[2]q[3]qCr(η1,η1))1r], |
where
Br(z,ξ1)=|(1+q)z+(1−q)(ϖ1+ϖ2−ξ1)|r. | (4.3) |
Cr(z,η1)=|(1+q)z+(1−q)(ϖ1+ϖ2−η1)|r. | (4.4) |
Proof. The assertion follows directly from Theorem 3.3 for ˉΞ(u)=u2.
Now we give the numerical verification of Theorem 3.3.
Example 4.2. Taking ϖ1=0,ξ1=1,η1=2 and ϖ2=3 in Proposition 4.2, we have 0.0595<0.7191.
For the graphical explanation of Theorem 3.3 are held. Then
|2+q+q24(1+q+q2)−12(1+q)|≤14(q1+q)[((2−2q)2+(5+q)2−(1+q+2q2)(3−q)22(1+q+q2)−8(1+q)1+q+q2)12+((1−q)2+(4+2q)2−2(1+q)1+q+q2−(1+q+2q2)(3+q)22(1+q+q2))12]. |
Figure 2 clearly emphasizes the correctness of Theorem 3.3, where the red and blue colours indicate the left-hand and right-hand sides respectively.
Proposition 4.3. Assume that all the assumptions of Theorem 3.4 are held. Then
|3[3]qL22(ϖ1+ϖ2−η1,ϖ1+ϖ2−ξ1+η12)+12[(ϖ1+ϖ2−ξ1)2+(η1−ξ1)24[3]q−η1−ξ1[2]q]−(ϖ1+ϖ2−A(ξ1,η1))2|≤η1−ξ14(qr[r+1]q)1−1r[(Br(ϖ1,ξ1)+Br(ϖ2,ξ1)−1+2q2[2]qBr(ξ1,ξ1)−12[2]qBr(η1,ξ1))1r+(Cr(ϖ1,η1)+Cr(ϖ2,η1)−12[2]qCr(ξ1,η1)−1+2q2[2]qCr(η1,η1))1r] |
Br(z,ξ1) and Cr(z,η1) are defined by (4.3) and (4.4) respectively.
Proof. The assertion follows directly from Theorem 3.4 for ˉΞ(u)=u2.
Now we give the numerical verification of Theorem 3.4.
Example 4.3. Taking ϖ1=0,ξ1=1,η1=2 and ϖ2=3 in Proposition 4.3, we have 0.0595<0.8157.
For the graphical explanation of Theorem 3.4, we have following expression
|2+q+q24(1+q+q2)−12(1+q)|≤14(q2(1+q+q2))12[((2−2q)2+(5+q)2−(1+2q)(3−q)22(1+q)−81+q)12+((1−q)2+(4+2q)2−21+q−(1+2q)(3+q)22(1+q))12]. |
Figure 3 clearly emphasizes the correctness of Theorem 3.4, where the red and blue colours indicate the left-hand and right-hand sides respectively.
Proposition 4.4. Assume that all the assumptions of Theorem 3.5 are held. Then
|A(ϖ1+ϖ2−ξ1,ϖ1+ϖ2−η1)−3[3]qL22(ϖ1+ϖ2−η1,ϖ1+ϖ2−ξ1+η12)−12[(ϖ1+ϖ2−ξ1)2+(η1−ξ1)24[3]q−η1−ξ1[2]q]|≤η1−ξ14[1[2]q(B(ϖ1,ξ1)+B(ϖ2,ξ1))−[2[3]q−1]2[2]q[3]qB(ξ1,ξ1)−12[2]q[3]qB(η1,ξ1)+1[2]q(C(ϖ1,η1)+C(ϖ2,η1))−12[2]q[3]qC(ξ1,η1)−[2[3]q−1]2[2]q[3]qC(η1,η1)], |
where B(z,ξ1) and C(z,η1) are defined by (4.1) and (4.2) respectively.
Proof. The assertion follows directly from Theorem 3.5 for ˉΞ(u)=u2.
Now we give the numerical verification of Theorem 3.5.
Example 4.4. Taking ϖ1=0,ξ1=1,η1=2 and ϖ2=3 in Proposition 4.4, we have 0.1905<1.0000.
For the graphical explanation of Theorem 3.5, we have following expression
|12(1+q)−14(1+q+q2)|≤31+q−32(1+q). |
Figure 4 clearly emphasizes the correctness of Theorem 3.5, where the red and blue colours indicate the left-hand and right-hand sides respectively.
Proposition 4.5. Assume that all the assumptions of Theorem 3.6 are held, Then
|A(ϖ1+ϖ2−ξ1,ϖ1+ϖ2−η1)−3[3]qL22(ϖ1+ϖ2−η1,ϖ1+ϖ2−ξ1+η12)−12[(ϖ1+ϖ2−ξ1)2+(η1−ξ1)24[3]q−η1−ξ1[2]q]|≤η1−ξ14(1[2]q)1−1r[(1[2]q(Br(ϖ1,ξ1)+Br(ϖ2,ξ1))−[2[3]q−1]2[2]q[3]qBr(ξ1,ξ1)−12[2]q[3]qBr(η1,ξ1))1r+(1[2]q(Br(ϖ1,η1)+Br(ϖ2,η1))−12[2]q[3]qBr(ξ1,η1)−[2[3]q−1]2[2]q[3]qBr(η1,η1))1r], |
where Br(z,ξ1) and Br(z,η1) are defined by (4.3) and (4.4) respectively.
Proof. The assertion follows directly from Theorem 3.6 for ˉΞ(u)=u2.
Now we give the numerical verification of Theorem 3.6.
Example 4.5. Taking ϖ1=0,ξ1=1,η1=2 and ϖ2=3 in Proposition 4.5, we have 0.1905<1.4387.
For the graphical explanation of Theorem 3.6, we have following expression
|12(1+q)−14(1+q+q2)|≤14(11+q)[((2−2q)2+(5+q)2−(2(1+q+q2)−1)(3−q)22(1+q+q2)−81+q+q2)12+((1−q)2+(4+2q)2−21+q+q2−(2(1+q+q2)−1)(3+q)22(1+q+q2))12]. |
Figure 5 clearly emphasizes the correctness of Theorem 3.6, where the red and blue colours indicate the left-hand and right-hand sides respectively.
Proposition 4.6. Assume that all the assumptions of Theorem 3.7 are held. Then
|A(ϖ1+ϖ2−ξ1,ϖ1+ϖ2−η1)−3[3]qL22(ϖ1+ϖ2−η1,ϖ1+ϖ2−ξ1+η12)−12[(ϖ1+ϖ2−ξ1)2+(η1−ξ1)24[3]q−η1−ξ1[2]q]|≤η1−ξ14(∫10(1−qϑ)rdqϑ)1−1r[(Br(ϖ1,ξ1)+Br(ϖ2,ξ1)−1+2q2[2]qBr(ξ1,ξ1)−12[2]qBr(η1,ξ1))1r+(Cr(ϖ1,η1)+Cr(ϖ2,η1)−12[2]qCr(ξ1,η1)−1+2q2[2]qCr(η1,η1))1r], |
Br(z,ξ1) and are defined by (4.3) and (4.4) respectively.
Proof. The assertion follows directly from Theorem 3.7 for .
Now we give the numerical verification of Theorem 3.7.
Example 4.6. Taking and in Proposition 4.6, we have .
For the graphical explanation of Theorem 3.7, we have following expression
Figure 6 clearly emphasizes the correctness of Theorem 3.7, where the red and blue colours indicate the left-hand and right-hand sides respectively.
The Trapezium-Jensen-Mercer (TJM) inequality is a well-researched and extensively studied result in the literature. Various versions of this inequality have been derived using different concepts of convexity, including fractional and -calculus. In this study, we have introduced new continuous and discrete quantum versions of TJM and established some new bounds of inequality through convex mapping. Additionally, we have provided several applications and graphical analyses to support our findings. Moving forward, we plan to derive -fractional and -analogues of TJM, Simpson-Mercer, and Ostrowski-like inequalities that involve different categories of convexity.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors are thankful to the editor and anonymous reviewers for their valuable comments and suggestions. This research is supported by "Researchers Supporting Project number (RSP2023R158), King Saud University, Riyadh, Saudi Arabia." Muhammad Uzair Awan is thankful to HEC Pakistan for 8081/Punjab/NRPU/R & D/HEC/2017.
The authors declare that they have no competing interests.
[1] |
Kapoor A, Guha S, Das MK, et al. (2020) Digital healthcare: the only solution for better healthcare during COVID-19 pandemic? Indian Heart J 72: 61-64. doi: 10.1016/j.ihj.2020.04.001
![]() |
[2] |
Jnr BA (2020) Use of telemedicine and virtual care for remote treatment in response to COVID-19 pandemic. J Med Syst 44: 132-133. doi: 10.1007/s10916-020-01596-5
![]() |
[3] |
Wamala D, Augustine K (2013) A meta-analysis of telemedicine success in Africa. J Pathol Inform 4: 6-7. doi: 10.4103/2153-3539.112686
![]() |
[4] |
Obasola OI, Mabawonku I, Lagunju I (2015) A review of e-Health interventions for maternal and child health in Sub-Sahara Africa. Matern Child Heal J 19: 1813-1824. doi: 10.1007/s10995-015-1695-0
![]() |
[5] |
Ekanoye F, Ayeni F, Olokunde T, et al. (2017) Telemedicine diffusion in a developing country: a case of Nigeria. Sci J Public Heal 5: 341-346. doi: 10.11648/j.sjph.20170504.20
![]() |
[6] | Bank W (2013) World Bank Annual Report Washington DC: 24-29. Available from: https://openknowledge.worldbank.org/handle/10986/16091. |
[7] |
Umeh CA (2018) Challenges toward achieving universal health coverage in Ghana, Kenya, Nigeria, and Tanzania. Int J Health Plann Manage 33: 794-805. doi: 10.1002/hpm.2610
![]() |
[8] |
Barney A, Buckelew S, Mesheriakova V, et al. (2020) The COVID-19 pandemic and rapid implementation of adolescent and young adult telemedicine: challenges and opportunities for innovation. J Adolesc Health 67: 164-171. doi: 10.1016/j.jadohealth.2020.05.006
![]() |
[9] |
Perrone G, Zerbo S, Bilotta C, et al. (2020) Telemedicine during Covid-19 pandemic: advantage or critical issue? Med Leg J 88: 76-77. doi: 10.1177/0025817220926926
![]() |
[10] |
Monaghesh E, Hajizadeh A (2020) The role of telehealth during COVID-19 outbreak: a systematic review based on current evidence. BMC Public Health 20: 1193-1194. doi: 10.1186/s12889-020-09301-4
![]() |
[11] |
Pappot N, Taarnhøj GA, Pappot H (2020) Telemedicine and e-Health solutions for COVID-19: patients' perspective. Telemed J E Health 26: 847-849. doi: 10.1089/tmj.2020.0099
![]() |
[12] |
Wosik J, Fudim M, Cameron B, et al. (2020) Telehealth transformation: COVID-19 and the rise of virtual care. J Am Med Informatics Assoc 27: 957-962. doi: 10.1093/jamia/ocaa067
![]() |
[13] |
Li Y, Qin Q, Sun Q, et al. (2020) Insomnia and psychological reactions during the COVID-19 outbreak in China. J Clin Sleep Med 16: 1417-1418. doi: 10.5664/jcsm.8524
![]() |
[14] |
Huang Y, Zhao N (2020) Generalized anxiety disorder, depressive symptoms and sleep quality during COVID-19 outbreak in China: a web-based cross-sectional survey. Psychiatry Res 288: 112954. doi: 10.1016/j.psychres.2020.112954
![]() |
[15] |
Olufadewa II, Adesina MA, Oladokun B, et al. (2020) “I Was Scared I Might Die Alone”: a qualitative study on the physiological and psychological experience of COVID-19 survivors and the quality of care received at health facilities. Int J Travel Med Global Health 8: 51-57. doi: 10.34172/ijtmgh.2020.09
![]() |
[16] | The Lancet Infectious Diseases (2021) Tuberculosis and malaria in the age of COVID-19. Lancet Infect Dis 21: 1. |
[17] |
Salmon DA, Macintyre CR, Omer SB (2015) Help from above: outer space and the fight against Ebola. Lancet Infect Dis 15: 873-875. doi: 10.1016/S1473-3099(15)00153-X
![]() |
[18] |
Adewale OS (2004) An internet-based telemedicine system in Nigeria. Int J Inf Manage 24: 221-234. doi: 10.1016/j.ijinfomgt.2003.12.014
![]() |
[19] |
Adenuga KI, Iahad NA, Miskon S (2020) Telemedicine system: service adoption and implementation issues in Nigeria. Indian J Sci Technol 13: 1321-1327. doi: 10.17485/IJST/v13i12.180
![]() |
[20] |
Otsen B, Agyei-baffour P (2016) Cost-effectiveness analysis of telemedicine for primary healthcare delivery in the Amansie-west district, Ghana. African J Heal Econ 5: 1-11. doi: 10.35202/AJHE.2016.5101
![]() |
[21] | Songwe V Financing Africa's Healthcare (2019) .Available from: https://gbchealth.org/financing-africas-healthcare/. |
[22] |
Ahmed MAA, Gagnon MP, Hamelin-Brabant L, et al. (2017) A mixed methods systematic review of success factors of mhealth and telehealth for maternal health in Sub-Saharan Africa. MHealth J 3: 22. doi: 10.21037/mhealth.2017.05.04
![]() |
[23] |
Olayiwola JN, Udenyi ED, Yusuf G, et al. (2020) Leveraging electronic consultations to address severe subspecialty care access gaps in Nigeria. J Natl Med Assoc 112: 97-102. doi: 10.1016/j.jnma.2019.10.005
![]() |
[24] |
Nemetz ETA, Urbach DR, Devon KM (2020) The art of surgery: balancing compassionate with virtual care. J Med Internet Res 22: e22417. doi: 10.2196/22417
![]() |
[25] |
Adenuga KI, Iahad NA, Miskon S (2017) Towards reinforcing telemedicine adoption amongst clinicians in Nigeria. Int J Med Inform 104: 84-96. doi: 10.1016/j.ijmedinf.2017.05.008
![]() |
[26] |
Umeh CA (2018) Challenges toward achieving universal health coverage in Ghana, Kenya, Nigeria, and Tanzania. Int J Health Plann Manage 33: 794-805. doi: 10.1002/hpm.2610
![]() |
[27] | Arize I, Onwujekwe O (2017) Acceptability and willingness to pay for telemedicine services in Enugu state, southeast Nigeria. Digit Health 3. |
[28] |
Duclos V, Yé M, Moubassira K, et al. (2017) Situating mobile health: a qualitative study of mHealth expectations in the rural health district of Nouna, Burkina Faso. Heal Res Policy Syst 15: 41-53. doi: 10.1186/s12961-017-0203-y
![]() |
1. | Seema Agrawal, Tarun Kumar, Kapil Kumar, M.K. Sharma, Vishnu Narayan Mishra, Trapezoidal neutrosophic teaching learning-based optimization in enhancing accuracy of diabetes prognosis, 2024, 17, 26667207, 100464, 10.1016/j.rico.2024.100464 |