Research article Special Issues

A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions

  • Received: 21 November 2023 Revised: 13 December 2023 Accepted: 19 December 2023 Published: 29 December 2023
  • Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any system, since any non-negative probability distribution can be approximated by a PHD with sufficient precision. Despite PHD potential, friendly statistical programs do not have a module implemented in their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, Matlab or Python that work with the compilation of code chunks and functions. This fact might be an important handicap for those researchers who do not have sufficient knowledge in programming environments. In this paper, a new interactive web application developed with shiny is introduced in order to adjust PHD to an experimental dataset. This open access app does not require any kind of knowledge about programming or major mathematical concepts. Users can easily compare the graphic fit of several PHDs while estimating their parameters and assess the goodness of fit with just several clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the time to live since the diagnostic in primary breast cancer patients.

    Citation: Christian Acal, Elena Contreras, Ismael Montero, Juan Eloy Ruiz-Castro. A shiny app for modeling the lifetime in primary breast cancer patients through phase-type distributions[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1508-1526. doi: 10.3934/mbe.2024065

    Related Papers:

  • Phase-type distributions (PHDs), which are defined as the distribution of the lifetime up to the absorption in an absorbent Markov chain, are an appropriate candidate to model the lifetime of any system, since any non-negative probability distribution can be approximated by a PHD with sufficient precision. Despite PHD potential, friendly statistical programs do not have a module implemented in their interfaces to handle PHD. Thus, researchers must consider others statistical software such as R, Matlab or Python that work with the compilation of code chunks and functions. This fact might be an important handicap for those researchers who do not have sufficient knowledge in programming environments. In this paper, a new interactive web application developed with shiny is introduced in order to adjust PHD to an experimental dataset. This open access app does not require any kind of knowledge about programming or major mathematical concepts. Users can easily compare the graphic fit of several PHDs while estimating their parameters and assess the goodness of fit with just several clicks. All these functionalities are exhibited by means of a numerical simulation and modeling the time to live since the diagnostic in primary breast cancer patients.



    加载中


    [1] F. P. Coolen, Parametric probability distributions in reliability, in Encyclopedia of Quantitative Risk Analysis and Assessment, John Wiley & Sons: Chichester, (2008), 1255–1260.
    [2] J. W. McPherson, Reliability physics and engineering: Time-to-failure modelling, Springer: Heidelberg, 2013.
    [3] A. D. Hutson, An accelerated life model analog for discrete survival and count data, Comput. Meth. Prog. Bio., 210 (2021), 106337. https://doi.org/10.1016/j.cmpb.2021.106337 doi: 10.1016/j.cmpb.2021.106337
    [4] M. C. Aguilera-Morillo, A. M. Aguilera, F. Jiménez-Molinos, J. B. Roldán, Stochastic modeling of random access memories reset transitions, Math. Comput. Simulat., 159 (2019), 197–209. https://doi.org/10.1016/j.matcom.2018.11.016 doi: 10.1016/j.matcom.2018.11.016
    [5] R. Kollu, S. R. Rayapudi, S. Narasimham, K. M. Pakkurthi, Mixture probability distribution functions to model wind speed distributions, Int. J. Energ. Environ. Eng., 3 (2012), 27. https://doi.org/10.1186/2251-6832-3-27 doi: 10.1186/2251-6832-3-27
    [6] F. J. Marques, C. A. Coelho, M. de Carvalho, On the distribution of linear combinations of independent Gumbel random variables, Stat. Comput., 25 (2015), 683–701. https://doi.org/10.1007/s11222-014-9453-5 doi: 10.1007/s11222-014-9453-5
    [7] M. F. Neuts, Probability distributions of phase type, Liber Amicorum Prof. Emeritus H. Florin, 1975.
    [8] M. F. Neuts, Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, John Hopkins University Press: Baltimore, 1981.
    [9] M. Kijima, Markov processes for stochastic modelling, Springer: New York, 2013.
    [10] V. G. Kulkarni, Modeling and analysis of stochastic systems, Crc Press, 2016.
    [11] Q. M. He, Fundamentals of matrix-analytic methods, Springer: New York, 2014.
    [12] S. Asmussen, Ruin probabilities, World Scientific, 2000.
    [13] S. Mahmoodi, S. H. Ranjkesh, Y. Q. Zhao, Condition-based maintenance policies for a multi-unit deteriorating system subject to shocks in a semi-Markov operating environment, Qual. Eng., 32 (2020), 286–297. https://doi.org/10.1080/08982112.2020.1731754 doi: 10.1080/08982112.2020.1731754
    [14] E. Pérez, D. Maldonado, C. Acal, J. E. Ruiz-Castro, A. M. Aguilera, F. Jiménez-Molinos, et al., Advanced temperature dependent statistical analysis of forming voltage distributions for three different HfO2-based RRAM technologies, Solid State Electron., 176 (2021), 107961. https://doi.org/10.1016/j.sse.2021.107961 doi: 10.1016/j.sse.2021.107961
    [15] J. E. Ruiz-Castro, C. Acal, A. M. Aguilera, J. B. Roldán, A complex model via phase-type distributions to study random telegraph noise in resistive memories, Mathematics, 9 (2021), 390. https://doi.org/10.3390/math9040390 doi: 10.3390/math9040390
    [16] S. Gordon, A.H. Marshall, M. Zenga, Predicting elderly patient length of stay in hospital and community care using a series of conditional coxian phase-type distributions, further conditioned on a survival tree, Health Care Manag. Sc., 21 (2018), 269–280. https://doi.org/10.1007/s10729-017-9411-9 doi: 10.1007/s10729-017-9411-9
    [17] M. Bladt, A review on phase-type distributions and their use in risk theory, ASTIN Bull. J. IAA, 35 (2005), 145–161. https://doi.org/10.1017/s0515036100014100 doi: 10.1017/s0515036100014100
    [18] J. E. Ruiz-Castro, C. Acal, A. M. Aguilera, M. C. Aguilera-Morillo, J. B. Roldán, Linear-phase-type probability modelling of functional PCA with applications to resistive memories, Math. Comput. Simulat., 186 (2021), 71–79. https://doi.org/10.1016/j.matcom.2020.07.006 doi: 10.1016/j.matcom.2020.07.006
    [19] W. Chang, Joe Cheng, J. J. Allaire, C. Sievert, B. Schloerke, Y. H. Xie, et al., R package shiny (2022). Available from: https://CRAN.R-project.org/package = shiny
    [20] M. G. Genton, S. Castruccio, P. Crippa, S. Dutta, R. Huser, Y. Sun, et al., Visuanimation in statistics, Stat, 4 (2015), 81–96. https://doi.org/10.1002/sta4.77 doi: 10.1002/sta4.77
    [21] J. Wrobel, S. Y. Park, A. M. Staicu, J. Goldsmith, Interactive graphics for functional data analyses, Stat, 5 (2016), 108–118. https://doi.org/10.1002/sta4.109 doi: 10.1002/sta4.109
    [22] J. P. Fortin, E. Fertig, K. Hansen, shinyMethyl: Interactive quality control of Illumina 450k DNA methylation arrays in R, F1000research, 3 (2014) 175. https://doi.org/10.12688/f1000research.4680.2 doi: 10.12688/f1000research.4680.2
    [23] C. Tebé, J. Valls, P. Satorra, A. Tobías, COVID19-world: A shiny application to perform comprehensive country-specific data visualization for SARS-CoV-2 epidemic, BMC Med. Res. Methodol., 20 (2020), 235. https://doi.org/10.1186/s12874-020-01121-9 doi: 10.1186/s12874-020-01121-9
    [24] J. Gabry et al., R package shinystan: Interactive visual and numerical diagnostics and posterior analysis for Bayesian models, (2015). Available from: https://CRAN.R-project.org/package = shinystan
    [25] N. T. Stevens, L. Lu, Comparing Kaplan-Meier curves with the probability of agreement, Stat. Med., 39 (2020), 4621–4635. https://doi.org/10.1002/sim.8744 doi: 10.1002/sim.8744
    [26] T. C. Wang, Developing a flexible and efficient dual sampling system for food quality and safety validation, Food Control, 145 (2023), 109483. https://doi.org/10.1016/j.foodcont.2022.109483 doi: 10.1016/j.foodcont.2022.109483
    [27] T. C. Wang, Generalized variable quick-switch sampling as a novel method for improving sampling efficiency of food products, Food Control, 135 (2022), 108841. https://doi.org/10.1016/j.foodcont.2022.108841 doi: 10.1016/j.foodcont.2022.108841
    [28] M. H. Shu, T. C. Wang, B. M. Hsu, Integrated green-and-quality inspection schemes for green product quality with six-sigma yield assurance and risk management, Qual. Reliab. Eng. Int., 39 (2023), 2720–2735. https://doi.org/10.1002/qre.3381 doi: 10.1002/qre.3381
    [29] T. C. Wang, B. M. Hsu, M. H. Shu, Quick-switch inspection scheme based on the overall process capability index for modern industrial web-based processing environment, Appl. Stoch. Model. Bus., 38 (2022), 847–861. https://doi.org/10.1002/asmb.2667 doi: 10.1002/asmb.2667
    [30] H. Okamura, T. Dohi, mapfit: An R-based Tool for PH/MAP parameter estimation, in Quantitative Evaluation of Systems, QEST 2015, Lecture Notes in Computer Science (vol. 9259), Springer, (2015), 105–112. https://doi.org/10.1007/978-3-319-22264-6_7
    [31] C. Acal, J. E. Ruiz-Castro, D. Maldonado, J. B. Roldán, One cut-point phase-type distributions in reliability, an application to resistive random access memories, Mathematics, 9 (2021), 2734. https://doi.org/10.3390/math9212734 doi: 10.3390/math9212734
    [32] N. Belgorodski, M. Greiner, K. Tolksdorf, K. Schueller, R package risk distributions: Fitting distributions to given data or known quantiles, R package version, (2017). https://CRAN.R-project.org/package = rriskDistributions
    [33] J. F. Lawless, Statistical models and methods for lifetime data (2º ed.), John Wiley & Sons, 2003.
    [34] S. Asmussen, O. Nerman, M. Olsson, Fitting phase-type distributions via the EM algorithm, Scand. J. Stat., 23 (1996), 419–441. http://www.jstor.org/stable/4616418
    [35] P. Buchholz, J. Kriege, I. Felko, Input Modeling with Phase-Type Distributions and Markov Models, Theory and Applications, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-06674-5
    [36] K. Choi, S. M. Park, S. Han, D. S. Yim, A partial imputation EM-algorithm to adjust the overestimated shape parameter of the Weibull distribution fitted to the clinical time-to-event data, Comput. Meth. Prog. Bio., 197 (2020), 105697. https://doi.org/10.1016/j.cmpb.2020.105697 doi: 10.1016/j.cmpb.2020.105697
    [37] A. Thummler, P. Buchholz, M. Telek, A novel approach for phase-type fitting with the EM algorithm, IEEE T. Depend. Secure, 3 (2006), 245–258.
    [38] A. Panchenko, A. Thummler, Efficient phase-type fitting with aggregated traffic traces, Perform. Evaluat., 64 (2007), 629–645. https://doi.org/10.1016/j.peva.2006.09.002 doi: 10.1016/j.peva.2006.09.002
    [39] H. Okamura, T. Dohi, K. S. Trivedi, Improvement of EM algorithm for phase-type distributions with grouped and truncated data, Appl. Stoch. Model. Bus., 29 (2013), 141–156. https://doi.org/10.1002/asmb.1919 doi: 10.1002/asmb.1919
    [40] P. Royston, D. G. Altman, External validation of a Cox prognostic model: Principles and methods, BMC Med. Res. Methodol., 13 (2013), 1–15. https://doi.org/10.1186/1471-2288-13-33 doi: 10.1186/1471-2288-13-33
    [41] J. E. Ruiz-Castro, C. Acal, J. B. Roldán, An approach to non-homogenous phase-type distributions through multiple cut-points, Qual. Eng., 35 (2023), 619–638.
    [42] A. Bobbio, A. Horvath, M. Telek, Matching three moments with minimal acyclic phase type distributions, Stoch. Models, 21 (2005), 303–326. https://doi.org/10.1081/STM-200056210 doi: 10.1081/STM-200056210
    [43] T. Osogami, M. Harchol-Balter, Closed form solutions for mapping general distributions to minimal PH distributions, Perform. Evaluat., 63 (2006), 524–552. https://doi.org/10.1016/j.peva.2005.06.002 doi: 10.1016/j.peva.2005.06.002
    [44] G. Horváth, M. Telek, Markovian performance evaluation with BuTools, in Systems Modeling: Methodologies and Tools, Springer, Cham, 2019. https://doi.org/10.1007/978-3-319-92378-9_16
    [45] A. Alkaff, M. N. Qomarudin, Modeling and analysis of system reliability using phase‐type distribution closure properties, Appl. Stoch. Model. Bus., 36 (2020), 548–569. https://doi.org/10.1002/asmb.2509 doi: 10.1002/asmb.2509
    [46] M. Langer, Y. Zhang, D. Figueirinhas, J.-B. Forien, K. Mom, C. Mouton, et al., PyPhase—A Python package for X-ray phase imaging, J. Synchrotron Radiat., 28 (2021), 1261–1266. https://doi.org/10.1107/S1600577521004951 doi: 10.1107/S1600577521004951
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1143) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog