Due to its immune evasion capability, the SARS-CoV-2 Omicron variant was declared a variant of concern by the World Health Organization. The spread of Omicron in Changchun (i.e., the capital of Jilin province in northeast of China) during the spring of 2022 was successfully curbed under the strategy of a dynamic Zero-COVID policy. To evaluate the impact of immune evasion on vaccination and other measures, and to understand how the dynamic Zero-COVID measure stopped the epidemics in Changchun, we establish a compartmental model over different stages and parameterized the model with actual reported data. The model simulation firstly shows a reasonably good fit between our model prediction and the data. Second, we estimate the testing rate in the early stage of the outbreak to reveal the real infection size. Third, numerical simulations show that the coverage of vaccine immunization in Changchun and the regular nucleic acid testing could not stop the epidemic, while the 'non-pharmaceutical' intervention measures utilized in the dynamic Zero-COVID policy could play significant roles in the containment of Omicron. Based on the parameterized model, numerical analysis demonstrates that if one wants to achieve epidemic control by fully utilizing the effect of 'dynamic Zero-COVID' measures, therefore social activities are restricted to the minimum level, and then the economic development may come to a halt. The insight analysis in this work could provide reference for infectious disease prevention and control measures in the future.
Citation: Kun Wang, Peng Wang, Zhengang Jiang, Lu Wang, Linhua Zhou, Dequan Qi, Weishi Yin, Pinchao Meng. Data-driven assessment of immune evasion and dynamic Zero-COVID policy on fast-spreading Omicron in Changchun[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21692-21716. doi: 10.3934/mbe.2023960
Due to its immune evasion capability, the SARS-CoV-2 Omicron variant was declared a variant of concern by the World Health Organization. The spread of Omicron in Changchun (i.e., the capital of Jilin province in northeast of China) during the spring of 2022 was successfully curbed under the strategy of a dynamic Zero-COVID policy. To evaluate the impact of immune evasion on vaccination and other measures, and to understand how the dynamic Zero-COVID measure stopped the epidemics in Changchun, we establish a compartmental model over different stages and parameterized the model with actual reported data. The model simulation firstly shows a reasonably good fit between our model prediction and the data. Second, we estimate the testing rate in the early stage of the outbreak to reveal the real infection size. Third, numerical simulations show that the coverage of vaccine immunization in Changchun and the regular nucleic acid testing could not stop the epidemic, while the 'non-pharmaceutical' intervention measures utilized in the dynamic Zero-COVID policy could play significant roles in the containment of Omicron. Based on the parameterized model, numerical analysis demonstrates that if one wants to achieve epidemic control by fully utilizing the effect of 'dynamic Zero-COVID' measures, therefore social activities are restricted to the minimum level, and then the economic development may come to a halt. The insight analysis in this work could provide reference for infectious disease prevention and control measures in the future.
[1] | S. He, Y. Peng, K. Sun, SEIR modeling of the COVID-19 and its dynamics, Nonlinear Dyn., 101 (2020), 1667–1680. https://doi.org/10.1007/s11071-020-05743-y doi: 10.1007/s11071-020-05743-y |
[2] | R. Khandia, S. Singhal, T. Alqahtani, M. A. Kamal, N. A. El-Shall, F. Nainu, et al., Emergence of SARS-CoV-2 Omicron (B.1.1.529) variant, salient features, high global health concerns and strategies to counter it amid ongoing COVID-19 pandemic, Environ. Res., 209 (2022), 1–18. https://doi.org/10.1016/j.envres.2022.112816 doi: 10.1016/j.envres.2022.112816 |
[3] | M. Hoffmann, N. Krger, S. Schulz, A. Cossmann, C. Rocha, A. Kempf, et al., The Omicron variant is highly resistant against antibody-mediated neutralization: Implications for control of the COVID-19 pandemic, Cell, 185 (2022), 447–456. https://doi.org/10.1016/j.cell.2021.12.032 doi: 10.1016/j.cell.2021.12.032 |
[4] | L. Jansen, B. Tegomoh, K. Lange, K. Showalter, J. Figliomeni, B. Abdalhamid, et al., Investigation of a sars-cov-2 b. 1.1. 529 (omicron) variant cluster-nebraska, november-december 2021, Morb. Mortal. Wkly. Rep., 70 (2021), 1782–1784. https://doi.org/10.15585/mmwr.mm705152e3 doi: 10.15585/mmwr.mm705152e3 |
[5] | C. Reno, F. Sanmarchi, M. Stoto, M. P. Fantini, J. Lenzi, D. Golinelli, The impact of health policies and vaccine rollout on the COVID-19 pandemic waves in Italy, Health Policy Technol., 11 (2022), 100604. https://doi.org/10.1016/j.hlpt.2022.100604 doi: 10.1016/j.hlpt.2022.100604 |
[6] | L. Chen, K. Wang, Analysis of COVID-19 epidemic characteristics in Shanxi Province based on SEIR model, J. Shanxi Datong Univ., 37 (2021), 40–45. |
[7] | D. Eyre, D. Taylor, M. Purver, D. Chapman, T. Fowler, K. B. Pouwels, et al., Effect of Covid-19 vaccination on transmission of alpha and delta variants, N. Engl. J. Med., 386 (2022), 744–756. https://doi.org/10.1056/NEJMoa2116597 doi: 10.1056/NEJMoa2116597 |
[8] | J. Bernal, N. Andrews, C. Gower, E. Gallagher, R. Simmons, S. Thelwall, et al., Effectiveness of Covid-19 vaccines against the B. 1.617.2 (Delta) variant, N. Engl. J. Med., 385 (2021), 585–594. https://doi.org/10.1056/NEJMc2113090 doi: 10.1056/NEJMc2113090 |
[9] | D. Planas, N. Saunders, P. Maes, F. Guivel-Benhassine, C. Planchais, J. Buchrieser, et al., Considerable escape of SARS-CoV-2 Omicron to antibody neutralization, Nature, 602 (2022), 671–675. https://doi.org/10.1038/s41586-021-04389-z doi: 10.1038/s41586-021-04389-z |
[10] | S. Zhao, H. Chen, Modeling the epidemic dynamics and control of COVID-19 outbreak in China, Quant. Biol., 8 (2020), 11–19. https://doi.org/10.1007/s40484-020-0199-0 doi: 10.1007/s40484-020-0199-0 |
[11] | N. Andrews, J. Stowe, F. Kirsebom, S. Toffa, T. Rickeard, E. Gallagher, et al., COVID-19 vaccine effectiveness against the omicron (B.1.1.529) variant, N. Engl. J. Med., 386 (2022), 1532–1546. https://doi.org/10.1056/NEJMoa2119451 doi: 10.1056/NEJMoa2119451 |
[12] | K. Wang, Z. Jia, L. Bao, L. Wang, L. Cao, H. Chi, et al., Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants, Nature, 603 (2022), 919–925. https://doi.org/10.1038/s41586-022-04466-x doi: 10.1038/s41586-022-04466-x |
[13] | S. Tartof, J. Slezak, Effectiveness of mRNA BNT162b2 COVID-19 vaccine up to 6 months in a large integrated health system in the USA: a retrospective cohort study, Lancet, 398 (2021), 1407–1416. https://doi.org/10.1016/S0140-6736(21)02183-8 doi: 10.1016/S0140-6736(21)02183-8 |
[14] | H. Tseng, B. Ackerson, Y. Luo, L. S. Sy, C. A. Talarico, Y. Tian, et al., Effectiveness of mRNA-1273 against SARS-CoV-2 omicron and delta variants, Nat. Med., 28 (2022), 1063–1071. https://doi.org/10.1038/s41591-022-01753-y doi: 10.1038/s41591-022-01753-y |
[15] | C. Baraniuk, COVID-19: How effective are vaccines against the delta variant?, BMJ, 374 (2021). https://doi.org/10.1136/bmj.n1960 |
[16] | P. Sah, S. Moghadas, T. Vilches, A. Shoukat, B. H. Singer, P. J. Hotez, et al., Implications of suboptimal COVID-19 vaccination coverage in Florida and Texas, Lancet Infect. Dis., 21 (2021), 1493–1494. https://doi.org/10.1016/S1473-3099(21)00620-4 doi: 10.1016/S1473-3099(21)00620-4 |
[17] | C. Banho, L. Sacchetto, G. Campos, C. Bittar, F. S. Possebon, L. S. Ullmann, et al., Impact of SARS-CoV-2 Gamma lineage introduction and COVID-19 vaccination on the epidemiological landscape of a Brazilian city, Nat. Commun. Med., 2 (2022), 41. https://doi.org/10.1038/s43856-022-00108-5 doi: 10.1038/s43856-022-00108-5 |
[18] | E. Chen, COVID-19 prevention and control strategies in the era of vaccines, Preventive Med., 33 (2021), 221–225. https://doi.org/10.19485/j.cnki.issn2096-5087.2021.03.002 doi: 10.19485/j.cnki.issn2096-5087.2021.03.002 |
[19] | Number of people vaccinated against COVID-19 nationwide as of February 25, 2022. Available from: http://www.nhc.gov.cn/xcs/fkdt/202202/8f49f6627a6540ce87511ac708ea7ad9.shtml. |
[20] | C. Kuhlmann, C. Mayer, M. Claassen, T. Maponga, W. A. Burgers, R. Keeton, et al., Breakthrough infections with SARS-CoV-2 omicron despite mRNA vaccine booster dose, Lancet, 625 (2022), 625–626. https://doi.org/10.1016/S0140-6736(22)00090-3 doi: 10.1016/S0140-6736(22)00090-3 |
[21] | K. Liu, S. Ai, S. Song, G. Zhu, F. Tian, H. Li, et al., Population movement, city closure in Wuhan, and geographical expansion of the COVID-19 infection in China in January 2020, Clin. Infect. Dis., 71 (2020), 2045–2051. https://doi.org/10.1093/cid/ciaa422 doi: 10.1093/cid/ciaa422 |
[22] | L. Zhou, X. Rong, M. Fan, L. Yang, H. Chu, L. Xue, et al., Modeling and evaluation of the joint prevention and control mechanism for curbing COVID-19 in Wuhan, Bull. Math. Biol., 84 (2022), 28. https://doi.org/10.1007/s11538-021-00983-4 doi: 10.1007/s11538-021-00983-4 |
[23] | S. Wang, Y. Ye, K. Hu, H. Lei, C. Chen, X. Xu, et al., To study the impact of Wuhan city lockdown on COVID-19 epidemic situation in China based on population mobility data, J. ZheJiang Univ., 50 (2021), 61–67. https://doi.org/10.3724/zdxbyxb-2021-0021 doi: 10.3724/zdxbyxb-2021-0021 |
[24] | M. Chinazzi, J. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler, et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak, Science, 368 (2020), 395–400. https://doi.org/10.1101/2020.02.09.20021261 doi: 10.1101/2020.02.09.20021261 |
[25] | H. Lau, V. Khosrawipour, P. Kocbach, A. Mikolajczyk, J. Schubert, J. Bania, et al., The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China, J. Travel Med., 27 (2020). https://doi.org/10.1093/jtm/taaa037 |
[26] | Y. Chen, Y. Wang, H. Wang, Z. Hu, L. Hua, Controlling urban traffic-one of the useful methods to ensure safety in Wuhan based on COVID-19 outbreak, Saf. Sci., 131 (2020), 104938. https://doi.org/10.1016/j.ssci.2020.104938 doi: 10.1016/j.ssci.2020.104938 |
[27] | K. Yu, X. Bai, Y. Guo, Analysis and prediction of COVID-19 epidemic and prevention and control strategies based on delay effect SAIR2D model, J. Qiqihar Univ., 37 (2021), 89–94. |
[28] | H. Tian, Y. Liu, Y. Li, C. H. Wu, B. Chen, M. U. G. Kraemer, et al., An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China, Science, 368 (2020), 638–642. https://doi.org/10.1126/science.abb6105 doi: 10.1126/science.abb6105 |
[29] | General Office of National Health Commission, Diagnosis and treatment plan for patients with COVID-19, 2022. Available from: http://www.gov.cn/zhengce/zhengceku/2022-03/15/content_5679257.htm. |
[30] | Z. Zhang, Y. Ma, T. Dong, Y. Wang, Z. Qu, Effect of novel Coronavirus Variants on the immunity efficacy of novel coronavirus vaccine, Int. J. Immunol., 44 (2021), 487–492. https://doi.org/10.3760/cma.j.issn.1673-4394.2021.05.001 doi: 10.3760/cma.j.issn.1673-4394.2021.05.001 |
[31] | Changchun Municipal Health Commission, Available from: http://wjw.changchun.gov.cn/. |
[32] | P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[33] | The total population of Changchun as of March 1, 2022. Available from: http://tjj.changchun.gov.cn/tjgb/202106/t20210602_2830531.html. |
[34] | Health Commission of Jinlin Province, Changchun City's COVID-19 Epidemic Report of March 4, 2022. Available from: http://wsjkw.jl.gov.cn/xwzx/xwzx/202203/t20220305_8406908.html. |
[35] | K. Prem, A. R. Cook, M. Jit, Projecting social contact matrices in 152 countries using contact surveys and demographic data, PLoS Comput. Biol., 13 (2017), e1005697. https://doi.org/10.1371/journal.pcbi.1005697 doi: 10.1371/journal.pcbi.1005697 |
[36] | National Health Commission of the People's Republic of China, Quarantine period, Available from: http://www.nhc.gov.cn/xcs/xxgzbd/gzbd_index.shtml. |
[37] | G. Milne, J. Carrivick, SARS-CoV-2 Omicron disease burden in Australia following border reopening: a modelling analysis, MedRxiv, (2022). https://doi.org/10.1101/2022.03.09.22272170 |
[38] | A. Cjlm, COVID-19 will continue but the end of the pandemic is near, Lancet, 399 (2022), 261–270. https://doi.org/10.1016/S0140-6736(22)00100-3 doi: 10.1016/S0140-6736(22)00100-3 |
[39] | A. Aleta, D. Martn-Corral, A. P. Piontti, M. Ajelli, M. Litvinova, M. Chinazzi, et al., Modelling the impact of testing, contact tracing and household quarantine on second waves of COVID-19, Nat. Hum. Behav., 4 (2020), 964–971. https://doi.org/10.1038/s41562-020-0931-9 doi: 10.1038/s41562-020-0931-9 |
[40] | Y. Li, S. Hou, Y. Zhang, J. Liu, H. Fan, C. Cao, The effect of travel restrictions of Wuhan city against the COVID-19: A modified SEIR model analysis, Disaster Med. Public Health Prep., 16 (2022), 1431–1437. https://doi.org/10.1017/dmp.2021.5 doi: 10.1017/dmp.2021.5 |
[41] | The basic reproduction number of Omicron, in MedSci, Availiable from: https://www.medsci.cn/article/show_article.do?id = 517c30214eaa. |
[42] | G. Giordano, M. Colaneri, A. Filippo, F. Blanchini, P. Bolzern, G. De Nicolao, et al., Modeling vaccination rollouts, SARS-COV-2 variants and the requirement for non-pharmaceutical interventions in Italy, Nat. Med., 27 (2021), 993–998. https://doi.org/10.1038/s41591-021-01334-5 doi: 10.1038/s41591-021-01334-5 |
[43] | K. Reddy, K. Fitzmaurice, J. Scott, G. Harling, R. J. Lessells, C. Panella, et al., Clinical outcomes and cost-effectiveness of COVID-19 vaccination in South Africa, Nat. Commun., 12 (2021). https://doi.org/10.1101/2021.05.07.21256852 |
[44] | L. Zhang, Q. Li, Z. Liang, T. Li, S. Liu, Q. Cui, et al., The significant immune escape of pseudotyped SARS-COV-2 variant Omicron, Emerging Microbes Infect., 11 (2022). https://doi.org/10.1080/22221751.2021.2017757 |
[45] | H. Tseng, B. Ackerson, Y. Luo, L. S. Sy, C. A. Talarico, Y. Tian, et al., Effectiveness of mRNA-1273 against SARS-CoV-2 Omicron and Delta variants, Nat. Med., 28 (2022), 1063–1071. https://doi.org/10.1038/s41591-022-01753-y doi: 10.1038/s41591-022-01753-y |
[46] | On March 9, 2022, Changchun City held the 1st press conference on the prevention and control of COVOD-19, Available from: https://mp.weixin.qq.com/s/pMjNA8nlJLWicEjUKlZXLQ. |
[47] | On April 4, 2022, Changchun City held the 46th press conference on the prevention and control of COVOD-19, Available from: https://mp.weixin.qq.com/s/kJUqvzp37eEQWelNOjVBhg. |
[48] | On April 6, 2022, Changchun City held the 48th press conference on the prevention and control of COVOD-19, Available from: https://mp.weixin.qq.com/s/LBLRq-Z_jdLIKhBEJAfMJg. |
[49] | On April 10, 2022, Changchun City held the 52nd press conference on the prevention and control of COVOD-19, Available from: https://mp.weixin.qq.com/s/h5cbszBPisak5SLqLIYGTw. |