In this paper, we investigate a time-delayed vector-borne disease model with impulsive culling of the vector. The basic reproduction number $ \mathcal{R}_0 $ of our model is first introduced by the theory recently established in [
Citation: Rong Ming, Xiao Yu. Global dynamics of an impulsive vector-borne disease model with time delays[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20939-20958. doi: 10.3934/mbe.2023926
In this paper, we investigate a time-delayed vector-borne disease model with impulsive culling of the vector. The basic reproduction number $ \mathcal{R}_0 $ of our model is first introduced by the theory recently established in [
[1] | Z. Bai, X. Q. Zhao, Basic reproduction ratios for periodic and time-delayed compartmental models with impulses, J. Math. Biol., 80 (2020), 1095–1117. https://doi.org/10.1007/s00285-019-01452-2 doi: 10.1007/s00285-019-01452-2 |
[2] | S. Ruan, D. Xiao, J. C. Beier, On the delayed Ross-Macdonald model for malaria transmission, Bull. Math. Biol., 70 (2008), 1098–1114. https://doi.org/10.1007/s11538-007-9292-z doi: 10.1007/s11538-007-9292-z |
[3] | D. Nash, F. Mostashari, A. Fine, J. Miller, D. O'Leary, K. Murray, et al., The outbreak of West Nile virus infection in the New York City area in 1999, N. Engl. J. Med., 344 (2001), 1807–1814. https://doi.org/10.1056/NEJM200106143442401 doi: 10.1056/NEJM200106143442401 |
[4] | S. Tang, L. Chen, Density-dependent birth rate, birth pulses and their population dynamic consequences, J. Math. Biol., 44 (2002), 185–199. https://doi.org/10.1007/s002850100121 doi: 10.1007/s002850100121 |
[5] | Z. Bai, Y. Lou, X. Q. Zhao, A delayed succession model with diffusion for the impact of diapause on population growth, SIAM J. Appl. Math., 80 (2020), 1493–1519. https://doi.org/10.1137/19M1236448 doi: 10.1137/19M1236448 |
[6] | S. Gao, L. Chen, Z. Teng, Impulsive vaccination of an SEIRS model with time delay and varying total population size, Bull. Math. Biol., 69 (2007), 731–745. https://doi.org/10.1007/s11538-006-9149-x doi: 10.1007/s11538-006-9149-x |
[7] | X. Meng, L. Chen, H. Cheng, Two profitless delays for the SEIRS epidemic disease model with nonlinear incidence and pulse vaccination, Appl. Math. Comput., 186 (2007), 516–529. https://doi.org/10.1016/j.amc.2006.07.124 doi: 10.1016/j.amc.2006.07.124 |
[8] | Y. P. Yang, Y. Xiao, Threshold dynamics for compartmental epidemic models with impulses, Nonlinear Anal. Real World Appl., 13 (2012), 224–234. https://doi.org/10.1016/j.nonrwa.2011.07.028 doi: 10.1016/j.nonrwa.2011.07.028 |
[9] | X. Xu, Y. Xiao, R. A. Cheke, Models of impulsive culling of vector to interrupt transmission of West Nile virus to host, Appl. Math. Model., 39 (2015), 3549–3568. https://doi.org/10.1016/j.apm.2014.10.072 doi: 10.1016/j.apm.2014.10.072 |
[10] | Z. Yang, C. Huang, X. Zou, Effect of impulsive controls in a model system for age-structured population over a patchy environment, J. Math. Biol., 76 (2018), 1387–1419. https://doi.org/10.1007/s00285-017-1172-z doi: 10.1007/s00285-017-1172-z |
[11] | S. A. Gourley, R. Liu, J. Wu, Eradicating vector-borne diseases via age-structured culling, J. Math. Biol., 54 (2007), 309–335. https://doi.org/10.1007/s00285-006-0050-x doi: 10.1007/s00285-006-0050-x |
[12] | A. J. Terry, Impulsive culling of a structured population on two patches. J. Math. Biol., 61 (2010), 843–875. https://doi.org/10.1007/s00285-009-0325-0 doi: 10.1007/s00285-009-0325-0 |
[13] | S. P. Rajasekar, M. Pitchaimani, Q. Zhu, Probing a stochastic epidemic hepatitis C virus model with a chronically infected treated population, Acta Math. Sci., 42 (2022), 2087–2112. https://doi.org/10.1007/s10473-022-0521-1 doi: 10.1007/s10473-022-0521-1 |
[14] | Y. Zhao, L. Wang, Practical exponential stability of impulsive stochastic food chain system with time-varying delays, Mathematics, 11 (2023), 147. https://doi.org/10.3390/math11010147 doi: 10.3390/math11010147 |
[15] | Y. Han, Z. Bai, Threshold dynamics of a West Nile virus model with impulsive culling and incubation period., Discrete Contin. Dyn. Syst. B, 27 (2022), 4515–4529. https://doi.org/10.3934/dcdsb.2021239 doi: 10.3934/dcdsb.2021239 |
[16] | Y. Lou, X. Q. Zhao, A theoretical approach to understanding population dynamics with seasonal developmental durations, J. Nonlinear Sci., 27 (2017), 573–603. https://doi.org/10.1007/s00332-016-9344-3 doi: 10.1007/s00332-016-9344-3 |
[17] | X. Wang, X. Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math., 77 (2017), 181–201. https://doi.org/10.1137/15M1046277 doi: 10.1137/15M1046277 |
[18] | F. B. Wang, R. Wu, X. Q. Zhao, A West Nile virus transmission model with periodic incubation periods, SIAM J. Appl. Dyn. Syst., 18 (2019), 1498–1535. https://doi.org/10.1137/18M123616 doi: 10.1137/18M123616 |
[19] | F. B. Wang, R. Wu, X. Yu, Threshold dynamics of a bat-borne rabies model with periodic incubation periods, Nonlinear Anal. Real World Appl., 61 (2021), 103340. https://doi.org/10.1016/j.nonrwa.2021.103340 doi: 10.1016/j.nonrwa.2021.103340 |
[20] | X. Liu, G. Ballinger, Continuous dependence on initial values for impulsive delay differential equations, Appl. Math. Lett., 17 (2004), 483–490. https://doi.org/10.1016/S0893-9659(04)90094-8 doi: 10.1016/S0893-9659(04)90094-8 |
[21] | X. Q. Zhao, Dynamical Systems in Population Biology, 2nd edition, CMS Books in Mathematics, Springer, 2017. https://doi.org/10.1007/978-3-319-56433-3 |
[22] | G. Ballinger, X. Liu, Existence, uniqueness and boundedness results for impulsive delay differential equations, Appl. Anal., 74 (2000), 71–93. https://doi.org/10.1080/00036810008840804 doi: 10.1080/00036810008840804 |
[23] | H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Society, Providence, RI, 1995. https://doi.org/10.1090/surv/041 |
[24] | D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Longman Harlow (1993), New York. https://doi.org/10.1201/9780203751206 |
[25] | X. Liang, X. Q. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1–40. https://doi.org/10.1002/cpa.20154 doi: 10.1002/cpa.20154 |
[26] | L. Burlando, Monotonicity of spectral radius for positive operators on ordered Banach spaces, Arch. Math., 56 (1991), 49–57. https://doi.org/10.1007/BF01190081 doi: 10.1007/BF01190081 |
[27] | T. Kato, Perturbation Theory for Linear Operators, Springer, 1976. https://doi.org/10.1007/978-3-642-66282-9 |
[28] | X. Liu, X. Shen, Y. Zhang, A comparison principle and stability for large-scale impulsive delay differential systems, ANZIAM J., 47 (2005), 203–235. https://doi.org/10.1017/S1446181100009998 doi: 10.1017/S1446181100009998 |
[29] | W. Hu, Q. Zhu, H. R. Karimi, Some improved Razumikhin stability criteria for impulsive stochastic delay differential systems, IEEE Trans. Autom. Control, 64 (2019), 5207–5213. https://doi.org/10.1109/TAC.2019.2911182 doi: 10.1109/TAC.2019.2911182 |
[30] | W. Hu, Q. Zhu, Stability criteria for impulsive stochastic functional differential systems with distributed delay dependent impulsive effects, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 2027–2032. https://doi.org/10.1109/TSMC.2019.2905007 doi: 10.1109/TSMC.2019.2905007 |
[31] | M. Xia, L. Liu, J. Fang, Y. Zhang, Stability analysis for a class of stochastic differential equations with impulses, Mathematics, 11 (2023), 1541. https://doi.org/10.3390/math11061541 doi: 10.3390/math11061541 |