Research article Special Issues

Convex radial solutions for Monge-Amp$ \grave{\text e} $re equations involving the gradient

  • Received: 11 May 2023 Revised: 19 October 2023 Accepted: 25 October 2023 Published: 21 November 2023
  • This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $:

    $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $

    where $ B: = \{x\in \mathbb R^N: |x| < 1\} $. The fixed point index theory is employed in the proofs of the main results.

    Citation: Zhilin Yang. Convex radial solutions for Monge-Amp$ \grave{\text e} $re equations involving the gradient[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20959-20970. doi: 10.3934/mbe.2023927

    Related Papers:

  • This paper deals with the existence and multiplicity of convex radial solutions for the Monge-Amp$ \grave{\text e} $re equation involving the gradient $ \nabla u $:

    $ \begin{cases} \det (D^2u) = f(|x|, -u, |\nabla u|), x\in B, \\ u|_{\partial B} = 0, \end{cases} $

    where $ B: = \{x\in \mathbb R^N: |x| < 1\} $. The fixed point index theory is employed in the proofs of the main results.



    加载中


    [1] C. Gutiérrez, The Monge-Amp$\grave{\text e}$re Equation, Birkhauser, Basel, 2000. https://doi.org/10.1007/978-3-319-43374-5
    [2] C. Mooney, The Monge-Amp$\grave{\text e}$re equation, arXive preprint, (2018), arXiv: 1806.09945. https://doi.org/10.48550/arXiv.1806.09945
    [3] N. S. Trudinger, X. Wang, The Monge-Amp$\grave{\text e}$re equation and its geometric applications, Handbook of geometric analysis, Handbook of Geometric Analysis, International Press, I (2008), 467–524, Available from: https://maths-people.anu.edu.au/wang/publications/MA.pdf.
    [4] G. Dai, Two Whyburn type topological theorems and its applications to Monge-Amp$\grave{\text e}$re equations, Calc. Var. Partial Differ. Equations, 55 (2016), 1–28. https://doi.org/10.1007/s00526-016-1029-0 doi: 10.1007/s00526-016-1029-0
    [5] A. Figalli, The Monge-Amp$\grave{\text e}$re Equation and Its Applications, European Mathematical Society, 2017.
    [6] M. Gao, F. Wang, Existence of convex solutions for systems of Monge-Amp$\grave{\text e}$re equations, Bound. Value Probl., 2015 (2015), 1–12. https://doi.org/10.1186/s13661-015-0390-9 doi: 10.1186/s13661-015-0390-9
    [7] J. V. A. Gonçalves, C. A. P. Santos, Classical solutions of singular Monge-Amp$\grave{\text e}$re Equations in a ball, J. Math. Anal. Appl., 305 (2005), 240–252. https://doi.org/10.1016/j.jmaa.2004.11.019 doi: 10.1016/j.jmaa.2004.11.019
    [8] S. Hu, H. Wang, Convex solutions of boundary value problems arising from Monge-Amp$\grave{\text e}$re equations, Discrete Contin. Dyn. Syst., 16 (2006), 705–720. https://doi.org/10.3934/dcds.2006.16.705 doi: 10.3934/dcds.2006.16.705
    [9] N. D. Kutev, Nontrivial Solutions for the Equations of Monge-Ampere Type, J. Math. Anal. Appl., 132 (1988), 424–433. https://doi.org/10.1016/0022-247X(88)90071-6 doi: 10.1016/0022-247X(88)90071-6
    [10] R. Ma, H. Gao, Positive convex solutions of boundary value problems arising from Monge-Amp$\grave{\text e}$re equations, Appl. Math. Comput., 259 (2015), 390–402. https://doi.org/10.1016/j.amc.2015.03.005 doi: 10.1016/j.amc.2015.03.005
    [11] A. Mohammed, Singular boundary value problems for the Monge-Amp$\grave{\text e}$re equation, Nonlinear Anal. Theory Methods Appl., 70 (2009), 4570–464. https://doi.org/10.1016/j.na.2007.12.017 doi: 10.1016/j.na.2007.12.017
    [12] H. Wang, Convex solutions of boundary value problems, J. Math. Anal. Appl., 318 (2006), 246–252. https://doi.org/10.1016/j.jmaa.2005.05.067 doi: 10.1016/j.jmaa.2005.05.067
    [13] H. Wang, Convex solutions of systems arising from Monge-Amp$\grave{\text e}$re equations, Electron. J. Qual. Theory Differ. Equ., 26 (2009), 1–8. https://doi.org/10.14232/ejqtde.2009.4.26 doi: 10.14232/ejqtde.2009.4.26
    [14] H. Wang, Convex solutions of systems of Monge-Amp$\grave{\text e}$re equations, arXiv preprint, (2010), arXiv: 1007.3013v2. https://doi.org/10.48550/arXiv.1007.3013
    [15] Z. Zhang, K. Wang, Existence and non-existence of solutions for a class of Monge-Amp$\grave{\text e}$re equations, J. Differ. Equ., 246 (2009), 2849–2875. https://doi.org/10.1016/j.jde.2009.01.004 doi: 10.1016/j.jde.2009.01.004
    [16] H. Brezis, R. E. L. Turner, On a class of superlinear elliptic problems, Commun. Part. Differ. Eq., 2 (1977), 601–614. https://doi.org/10.1080/03605307708820041 doi: 10.1080/03605307708820041
    [17] M. Feng, H. Sun, X. Zhang, Strictly convex solutions for singular Monge-Amp$\grave{\text e}$re equations with nonlinear gradient terms: existence and boundary asymptotic behavior, SN Part. Differ. Equ. Appl., 1 (2020), 27. https://doi.org/10.1007/s42985-020-00025-z doi: 10.1007/s42985-020-00025-z
    [18] M. Feng, A class of singular coupled systems of superlinear Monge-Amp$\grave{\text e}$re equations, Acta Math. Appl. Sin. Engl. Ser., 38 (2022), 925–942. https://doi.org/10.1007/s10255-022-1024-5 doi: 10.1007/s10255-022-1024-5
    [19] X. Zhang, S. Bai, Existence and boundary asymptotic behavior of strictly convex solutions for singular Monge-Amp$\grave{\text e}$re problems with gradient terms, Port. Math., 80 (2023), 107–132. https://doi.org/10.4171/PM/2097 doi: 10.4171/PM/2097
    [20] M. Nagumo, $\ddot{\mathrm U}$ber die Differentialgleichung $y^{\prime\prime} = f(t, y, y^\prime)$, in Proceedings of the Physico-Mathematical Society of Japan, 19 (1937), 861–866. https://doi.org/10.11429/ppmsj1919.19.0_861
    [21] S. N. Bernstein, Sur les équations du calcul des variations, Ann. Sci. Ec. Norm. Super., 29 (1912), 431–485. https://doi.org/10.24033/asens.651 doi: 10.24033/asens.651
    [22] M. G. Krein, M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Transl. Math. Monogr. AMS, 10 (1962), 199–325.
    [23] D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, Boston, 1988. https://doi.org/10.1016/C2013-0-10750-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(975) PDF downloads(62) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog