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Abstract: This paper deals with the existence and multiplicity of convex radial solutions for the
Monge-Ampère equation involving the gradient ∇u:det(D2u) = f (|x|,−u, |∇u|), x ∈ B,

u|∂B = 0,

where B := {x ∈ RN : |x| < 1}. The fixed point index theory is employed in the proofs of the main
results.

Keywords: Monge-Ampère equation; convex radial solution; Krein-Rutman theorem; fixed point
index; a priori estimate

1. Introduction

This paper deals with the existence and multiplicity of convex radial solutions for the Monge-
Ampère equation involving the gradient ∇u:det(D2u) = f (|x|,−u, |∇u|), x ∈ B,

u|∂B = 0,
(1.1)

where B := {x ∈ RN : |x| < 1}, |x| :=
√∑N

i=1 x2
i .

The Monge-Ampère equation

det D2u = f (x, u,Du) (1.2)

is fundamental in affine geometry. For example, if

f (x, u,Du) := K(x)(1 + |Du|2)(n+2)/n,
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then Eq (1.2) is called the prescribed Gauss curvature equation. The Monge-Ampère equation also
arises in isometric embedding, optimal transportation, reflector shape design, meteorology and fluid
mechanics (see [1–3]). As a result, the Monge-Ampère equation is among the most significant of fully
nonlinear partial differential equations and has been extensively studied. In particular, the existence of
radial solutions of (1.1) has been thoroughly investigated (see [2–15], only to cite a few of them).

In 1977, Brezis and Turner [16] examined a class of elliptic problems of the formLu = g(x, u,Du), x ∈ Ω,
u = 0, x ∈ ∂Ω,

(1.3)

where Ω is a smooth, bounded domain in RN and L is a linear elliptic operator enjoying a maximum
principle, Du is the gradient of u, and g is a nonnegative function. It is worthwhile to point out the
function g satisfies a growth condition on u and Du, i.e., limu→+∞

g(x,u,p)

u
N+1
N−1
= 0 uniformly in x ∈ Ω and

p ∈ RN , in comparison with our main results for (1.1) (see Theorems 3.1 and 3.3 in Section 3).
In 1988, Kutev [9] studied the existence of nontrivial convex solutions for the problemdet(D2u) = (−u)p, x ∈ BR := {x ∈ Rn : |x| < R},

u = 0, x ∈ ∂BR,
(1.4)

where p > 0 and p , n. His main results obtained are the three theorems below:
Theorem 1. Let G denote a bounded convex domain in Rn and 0 < p < n. Then the problemdet(D2u) = (−u)p, x ∈ G,

u = 0, x ∈ ∂G
(1.5)

possesses at most one strictly convex solution u ∈ C2(G) ∩C(G).
Theorem 2. Let 0 < p < n. Then problem (1.4) possesses a unique strictly convex solution u which

is a radially symmetric function and u ∈ C∞(BR).
Theorem 3. Let p > n. Then problem (1.4) possesses a unique nontrivial radially symmetric

solution u which is a strictly convex function and u ∈ C∞(BR).
In 2004, by means of the fixed point index theory, Wang [12] studied the existence of convex radial

solutions of the problem det(D2u) = f (−u), x ∈ B,

u|∂B = 0.
(1.6)

His main conditions on f are
1) the superlinear case: lim

v→0+
f (v)
vn = 0, lim

v→+∞

f (v)
vn = +∞,

and
2) the sublinear case: lim

v→0+
f (v)
vn = +∞, lim

v→+∞

f (v)
vn = 0.

In 2006, Hu and Wang [8] studied the existence, multiplicity and nonexistence of strictly convex
solutions for the boundary value problem((u′(r))n)′ = λnrn−1 f (−u(r)), r ∈ (0, 1),

u′(0) = u(r) = 0,
(1.7)
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which is equivalent to (1.6) with f (−u) replaced by λ f (−u), λ being a parameter.
In 2009, Wang [13] studied the existence of convex solutions to the Dirichlet problem for the weakly

coupled system 
(
(u′1(t))N

)′
= NtN−1 f (−u2(t)),(

(u′2(t))N
)′
= NtN−1g(−u1(t)),

u′1(0) = u′2(0) = 0, u1(1) = u2(1) = 0.

(1.8)

Dai [4] studied the bifurcation problemdet(D2u) = λNa(x) f (−u), u ∈ Ω,

u = 0, x ∈ ∂Ω.

In 2020, Feng et al. [17] established an existence criterion of strictly convex solutions for the sin-
gular Monge-Ampère equationsdet D2u = b(x) f (−u) + g(|Du|), in Ω

u = 0, on ∂Ω

and det D2u = b(x) f (−u)(1 + g(|Du|)), in Ω
u = 0, on ∂Ω

where Ω is a convex domain, b ∈ C∞(Ω) and g ∈ C∞(0,+∞) being positive and satisfying g(t) ⩽ cgtq

for some cg > 0 and 0 ⩽ q < n.
In 2022, Feng [18] analyzed the existence, multiplicity and nonexistence of nontrivial radial convex

solutions of the following system coupled by singular Monge-Ampère equations
det D2u1 = λh1(|x|) f (−u2), in Ω,
det D2u2 = λh2(|x|) f (−u1), in Ω,
u1 = u2 = 0, on ∂Ω,

where Ω := {x ∈ Rn : |x| < 1}.
In 2023, Zhang and Bai [19] studied the following singular Monge-Ampère problems:det D2u = b(x) f (−u) + |Du|q, in Ω,

u = 0, on ∂Ω

and det D2u = b(x) f (−u)(1 + |Du|q), in Ω,
u = 0, on ∂Ω

where Ω is a convex domain, b ∈ C∞(Ω) and q < n.
It is interesting to observe that of previous works cited above, except for [16,17,19], all nonlineari-

ties under study are not concerned with the gradient or the first-order derivative, in contrast to our one in
(1.1) that involves the gradient ∇u. The presence of the gradient makes it indispensable to estimate the
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contribution of its presence to the associated nonlinear operator A and, that is a difficult task. In order
to overcome the difficulty created by the gradient, we use the Nagumo-Berstein type condition [20,21]
to restrict the growth of the gradient at infinity, thereby facilitating the obtention of a priori estimation
of the gradient through Jensens’s integral inequalities. Additionally, in [17, 19], the dimension n is an
unreachable growth ceiling of |∇u| in their nonlinearities, compared to our nonlinearities in the present
paper (see (H3) in the next section). Thus our methods in the present paper are entirely different from
these in the existing literature, for instance, in [8, 10, 12–14, 16–19].

The remainder of the present article is organized as follows. Section two is concerned with some
preliminary results. The main results, i.e., Theorems 3.1–3.3, will be stated and shown in Section 3.

2. Preliminary results

Let t := |x| =
√∑N

i=1 x2
i . Then (1.1) reduces to((u′(t))N)′ = NtN−1 f (t,−u, u′),

u′(0) = u(1) = 0;
(2.1)

see [8]. Substituting v := −u into (2.1), we obtain((−v′(t))N)′ = NtN−1 f (t, v,−v′),
v′(0) = v(1) = 0.

(2.2)

It is easy to see that every solution u of (2.1), under the very condition f ∈ C([0, 1] × R2
+,R+), must

be convex, increasing and nonpositive on [0, 1]. Naturally, every solution v of (2.2) must be concave,
decreasing and nonnegative on [0, 1]. This explains why we will work in a positive cone of C1[0, 1]
whose elements are all decreasing, nonnegative functions.

Let E := C1[0, 1] be endowed with the norm

∥v∥1 := max{∥v∥0, ∥v′∥0}, v ∈ E,

where ∥v∥0 denotes the maximum of |v(t)| on the interval [0, 1] for v ∈ C[0, 1]. Thus, (E, ∥ · ∥1) becomes
a real Banach space. Furthermore, let P be the set of C1 functions that are nonnegative and decreasing
on [0, 1]. It is not difficult to verify that P represents a cone in E. Additionally, in our context, (2.2)
and, in turn, (1.1), is equivalent to the nonlinear integral equation

v(t) =
∫ 1

t

(∫ s

0
NτN−1 f (τ, v(τ),−v′(τ)) dτ

)1/N

ds, v ∈ P.

For our forthcoming proofs of the main results, we define the the nonlinear operator A to be

(Av)(t) :=
∫ 1

t

(∫ s

0
NτN−1 f (τ, v(τ),−v′(τ)) dτ

)1/N

ds, v ∈ P. (2.3)

If f ∈ C([0, 1] × R2
+,R+), then A : P → P is completely continuous. Now, the existence of convex

radial solutions of (1.1) is tantamount to that of concave fixed points of the nonlinear operator A.
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Denote by
k(t, s) := min{1 − t, 1 − s}. (2.4)

By Jenesen’s integral inequality, we have the basic inequality

(Av)(t) ⩾ N1/N
∫ 1

0
k(t, s)s1−1/N f 1/N(s, v(s),−v′(s)) ds, v ∈ P. (2.5)

Associated with the righthand of the inequality above is the linear operator B1, defined by

(B1v)(s) := N1/N
∫ 1

0
k(t, s)s1−1/Nv(t) dt. (2.6)

Clearly, B1 : P→ P is completely continuous with its spectral radius r(B1) being positive. The Krein-
Rutman theorem [22] asserts that there exists φ ∈ P\ {0} such that B1φ = r(B1)φ, which may be written
in the form

N1/N
∫ 1

0
k(t, s)s1−1/Nφ(t) dt = r(B1)φ(s). (2.7)

For convenience, we require in addition ∫ 1

0
φ(t) dt = 1. (2.8)

Lemma 2.1. (see [23]) Let E be a real Banach space and P a cone in E. Suppose that Ω ⊂ E
is a bounded open set and that T : Ω ∩ P → P is a completely continuous operator. If there exists
w0 ∈ P \ {0} such that

w − Tw , λw0,∀λ ⩾ 0,w ∈ ∂Ω ∩ P,

then i(T,Ω ∩ P, P) = 0, where i indicates the fixed point index.
Lemma 2.2. (see [23]) Let E be a real Banach space and P a cone in E. Suppose that Ω ⊂ E is a

bounded open set with 0 ∈ Ω and that T : Ω ∩ P→ P is a completely continuous operator. If

w − λTw , 0,∀λ ∈ [0, 1],w ∈ ∂Ω ∩ P,

then i(T,Ω ∩ P, P) = 1.

3. Existence and multiplicity of negative convex solutions of (1.1)

Below are the conditions posed on the nonlinearity f .
(H1) f ∈ C([0, 1] × R2

+,R+).
(H2) One may find two constants a > (r(B1))−N and c > 0 such that

f (t, x, y) ⩾ axN − c, t ∈ [0, 1], (x, y) ∈ R2
+.

(H3) For every M > 0 there exists a strictly increasing function ΦM ∈ C(R+,R+) such that

f (t, x, y) ⩽ ΦM(yN),∀(t, x, y) ∈ [0, 1] × [0,M] × R+
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and
∫ ∞

2N−1c0

dξ
ΦM(ξ) > 2N−1N, where φ ∈ P \ {0} is determined by (2.7) and (2.8), and c0 :=(

−
φ′(1)c1/N N1/N

φ(0)(a1/Nr(B1)−1)
∫ 1

0 (1−t)φ(t) dt

)N

.

(H4) lim sup
x→0+,y→0+

f (t,x,y)
q(x,y) < 1 holds uniformly for t ∈ [0, 1], where

q(x, y) := max{xN , yN}, x ∈ R+, y ∈ R+. (3.1)

(H5) There exist two constants r > 0 and b > (r(B1))−N so that

f (t, x, y) ⩾ bxN , t ∈ [0, 1], x ∈ [0, r], y ∈ [0, r].

(H6) lim sup
x+y→∞

f (t,x,y)
q(x,y) < 1 holds uniformly for t ∈ [0, 1], with q(x, y) being defined by (3.1).

(H7) There exists ω > 0 so that f (t, x, y) ⩽ f (t, ω, ω) for all t ∈ [0, 1], x ∈ [0, ω], y ∈ [0, ω] and∫ 1

0
NsN−1 f (s, ω, ω) ds < ωN .
Theorem 3.1. If (H1)–(H4) hold, then (1.1) has at least one convex radial solution.
Proof. Let

M := {v ∈ P : v = Av + λφ, for some λ ⩾ 0},

where φ is specified in (2.7) and (2.8). Clearly, if v ∈ M , then v is decreasing on [0, 1], and
v(t) ⩾ (Av)(t), t ∈ [0, 1]. We shall now prove that M is bounded. We first establish the a priori
bound of ∥v∥0 on M . Recall (2.5). If v ∈M , then Jensen’s inequality and (H2) imply

v(t) ⩾ N1/N
∫ 1

0
k(t, s)s1−1/N f 1/N(s, v(s),−v′(s)) ds

⩾ a1/N N1/N
∫ 1

0
k(t, s)s1−1/Nv(s) ds − c1/N N1/N .

Then, by (2.7) and (2.8) we obtain∫ 1

0
v(t)φ(t) dt ⩾ a1/Nr(B1)

∫ 1

0
v(t)φ(t) dt − c1/N N1/N ,

so that ∫ 1

0
v(t)φ(t) dt ⩽

c1/N N1/N

a1/Nr(B1) − 1
,∀v ∈M .

Since v is concave and ∥v∥0 = v(0), we obtain that

∥v∥0 ⩽

∫ 1

0
v(t)φ(t) dt∫ 1

0
(1 − t)φ(t) dt

⩽
c1/N N1/N

(a1/Nr(B1) − 1)
∫ 1

0
(1 − t)φ(t) dt

:= M0,∀v ∈M ,

(3.2)
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which proves the a priori estimate of ∥v∥0 on M . Now we are going to establish the a priori estimate
of ∥v′∥0 on M . By (H3), there exists a strictly increasing function ΦM0 ∈ C(R+,R+) so that

f (t, v(t),−v′(t)) ⩽ ΦM0((−v′)N(t)),∀v ∈M , t ∈ [0, 1].

Now, (3.2) implies λ ⩽ M0
φ(0) for all λ ∈ Λ, where

Λ := {λ ∈ R+ : there is v ∈ P so that v = Av + λφ}.

If v ∈M , then

v′(t) = −
(∫ t

0
NsN−1 f (s, v(s),−v′(s)) ds

)1/N

+ λφ′(t)

for some λ ⩾ 0, and

(−v′)N(t) ⩽ 2N−1
(∫ t

0
NsN−1 f (s, v(s),−v′(s)) ds + c0

)
⩽ 2N−1N

∫ t

0
ΦM0((−v′)N(s)) ds + 2N−1c0,

where c0 :=
(
−

M0φ
′(1)

φ(0)

)N . Let w(t) := (−v′)N(t). Then w ∈ C([0, 1],R+) and w(0) = 0. Moreover,

w(t) ⩽ 2N−1N
∫ t

0
ΦM0(w(s)) ds + 2N−1c0,∀v ∈M .

Let F(t) :=
∫ t

0
ΦM0(w(τ)) dτ. Then F(0) = 0, w(t) ⩽ 2N−1NF(t) + 2N−1c0, and

F′(t) = ΦM0(w(t)) ⩽ ΦM0

(
2N−1NF(t) + 2N−1c0

)
,∀v ∈M .

Therefore ∫ 2N−1NF(1)+2N−1c0

2N−1c0

dξ
ΦM0(ξ)

=

∫ 1

0

2N−1NF′(τ) dτ
ΦM0(2N−1NF(τ) + 2N−1c0)

⩽ 2N−1N.

Now (H3) indicates that there exists M1 > 0 so that F(1) ⩽ M1 for every v ∈ M . Consequently, one
obtains

∥(−v′)N∥0 = ∥w∥0 = w(1) ⩽ 2N−1NM1 + 2N−1c0

for all v ∈M . Let M := max{M0, (2N−1NM1 + 2N−1c0)1/N} > 0. Then

∥v∥1 ⩽ M,∀v ∈M .

This shows that M is bounded. Choosing R > max{M, r} > 0, we obtain

v , Av + λφ,∀v ∈ ∂BR ∩ P,

where BR := {v ∈ E : ∥v∥1 < R}. Then Lemma 2.1 implies

i(A, BR ∩ P, P) = 0. (3.3)

By (H4), there exist two constants r > 0 and δ ∈ (0, 1) so that

f (t, x, y) ⩽ δq(x, y),∀0 ⩽ x, y ⩽ r, 0 ⩽ t ⩽ 1.
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Therefore, for all v ∈ Br ∩ P, t ∈ [0, 1], one sees that

(Av)N(t) ⩽
∫ 1

t

(∫ s

0
NδτN−1q(v(τ),−v′(τ)) dτ

)
ds

= Nδ
∫ 1

0
k(t, s)sN−1q(v(s),−v′(s)) ds

⩽ Nδ∥v∥N1
1−tN+1

N(N+1)
⩽ δ∥v∥N1 ,

and
−(Av)′(t) ⩽

(∫ t

0
NδsN−1q(v(s),−v′(s)) ds

)1/N

⩽
(
Nδ∥v∥N1 ·

tN

N

)1/N

⩽ δ1/N∥v∥1.

Now, the preceding two inequalities imply

∥Av∥1 ⩽ δ1/N∥v∥1 < ∥v∥1,∀v ∈ Br ∩ P,

and, in turn,
v , λAv,∀v ∈ ∂Br ∩ P, λ ∈ [0, 1].

Invoking Lemma 2.2 begets
i(A, Br ∩ P, P) = 1.

Recalling (3.3), we obtain
i(A, (BR \ Br) ∩ P, P) = 0 − 1 = −1.

Thus, A possesses at least one fixed point on (BR \ Br) ∩ P, which proves that (1.1) possesses at least
one convex radial solution. This finishes the proof.

Theorem 3.2. If (H1), (H5) and (H6) hold, then (1.1) possesses at least one convex radial solution.
Proof. Let r > 0 be specified by (H5) and φ ∈ P \ {0} be given by (2.7) and (2.7). Denote by

N := {v ∈ Br : v = Av + λφ, for certain λ ⩾ 0},

where r > 0 is specified by (H5) and φ ∈ P \ {0} ia given by (2.7) and (2.8). Now we assert that
N ⊂ {0} and indeed, (H5) implies that

(Av)(t) ⩾
∫ 1

t

(∫ s

0
NbτN−1vN(τ) dτ

)1/N

ds

⩾ N1/Nb1/N
∫ 1

0
k(t, s)s1−1/Nv(s) ds

for every v ∈ Br ∩ P. If v ∈ N , then

v(t) ⩾ N1/Nb1/N
∫ 1

0
k(t, s)s1−1/Nv(s) ds.

By (2.7) and (2.8), one obtains∫ 1

0
v(t)φ(t) dt ⩾ b1/Nr(B1)

∫ 1

0
v(t)φ(t) dt,
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so that ∫ 1

0
v(t)φ(t) dt = 0,∀v ∈ N .

Therefore, we have v ≡ 0 and, hence, N ⊂ {0} as asserted. Finally, one finds

v , Av + λφ,∀v ∈ ∂Br ∩ P, λ ⩾ 0.

Applying Lemma 2.1 begets
i(A, Br ∩ P, P) = 0. (3.4)

Alternatively, (H6) indicates that there exist two constants δ ∈ (0, 1) and c > 0 such that

f (x, y) ⩽ δq(x, y) + c,∀x ⩾ 0, y ⩾ 0, t ∈ [0, 1]. (3.5)

Denote by
S := {v ∈ P : v = λAv, for certain λ ∈ [0, 1]}.

We are going to prove the boundedness of S . In fact, v ∈ S indicates

vN(t) ⩽ (Av)N(t), (−v′)N(t) ⩽ ((−Av)′)N(t).

Hence, for every v ∈ S , t ∈ [0, 1], (3.5) implies the inequalities below:

vN(t) ⩽
∫ 1

t

(∫ s

0
NτN−1[δq(v(τ),−v′(τ)) + c

]
dτ

)
ds

=
∫ 1

0
k(t, s)NsN−1[δq(v(s),−v′(s)) + c

]
ds

⩽ N(δ∥v∥N1 + c) 1−tN+1

N(N+1)
⩽ δ∥v∥N1 + c

and
(−v′)N(t) ⩽

∫ t

0
NsN−1[δq(v(s),−v′(s)) + c

]
ds

⩽ N(δ∥v∥N1 + c) tN

N
⩽ δ∥v∥N1 + c.

Now, the preceding two inequalities allude to

∥v∥N1 ⩽ δ∥v∥
N
1 + c

and, hence,

∥v∥1 ⩽
( c
1 − δ

)1/N

for all v ∈ S , which asserts that S is bounded, as desired. Choosing R > max{sup{∥v∥1 : v ∈ S }, r} >
0, one finds

v , λAv,∀v ∈ ∂BR ∩ P, λ ∈ [0, 1].

Applying Lemma 2.2 begets
i(A, BR ∩ P, P) = 1.

This, together with (3.4), concludes that

i(A, (BR \ Br) ∩ P, P) = 1 − 0 = 1.

Mathematical Biosciences and Engineering Volume 20, Issue 12, 20959–20970.



20968

Therefore, A possesses at least one fixed point on (BR \ Br)∩ P and (1.1) possesses at least one convex
radial solution. This finishes the proof.

Theorem 3.3. If (H1)–(H3), (H5) and (H7) hold, then (1.1) possesses at least two convex radial
solutions.

Proof. The proofs of Theorems 3.1 and 3.2 suggest that (3.3) and (3.4) may be derived from (H1)–
(H3) and (H5). Alternatively, (H7) indicates

∥(Av)N∥0 = (Av)N(0) ⩽
∫ 1

0
N(1 − s)sN−1 f (s, ω, ω) ds < ωN

and

∥
[
(Av)′

]N
∥0 =

[
(−Av)′

]N (1) ⩽
∫ 1

0
NsN−1 f (s, ω, ω) ds < ωN

for all v ∈ Bω ∩ P. Consequently,

∥Av∥1 < ∥v∥1,∀v ∈ ∂Bω ∩ P.

This means

v , λAv,∀v ∈ Bω ∩ P, λ ∈ [0, 1].

Applying Lemma 2.2 begets

i(A, Bω ∩ P, P) = 1. (3.6)

Notice that R > 0 in (3.4) may be sufficiently large and r > 0 may be sufficiently small. This means
that we may assume R > ω > r. Now (3.6), together with (3.3) and (3.4), implies

i(A, (BR \ Bω) ∩ P, P) = 0 − 1 = −1,

and

i(A, (Bω \ Br) ∩ P, P) = 1 − 0 = 1.

Consequently, A possesses at least two positive fixed points, one on (BR \ Bω) ∩ P and the other on
(Bω \ Br) ∩ P. Thus, (1.1) possesses at least two convex radial solutions. This finishes the proof.
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