As an essential part of electronic component assembly, it is crucial to rapidly and accurately detect electronic components. Therefore, a lightweight electronic component detection method based on knowledge distillation is proposed in this study. First, a lightweight student model was constructed. Then, we consider issues like the teacher and student's differing expressions. A knowledge distillation method based on the combination of feature and channel is proposed to learn the teacher's rich class-related and inter-class difference features. Finally, comparative experiments were analyzed for the dataset. The results show that the student model Params (13.32 M) are reduced by 55%, and FLOPs (28.7 GMac) are reduced by 35% compared to the teacher model. The knowledge distillation method based on the combination of feature and channel improves the student model's mAP by 3.91% and 1.13% on the Pascal VOC and electronic components detection datasets, respectively. As a result of the knowledge distillation, the constructed student model strikes a superior balance between model precision and complexity, allowing for fast and accurate detection of electronic components with a detection precision (mAP) of 97.81% and a speed of 79 FPS.
Citation: Zilin Xia, Jinan Gu, Wenbo Wang, Zedong Huang. Research on a lightweight electronic component detection method based on knowledge distillation[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 20971-20994. doi: 10.3934/mbe.2023928
As an essential part of electronic component assembly, it is crucial to rapidly and accurately detect electronic components. Therefore, a lightweight electronic component detection method based on knowledge distillation is proposed in this study. First, a lightweight student model was constructed. Then, we consider issues like the teacher and student's differing expressions. A knowledge distillation method based on the combination of feature and channel is proposed to learn the teacher's rich class-related and inter-class difference features. Finally, comparative experiments were analyzed for the dataset. The results show that the student model Params (13.32 M) are reduced by 55%, and FLOPs (28.7 GMac) are reduced by 35% compared to the teacher model. The knowledge distillation method based on the combination of feature and channel improves the student model's mAP by 3.91% and 1.13% on the Pascal VOC and electronic components detection datasets, respectively. As a result of the knowledge distillation, the constructed student model strikes a superior balance between model precision and complexity, allowing for fast and accurate detection of electronic components with a detection precision (mAP) of 97.81% and a speed of 79 FPS.
[1] | W. Wang, Y. Zhang, J. Gu, J. Wang, A proactive manufacturing resources assignment method based on production performance prediction for the smart factory, IEEE Trans. Ind. Inf., 18 (2018), 46–55. https://doi.org/10.1109/TII.2021.3073404 doi: 10.1109/TII.2021.3073404 |
[2] | W. Wang, T. Hu, J. Gu, Edge-cloud cooperation driven self-adaptive exception control method for the smart factory, Adv. Eng. Inf., 51 (2022), 101493. https://doi.org/10.1016/j.aei.2021.101493 doi: 10.1016/j.aei.2021.101493 |
[3] | Z. Zou, K. Chen, Z. Shi, Y. Guo, J. Ye, Object detection in 20 years: A survey, Proc. IEEE, 111 (2023), 257–276. https://doi.org/10.1109/JPROC.2023.3238524 doi: 10.1109/JPROC.2023.3238524 |
[4] | Y. Xu, G. Yu, X. Wu, Y. Wang, Y. Ma, An enhanced Viola-Jones vehicle detection method from unmanned aerial vehicles imagery, IEEE Trans. Intell. Transp. Syst., 18 (2016), 1845–1856. https://doi.org/10.1109/TITS.2016.2617202 doi: 10.1109/TITS.2016.2617202 |
[5] | L. Liu, J. Liang, J. Wang, P. Hu, L. Wan, Q. Zheng, An improved YOLOv5-based approach to soybean phenotype information perception, Comput. Electr. Eng., 106 (2023), 108582. https://doi.org/10.1016/j.compeleceng.2023.108582 doi: 10.1016/j.compeleceng.2023.108582 |
[6] | A. Krizhevsky, I. Sutskever, G. E. Hinton, ImageNet classification with deep convolutional neural networks, Commun. ACM, 60 (2017), 84–90. https://doi.org/10.1145/3065386 doi: 10.1145/3065386 |
[7] | R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2014), 580–587. https://doi.org/10.1109/CVPR.2014.81 |
[8] | R. Girshick, Fast R-CNN, in Proceedings of the IEEE International Conference on Computer Vision, (2015), 1440–1448. http://dx.doi.org/10.1109/ICCV.2015.169 |
[9] | S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 doi: 10.1109/TPAMI.2016.2577031 |
[10] | F. Zeng, Y. Liu, Y. Ye, J. Zhou, X. Liu, A detection method of edge coherent mode based on improved SSD, Fusion Eng. Design, 179 (2022), 113141. https://doi.org/10.1016/j.fusengdes.2022.113141 doi: 10.1016/j.fusengdes.2022.113141 |
[11] | J. Redmon, A. Farhadi, YOLO9000: Better, faster, stronger, in Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition, (2017), 7263–7271. https://doi.org/10.1109/CVPR.2017.690 |
[12] | J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, preprint, arXiv: 1804.02767. |
[13] | A. Bochkovskiy, C. Y. Wang, H. Y. M. Liao, YOLOv4: Optimal speed and accuracy of object detection, preprint, arXiv: 2004.10934 |
[14] | T. Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, S. Belongie, Feature pyramid networks for object detection, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2017), 2117–2125. https://doi.org/10.1109/CVPR.2017.106 |
[15] | T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 318–327. https://doi.org/10.1109/TPAMI.2018.2858826 doi: 10.1109/TPAMI.2018.2858826 |
[16] | X. Sun, J. Gu, R. Huang, A modified SSD method for electronic components fast recognition, Optik, 205 (20200), 163767. https://doi.org/10.1016/j.ijleo.2019.163767 doi: 10.1016/j.ijleo.2019.163767 |
[17] | R. Huang, J. Gu, X. Sun, Y. Hou, S. Uddin, A rapid recognition method for electronic components based on the improved YOLOv3 network, Electronics, 8 (2019), 825. https://doi.org/10.3390/electronics8080825 doi: 10.3390/electronics8080825 |
[18] | M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, L. C. Chen, MobileNetV2: Inverted residuals and linear bottlenecks, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2018), 4510–4520. https://doi.org/10.1109/CVPR.2018.00474 |
[19] | Z. Yang, R. Dong, H. Xu, J. Gu, Instance segmentation method based on improved mask R-CNN for the stacked electronic components, Electronics, 9 (2020), 886. https://doi.org/10.3390/electronics9060886 doi: 10.3390/electronics9060886 |
[20] | K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 386–397. http://dx.doi.org/10.1109/TPAMI.2018.2844175 doi: 10.1109/TPAMI.2018.2844175 |
[21] | J. Li, J. Gu, Z. Huang, J. Wen, Application research of improved YOLOv3 algorithm in PCB electronic component detection, Appl. Sci., 9 (2019), 3750. https://doi.org/10.3390/app9183750 doi: 10.3390/app9183750 |
[22] | Z. Xia, J. Gu, K. Zhang, W. Wang, J. Li, Research on Multi-scene electronic component detection algorithm with anchor assignment based on K-means, Electronics, 11 (2022), 514. https://doi.org/10.3390/electronics11040514 doi: 10.3390/electronics11040514 |
[23] | L. Yang, G. Yuan, H. Zhou, H. Liu, J. Chen, H. Wu, RS-YOLOx: A high-precision detector for object detection in satellite remote sensing images, Appl. Sci., 12 (2022), 8707. https://doi.org/10.3390/app12178707 doi: 10.3390/app12178707 |
[24] | L. Yang, G. Yuan, H. Wu, W. Qian, An ultra-lightweight detector with high accuracy and speed for aerial images, Math. Biosci. Eng., 20 (2023), 13947–13973. https://doi.org/10.3934/mbe.2023621 doi: 10.3934/mbe.2023621 |
[25] | W. Wang, Z. Han, T. R. Gadekallu, S. Raza, J. Tanveer, C. Su, Lightweight blockchain-enhanced mutual authentication protocol for UAVs, IEEE Internet Things J., 2023 (2023). https://doi.org/10.1109/JIOT.2023.3324543 doi: 10.1109/JIOT.2023.3324543 |
[26] | J. Zong, C. Wang, J. Shen, C. Su, W. Wang, ReLAC: Revocable and lightweight access control with blockchain for smart consumer electronics, IEEE Trans. Consum. Electron., 2023 (2023). https://doi.org/10.1109/TCE.2023.3279652 doi: 10.1109/TCE.2023.3279652 |
[27] | L. Zhao, H. Huang, W. Wang, Z. Zheng, An accurate approach of device-free localization with attention empowered residual network, Appl. Soft Comput., 137 (2023), 110164. https://doi.org/10.1016/j.asoc.2023.110164 doi: 10.1016/j.asoc.2023.110164 |
[28] | J. Chen, Y. Liu, J. Hou, A lightweight deep learning network based on knowledge distillation for applications of efficient crack segmentation on embedded devices, Struct. Health Monit., 2023 (2023), 107200. https://doi.org/10.1177/14759217221139730 doi: 10.1177/14759217221139730 |
[29] | A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, Y. Bengio, Fitnets: Hints for thin deep nets, preprint, arXiv: 1412.6550. |
[30] | Y. Liu, K. Chen, C. Liu, Z. Qin, Z. Luo, J. Wang, Structured knowledge distillation for semantic segmentation, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2019), 2604–2613. https://doi.org/10.1109/CVPR.2019.00271 |
[31] | Z. Zhou, C. Zhuge, X. Guan, W. Liu, Channel distillation: Channel-wise attention for knowledge distillation, preprint, arXiv: 2006.01683. |
[32] | G. Hinton, O. Vinyals, J. Dean, Distilling the knowledge in a neural network, preprint, arXiv: 1503.02531. |
[33] | Q. Li, S. Jin, J. Yan, Mimicking very efficient network for object detection, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2017), 6356–6364. https://doi.org/10.1109/CVPR.2017.776 |
[34] | Y. Liu, C. Shu, J. Wang, C. Shen, Structured knowledge distillation for dense prediction, IEEE Trans. Pattern Anal. Mach. Intell., 45 (2023), 7035–7049. https://doi.org/10.1109/TPAMI.2020.3001940 doi: 10.1109/TPAMI.2020.3001940 |
[35] | Y. Wang, W. Zhou, T. Jiang, X. Bai, Y. Xu, Intra-class feature variation distillation for semantic segmentation, in European Conference on Computer Vision, (2020), 346–362. https://doi.org/10.1007/978-3-030-58571-6_21 |
[36] | C. Shu, Y. Liu, J. Gao, Z. Yan, C. Shen, Channel-wise knowledge distillation for dense prediction, in Proceedings of the IEEE International Conference on Computer Vision, (2021), 5311–5320. https://doi.org/10.1109/ICCV48922.2021.00526 |
[37] | M. Tan, Q. Le, Efficientnetv2: Smaller models and faster training, in International Conference on Machine Learning, (2021), 10096–10106 |
[38] | Y. Tang, K. Han, J. Guo, C. Xu, C. Xu, Y. Wang, GhostNetv2: enhance cheap operation with long-range attention, in Advances in Neural Information Processing Systems, 35 (2022), 9969–9982. |
[39] | K. Han, Y. Wang, Q. Tian, J. Guo, C. Xu, C. Xu, GhostNet: More features from cheap operations, in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (2020), 1580–1589. https://doi.org/10.1109/CVPR42600.2020.00165 |
[40] | Z. Tian, C. Shen, H. Chen, T. He, FCOS: Fully convolutional one-stage object detection, in Proceedings of the IEEE International Conference on Computer Vision, (2019), 9627–9636. https://doi.org/10.1109/ICCV.2019.00972 |
[41] | M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The pascal visual object classes (VOC) challenge, Int. J. Comput. Vis., 88 (2010), 303–338. https://doi.org/10.1007/s11263-009-0275-4 doi: 10.1007/s11263-009-0275-4 |