Research article Special Issues

Within-host delay differential model for SARS-CoV-2 kinetics with saturated antiviral responses

  • Received: 31 July 2023 Revised: 27 September 2023 Accepted: 24 October 2023 Published: 03 November 2023
  • The present study discussed a model to describe the SARS-CoV-2 viral kinetics in the presence of saturated antiviral responses. A discrete-time delay was introduced due to the time required for uninfected epithelial cells to activate a suitable antiviral response by generating immune cytokines and chemokines. We examined the system's stability at each equilibrium point. A threshold value was obtained for which the system switched from stability to instability via a Hopf bifurcation. The length of the time delay has been computed, for which the system has preserved its stability. Numerical results show that the system was stable for the faster antiviral responses of epithelial cells to the virus concentration, i.e., quick antiviral responses stabilized patients' bodies by neutralizing the virus. However, if the antiviral response of epithelial cells to the virus increased, the system became unstable, and the virus occupied the whole body, which caused patients' deaths.

    Citation: Kaushik Dehingia, Anusmita Das, Evren Hincal, Kamyar Hosseini, Sayed M. El Din. Within-host delay differential model for SARS-CoV-2 kinetics with saturated antiviral responses[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 20025-20049. doi: 10.3934/mbe.2023887

    Related Papers:

  • The present study discussed a model to describe the SARS-CoV-2 viral kinetics in the presence of saturated antiviral responses. A discrete-time delay was introduced due to the time required for uninfected epithelial cells to activate a suitable antiviral response by generating immune cytokines and chemokines. We examined the system's stability at each equilibrium point. A threshold value was obtained for which the system switched from stability to instability via a Hopf bifurcation. The length of the time delay has been computed, for which the system has preserved its stability. Numerical results show that the system was stable for the faster antiviral responses of epithelial cells to the virus concentration, i.e., quick antiviral responses stabilized patients' bodies by neutralizing the virus. However, if the antiviral response of epithelial cells to the virus increased, the system became unstable, and the virus occupied the whole body, which caused patients' deaths.



    加载中


    [1] K. Liang, Mathematical model of infection kinetics and its analysis for COVID-19, SARS and MERS, Infect. Genet. Evol., 82 (2020), 104306. https://doi.org/10.1016/j.meegid.2020.104306 doi: 10.1016/j.meegid.2020.104306
    [2] C. Yang, J. Wang, A mathematical model for the novel coronavirus epidemic in Wuhan, China, Math. Biosci. Eng., 17 (2020), 2708–2724. https://doi.org/10.3934/mbe.2020148 doi: 10.3934/mbe.2020148
    [3] S. K. Biswas, J. K. Ghosh, S. Sarkar, U. Ghosh, COVID-19 pandemic in India: a mathematical model study, Nonlinear Dyn., 102 (2020), 537–553. https://doi.org/10.1007/s11071-020-05958-z doi: 10.1007/s11071-020-05958-z
    [4] A. A. Arjani, Md. T. Nasseef, S. M. Kamal, B. V. S. Rao, M. Mahmud, Md. S. Uddin, Application of mathematical modeling in prediction of COVID-19 transmission dynamics, Arab. J. Sci. Eng., 47 (2022), 10163–10186. https://doi.org/10.1007/s13369-021-06419-4 doi: 10.1007/s13369-021-06419-4
    [5] A. J. Kucharski, T. W. Russell, C. Diamond, Early dynamics of transmission and control of COVID-19: a mathematical modelling study, Lancet Infect. Dis., 20 (2020), 553–558. https://doi.org/10.1016/S1473-3099(20)30144-4 doi: 10.1016/S1473-3099(20)30144-4
    [6] M. Zamir, F. Nadeem, M. A. Alqudah, T. Abdeljawad, Future implications of COVID-19 through Mathematical modeling, Results Phys., 33 (2022), 105097. https://doi.org/10.1016/j.rinp.2021.105097 doi: 10.1016/j.rinp.2021.105097
    [7] F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 502 (2020), 502(2020). https://doi.org/10.1186/s13662-020-02964-8 doi: 10.1186/s13662-020-02964-8
    [8] S. R. Bandekar, M. Ghosh, C. Rajivganthi, Impact of vaccination on the dynamics of COVID-19: A mathematical study using fractional derivatives, Int. J. Biomath., 17 (2024), 2350018. https://doi.org/10.1142/S1793524523500183 doi: 10.1142/S1793524523500183
    [9] H. J. Alsakaji, F. A. Rihan, A. Hashish, Dynamics of a stochastic epidemic model with vaccination and multiple time-delays for COVID-19 in the UAE, Complexity, 2022 (2022), 4247800. https://doi.org/10.1155/2022/4247800 doi: 10.1155/2022/4247800
    [10] C. Yang, Y. Yang, Z. Li, L. Zhang, Modeling and analysis of COVID-19 based on a time delay dynamic model, Math. Biosci. Eng., 18 (2020), 154–165. https://doi.org/10.3934/mbe.2021008 doi: 10.3934/mbe.2021008
    [11] M. Radha, S. Balamuralitharan, A study on COVID-19 transmission dynamics: stability analysis of SEIR model with Hopf bifurcation for effect of time delay, Adv. Differ. Equ., 2020 (2020), 523. https://doi.org/10.1186/s13662-020-02958-6 doi: 10.1186/s13662-020-02958-6
    [12] A. Raza, A. Ahmadian, M. Rafiq, M. C. Ang, S. Salahshour, M. Pakdaman, The impact of delay strategies on the dynamics of coronavirus pandemic model with nonlinear incidence rate, Fractals, 30 (2022), 2240121. https://doi.org/10.1142/S0218348X22401211 doi: 10.1142/S0218348X22401211
    [13] O. Babasola, O. Kayode, O. J. Peter, F. C. Onwuegbuche, F. A. Oguntolu, Time-delayed modelling of the COVID-19 dynamics with a convex incidence rate, Inform. Med. Unlocked., 35 (2022), 101124. https://doi.org/10.1016/j.imu.2022.101124 doi: 10.1016/j.imu.2022.101124
    [14] S. M. Al‑Tuwairqi, S. K. Al‑Harbi, A time‑delayed model for the spread of COVID‑19 with vaccination, Sci. Rep., 12 (2022), 19435. https://doi.org/10.1038/s41598-022-23822-5 doi: 10.1038/s41598-022-23822-5
    [15] S. Q. Du, W. Yuan, Mathematical modeling of interaction between innate and adaptive immune responses in COVID-19 and implications for viral pathogenesis, J. Med. Virol., 92 (2020), 1615–1628. https://doi.org/10.1002/jmv.25866 doi: 10.1002/jmv.25866
    [16] E. A. Hernandez-Vargas, J. X. Velasco-Hernandez, In-host Mathematical Modelling of COVID-19 in Humans, Annu. Rev. Control, 50 (2020), 448–456. https://doi.org/10.1016/j.arcontrol.2020.09.006 doi: 10.1016/j.arcontrol.2020.09.006
    [17] D. B. Prakash, D. K. K. Vamsi, D. B. Rajesh, C. B. Sanjeevi, Control Intervention Strategies for within-host, between-host and their efficacy in the treatment, spread of COVID-19 : a multi scale modeling approach, Comput. Math. Biophys., 8 (2020), 198–210. https://doi.org/10.1515/cmb-2020-0111 doi: 10.1515/cmb-2020-0111
    [18] B. Chhetri, V. M. Bhagat, D. K. K. Vamsi, V. S. Ananth, B. Prakash, R. Mandale, et al., Within-host mathematical modeling on crucial inflammatory mediators and drug interventions in COVID-19 identifies combination therapy to be most effective and optimal, Alex. Eng. J., 60 (2021), 2491–2512. https://doi.org/10.1016/j.aej.2020.12.011 doi: 10.1016/j.aej.2020.12.011
    [19] A. E. S. Almocera, G. Quiroz, E. A. Hernandez-Vargas, Stability analysis in COVID-19 within-host model with immune response. Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105584. https://doi.org/10.1016/j.cnsns.2020.105584 doi: 10.1016/j.cnsns.2020.105584
    [20] R. Ghostine, M. Gharamti, S. Hassrouny, I. Hoteit, Mathematical modeling of immune responses against SARS-CoV-2 using an ensemble Kalman Filter, Mathematics, 9 (2021), 2427. https://doi.org/10.3390/math9192427 doi: 10.3390/math9192427
    [21] S. M. E. K. Chowdhury, J. T. Chowdhury, S. F. Ahmed, P. Agarwal, I. A. Badruddin, S. Kamangar, Mathematical modelling of COVID-19 disease dynamics: interaction between immune system and SARS-CoV-2 within host, AIMS Math., 7 (2021), 2618–2633. https://doi.org/10.3934/math.2022147 doi: 10.3934/math.2022147
    [22] C. Li, J. Xu, J. Liu, Y. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 17 (2020), 2853–2861. https://doi.org/10.3934/mbe.2020159 doi: 10.3934/mbe.2020159
    [23] B. J. Nath, K. Dehingia, V. N. Mishra, Y. M. Chu, H. K. Sarmah, Mathematical analysis of a within-host model of SARS-CoV-2, Adv. Differ. Equ., 2021 (2021), 113. https://doi.org/10.1186/s13662-021-03276-1 doi: 10.1186/s13662-021-03276-1
    [24] I. Ghosh, Within host dynamics of SARS‑CoV‑2 in humans: modeling immune responses and antiviral treatments, SN comput. sci., 2 (2021), 482. https://doi.org/10.1007/s42979-021-00919-8 doi: 10.1007/s42979-021-00919-8
    [25] I. M. Elbaz, M. A. Sohaly, H. El‑Metwally, Modeling the stochastic within‑host dynamics SARS‑CoV‑2 infection with discrete delay, Theor. Biosci., 141 (2020), 365–374. https://doi.org/10.1007/s12064-022-00379-5 doi: 10.1007/s12064-022-00379-5
    [26] V. Staroverov, S. Nersisyan, A. Galatenko, D. Alekseev, S. Lukashevich, F. Polyakov, et al., Development of a novel mathematical model that explains SARS-CoV-2 infection dynamics in Caco-2 cells, PeerJ, 11 (2023), e14828. https://doi.org/10.7717/peerj.14828 doi: 10.7717/peerj.14828
    [27] L. G. de Pillis, R. Caffrey, G. Chen, et al., A mathematical model of the within-host kinetics of SARS-CoV-2 neutralizing antibodies following COVID-19 vaccination, J. Theor. Biol., 556 (2023), 111280. doi:10.1016/j.jtbi.2022.111280 doi: 10.1016/j.jtbi.2022.111280
    [28] T. A. Miura, Respiratory epithelial cells as master communicators during viral infections, Curr. Clin. Microbiol., 6 (2019), 10–17. https://doi.org/10.1007/s40588-019-0111-8 doi: 10.1007/s40588-019-0111-8
    [29] A. N. Chatterjee, F. A. Basir, M. A. Almuqrin, J. Mondal, I. Khan, SARS-CoV-2 infection with lytic and non-lytic immune responses: a fractional order optimal control theoretical study, Results in Physics, 26 (2021), 104260. https://doi.org/10.1016/j.rinp.2021.104260 doi: 10.1016/j.rinp.2021.104260
    [30] H. J. Alsakaji, S. Kundu, F. A. Rihan, Delay differential model of one-predator two-prey system with Monod-Haldane and holling type Ⅱ functional responses, Appl. Math. Comput., 397 (2021). https://doi.org/10.1016/j.amc.2020.125919 doi: 10.1016/j.amc.2020.125919
    [31] X. Yang, L. Chen, J. Chen, Permanence and positive periodic solution for the single-species non-autonomous delay diffusive models, Comput. Math. Applic., 32 (1996), 109–116. https://doi.org/10.1016/0898-1221(96)00129-0 doi: 10.1016/0898-1221(96)00129-0
    [32] P. V. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [33] J. P. LaSalle, The stability of dynamical systems, SIAM, Philadelphia, Pa, USA, 1976. https://doi.org/10.21236/ADA031020
    [34] Y. Kuang, Delay differential equations with applications in population dynamics, Academic Press, Inc.: Boston, MA, USA, 1993.
    [35] H. I. Freedman, V. S. H. Rao, Stability criteria for a system involving two-time delays, SIAM J. Appl. Math., 46 (1986), 552–560. https://doi.org/10.1137/0146037 doi: 10.1137/0146037
    [36] L. H. Erbe, H. I. Freedman, V. S. H. Rao, Three species food chain models with mutual interference and time delays, Math. Biosci., 80 (1986), 57–80. https://doi.org/10.1016/0025-5564(86)90067-2 doi: 10.1016/0025-5564(86)90067-2
    [37] H. I. Freedman, V. S. H. Rao, The trade-off between mutual interference and time lags in predator-prey systems, Bull. Math. Biol., 45 (2019), 1983,991–1004. https://doi.org/10.1016/S0092-8240(83)80073-1 doi: 10.1016/S0092-8240(83)80073-1
    [38] Y. Fadaei, F. A. Rihan, C. Rajivganthi, Immunokinetic model for COVID-19 patients, Complexity, 2022 (2022), 8321848. https://doi.org/10.1155/2022/8321848 doi: 10.1155/2022/8321848
    [39] G. Li, Y. Fan, Y. Lai, T. Han, Z. Li, P. Zhou, et al., Coronavirus infections and immune responses, J. Med. Virol., 92 (2020), 424–432. https://doi.org/10.1002/jmv.25685 doi: 10.1002/jmv.25685
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1350) PDF downloads(69) Cited by(5)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog