Research article

A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves

  • Received: 08 July 2023 Revised: 07 September 2023 Accepted: 22 October 2023 Published: 01 November 2023
  • Recent innovations have focused on the creation of new families that extend well-known distributions while providing a huge amount of practical flexibility for data modeling. Weighted distributions offer an effective approach for addressing model building and data interpretation problems. The main objective of this work is to provide a novel family based on a weighted generator called the length-biased truncated Lomax-generated (LBTLo-G) family. Discussions are held about the characteristics of the LBTLo-G family, including expressions for the probability density function, moments, and incomplete moments. In addition, different measures of uncertainty are determined. We provide four new sub-distributions and investigated their functionalities. Subsequently, a statistical analysis is given. The LBTLo-G family's parameter estimation is carried out using the maximum likelihood technique on the basis of full and censored samples. Simulation research is conducted to determine the parameters of the LBTLo Weibull (LBTLoW) distribution. Four genuine data sets are considered to illustrate the fitting behavior of the LBTLoW distribution. In each case, the application outcomes demonstrate that the LBTLoW distribution can, in fact, fit the data more accurately than other rival distributions.

    Citation: Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki. A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880

    Related Papers:

  • Recent innovations have focused on the creation of new families that extend well-known distributions while providing a huge amount of practical flexibility for data modeling. Weighted distributions offer an effective approach for addressing model building and data interpretation problems. The main objective of this work is to provide a novel family based on a weighted generator called the length-biased truncated Lomax-generated (LBTLo-G) family. Discussions are held about the characteristics of the LBTLo-G family, including expressions for the probability density function, moments, and incomplete moments. In addition, different measures of uncertainty are determined. We provide four new sub-distributions and investigated their functionalities. Subsequently, a statistical analysis is given. The LBTLo-G family's parameter estimation is carried out using the maximum likelihood technique on the basis of full and censored samples. Simulation research is conducted to determine the parameters of the LBTLo Weibull (LBTLoW) distribution. Four genuine data sets are considered to illustrate the fitting behavior of the LBTLoW distribution. In each case, the application outcomes demonstrate that the LBTLoW distribution can, in fact, fit the data more accurately than other rival distributions.



    加载中


    [1] C. R. Rao, On Discrete Distributions Arising out of Methods of Ascertainment, in Classical and Contagious Discrete Distribution, (Eds. G. P. Patil), Pergamon Press, Calcutta, (1965), 320–332.
    [2] R. A. Fisher, The effects of methods of ascertainment upon the estimation of frequencies, Ann. Eugen., 6 (1934), 13–25. https://doi.org/10.1111/j.1469-1809.1934.tb02105.x doi: 10.1111/j.1469-1809.1934.tb02105.x
    [3] G. P. Patil, C. R. Rao, Weighted distributions and size-biased sampling with applications to wildlife populations and human families, Biometrics, 34 (1978), 179–189. https://doi.org/10.2307/2530008 doi: 10.2307/2530008
    [4] R. C. Gupta, J. P. Keating, Relations for reliability measures under length biased sampling, Scand. J. Stat., (1986), 49–56.
    [5] A. K. Nanda, K. Jain, Some weighted distribution results on univariate and bivariate cases, J. Stat. Plan. Inference, 77 (1999), 169–180. https://doi.org/10.1016/S0378-3758(98)00190-6 doi: 10.1016/S0378-3758(98)00190-6
    [6] S. Sen, N. Chandra, S. S. Maiti, The weighted X-Gamma distribution: Properties and application, J. Reliab. Stat. Stud., 10 (2017), 43–58.
    [7] S. Abbas, G. Ozal, S. H. Shahbaz, M. Q. Shahbaz, A new generalized weighted weibull distribution, Pakistan J. Stat. Oper. Res., 15 (2019), 161–178. https://doi.org/10.18187/pjsor.v15i1.2782 doi: 10.18187/pjsor.v15i1.2782
    [8] A. M. T. A. El-Bar, I. E. Ragab, On weighted exponential-gompertz distribution: Properties and application, J. Taibah Univ. Sci., 13 (2019), 616–627. https://doi.org/10.1080/16583655.2019.1600277 doi: 10.1080/16583655.2019.1600277
    [9] D. Aydin, The new weighted inverse rayleigh distribution and its application, Math. Inf., 34 (2019), 511–523. https://doi.org/10.22190/FUMI1903511A doi: 10.22190/FUMI1903511A
    [10] S. Mudiasir, S. P. Ahmad, Weighted version of generalized inverse weibull distribution, J. Mod. Appl. Stat. Methods, 17 (2019), 18. https://doi.org/10.22237/jmasm/1555506264 doi: 10.22237/jmasm/1555506264
    [11] A. Mallick, I. Ghosh, S. Dey, D. Kumar, Bounded weighted exponential distribution with applications, Am. J. Math. Manage. Sci., 40 (2020), 68–87. https://doi.org/10.1080/01966324.2020.1834893 doi: 10.1080/01966324.2020.1834893
    [12] H. S. Bakouch, C. Chesneau, M. G. Enany, A new weighted exponential distribution as an alternative to the weibull distribution and its fit to reliability data, Int. J. Data Sci., 6 (2021), 223–240. https://doi.org/10.1504/IJDS.2021.121096 doi: 10.1504/IJDS.2021.121096
    [13] A. S. Hassan, E. M. Almetwally, M. A. Khaleel, H. F. Nagy, Weightedpower lomax distribution and its length biased version: Properties and estimation based on censored samples, Pak. J. Stat. Oper. Res., 17 (2021), 343–356.
    [14] S. Abbas, S. Zaniab, O. Mehmood, G. Ozal, M. Q. Shahbaz, A new generalized weighted exponential distribution: Properties and applications, Thailand Stat., 20 (2022), 271–283.
    [15] A. A. Alahmadi, M. Alqawba, W. Almutiry, A. W. Shawki, S. Alrajhi, S. Al-Marzouki, et al., A new version of weighted Weibull distribution: Modelling to COVID-19 data, Discrete Dyn. Nat. Soc., 2022 (2022), 1–12. https://doi.org/10.1155/2022/3994361 doi: 10.1155/2022/3994361
    [16] C. Chesneau, V. Kumar, M. Khetan, M. Arshad, On amodified weighted exponential distribution with applications, Math. Comput. Appl., 27 (2022), 17. https://doi.org/10.3390/mca27010017 doi: 10.3390/mca27010017
    [17] M. Mohiuddin, S. A. Dar, A. A. Khan, M. Ahajeeth, H. A. Bayatti, On weighted Nwikpe distribution: Properties and applications, Inf. Sci. Lett., 11 (2022), 85–96.
    [18] A. A. H. Ahmadini, M. Elgarhy, A. W. Shawki, H. Baaqeel, O. Bazighifan, Statistical analysis of the people fully vaccinated against COVID-19 in two different regions, Appl. Bionics Biomech., 2022 (2022). https://doi.org/10.1155/2022/7104960 doi: 10.1155/2022/7104960
    [19] R. Bantan, A. S. Hassan, E. Almetwally, M. Elgarhy, F. Jamal, C. Chesneau, et al., Bayesian analysis in partially accelerated life tests for weighted Lomax distribution, Comput. Mater. Continua, 68 (2021), 2859–2875. https://doi.org/10.32604/cmc.2021.015422 doi: 10.32604/cmc.2021.015422
    [20] A.S. Hassan, M. Elgarhy, Z. Ahmad, Type Ⅱ generalized topp leone family of distributions: Properties and applications, J. Data Sci., 17 (2019), 638–659. https://doi.org/10.6339/JDS.201910_17(4).0001 doi: 10.6339/JDS.201910_17(4).0001
    [21] A. Algarni, A. M. Almarashi, I. Elbatal, A. S. Hassan, E. M. Almetwally, A. M. Daghistani, et al., Type Ⅰ half logistic Burr X-G family: Properties, Bayesian, and non-Bayesian estimation under censored samples and applications to COVID-19 data, Math. Prob. Eng., 2021 (2021), 1–21. https://doi.org/10.1155/2021/5461130 doi: 10.1155/2021/5461130
    [22] A. S. Hassan, A. I. AlOmari, R. R. Hassan, G. Alomani, The odd inverted Topp Leone-H family of distributions: Estimation and applications, J. Radiat. Res. Appl. Sci., 15 (2022), 365–379. https://doi.org/10.1016/j.jrras.2022.08.006 doi: 10.1016/j.jrras.2022.08.006
    [23] N. C. Eugene, C. Lee, F. Famoye, Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31 (2002), 497–512. https://doi.org/10.1081/STA-120003130 doi: 10.1081/STA-120003130
    [24] N. H. Al-Noor, L. K. Hussein, Weighted exponential-G Family of probability distributions, Saudi J. Eng. Technol., 3 (2018), 51–59.
    [25] Z. Ahmad, G. Hamedani, M. Elgarhy, The weighted exponentiated family of distributions: Properties, applications and characterizations, J. Iran. Stat. Soc., 19 (2020), 209–228.
    [26] H. Bakouch, C. Chesneau, M. Enany, A weighted general family of distributions: Theory and practice, Comput. Math. Methods, 3 (2020). https://doi.org/10.1002/cmm4.1135 doi: 10.1002/cmm4.1135
    [27] M. Hashempour, Weighted topp-leone g family of distributions: Properties, applications for modelling reliability data and different method of estimation, Hacettepe J. Math. Stat., 51 (2022), 1420–1441.
    [28] A. S. Hassan, A. W. Shawki, H. Z. Muhammed, Analysis of HIECS research data for north Sinai governorate in Egypt using length biased truncated Lomax distribution, Stat. Optim. Inf. Comput., 11 (2023).
    [29] J. A. Greenwood, J. M. Landwehr, N. C. Matalas, J. R. Wallis, Probability-weighted moments: Definition andrelation to parameters of several distributions expressible in inverse form, Water Resour. Res., 15 (1979), 1049–1054. https://doi.org/10.1029/WR015i005p01049 doi: 10.1029/WR015i005p01049
    [30] A. Re$^{'}$nyi, On measures of entropy and information, in Proceedings of the 4th Fourth Berkeley Symposium on Mathematical Statistics and Probability, (1961), 547–561.
    [31] J. Havrda, F. Charvat, Quantification method of classification processes. concept of structural-entropy, Kybernetika, 3 (1967), 30–35.
    [32] S. Arimoto, Information-theoretical considerations on estimation problems, Inf. Control, 19 (1971), 181–194. https://doi.org/10.1016/S0019-9958(71)90065-9 doi: 10.1016/S0019-9958(71)90065-9
    [33] C. Tsallis, The role of constraints within generalized nonextensive statistics, Physica, 261 (1998), 547–561. https://doi.org/10.1016/S0378-4371(98)00437-3 doi: 10.1016/S0378-4371(98)00437-3
    [34] S. Zhou, A. Xu, Y. Tang, Fast Bayesian inference of reparameterized Gamma process with random effects, IEEE Trans. Reliabil., (2023). https://doi.org/10.1109/TR.2023.3263940 doi: 10.1109/TR.2023.3263940
    [35] K. A. Tasias, Integrated quality, maintenance and production model for multivariate processes: A Bayesian approach, J. Manuf. Syst., 63 (2022), 35–51.
    [36] L. Zhuang, A. Xu, X. L. Wang, A prognostic driven predictive maintenance framework based on Bayesian deep learning, Reliab. Eng. Syst. Safety, 234 (2023), 109–181. https://doi.org/10.1016/j.ress.2023.109181 doi: 10.1016/j.ress.2023.109181
    [37] C. Luo, L. Shen, A. Xu, Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints, Reliab. Eng. Syst. Safety, 218 (2022), 108–136. https://doi.org/10.1016/j.ress.2021.108136 doi: 10.1016/j.ress.2021.108136
    [38] A. J. Gross, V. A. Clark, Survival Distributions: Reliability Applications in the Biomedical Sciences, John Wiley, New York, 1975.
    [39] A. Z. Afify, G. M. Cordeiro, H. M. Yousof, A. Alzaatreh, Z. M. Nofal, The Kumaraswamy transmuted-G family of distributions: Properties and applications, J. Data Sci., 14 (2016), 245–270. https://doi.org/10.6339/JDS.201604_14(2).0004 doi: 10.6339/JDS.201604_14(2).0004
    [40] C. Lee, F. Famoye, O. Olumolade, Beta-Weibull distribution: Some properties and applications to censored data, J. Modern Appl. Stat. Methods, 6 (2007), 173–186. https://doi.org/10.22237/jmasm/1177992960 doi: 10.22237/jmasm/1177992960
    [41] F. Merovci, Transmuted lindley distribution, Int. J. Open Prob. Comput. Sci. Math., 6 (2013), 63–72. https://doi.org/10.12816/0006170 doi: 10.12816/0006170
    [42] M. H. Tahir, M. Mansoor, M. Zubair, G. Hamedani, McDonald log-logistic distribution with an application to breast cancer data, J. Stat. Theory Appl., 13 (2014), 65–82. https://doi.org/10.2991/jsta.2014.13.1.6 doi: 10.2991/jsta.2014.13.1.6
    [43] S. J. Almalki, J. Yuan, A new modified Weibull distribution, Reliab. Eng. Syst. Safety, 111 (2013), 164–170. https://doi.org/10.1016/j.ress.2012.10.018 doi: 10.1016/j.ress.2012.10.018
    [44] A. Saghir, S. Tazeema, I. Ahmad, The weighted exponentiated inverted Weibull distribution: Properties and application, J. Inf. Math. Sci., 9 (2017), 137–151.
    [45] A. Z. Afify, Z. M. Nofal, N. S. Butt, Transmuted complementary Weibull geometric distribution, Pak. J. Stat. Oper. Res., 10 (2014), 435–454.
    [46] M. S. Khan, R. King, I. L. Hudson, Transmuted modified Weibull distribution: Properties and application, Eur. J. Pure Appl. Math., 11 (2018), 362–374. https://doi.org/10.29020/nybg.ejpam.v11i2.3208 doi: 10.29020/nybg.ejpam.v11i2.3208
    [47] F. H. Eissa, The exponentiated Kumaraswamy–Weibull distribution with application to real data, Int. J. Stat. Probab., 6 (2017), 167–182. https://doi.org/10.5539/ijsp.v6n6p167 doi: 10.5539/ijsp.v6n6p167
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(976) PDF downloads(64) Cited by(4)

Article outline

Figures and Tables

Figures(15)  /  Tables(18)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog