Research article

Modified prairie dog optimization algorithm for global optimization and constrained engineering problems


  • Received: 03 August 2023 Revised: 23 September 2023 Accepted: 06 October 2023 Published: 13 October 2023
  • The prairie dog optimization (PDO) algorithm is a metaheuristic optimization algorithm that simulates the daily behavior of prairie dogs. The prairie dog groups have a unique mode of information exchange. They divide into several small groups to search for food based on special signals and build caves around the food sources. When encountering natural enemies, they emit different sound signals to remind their companions of the dangers. According to this unique information exchange mode, we propose a randomized audio signal factor to simulate the specific sounds of prairie dogs when encountering different foods or natural enemies. This strategy restores the prairie dog habitat and improves the algorithm's merit-seeking ability. In the initial stage of the algorithm, chaotic tent mapping is also added to initialize the population of prairie dogs and increase population diversity, even use lens opposition-based learning strategy to enhance the algorithm's global exploration ability. To verify the optimization performance of the modified prairie dog optimization algorithm, we applied it to 23 benchmark test functions, IEEE CEC2014 test functions, and six engineering design problems for testing. The experimental results illustrated that the modified prairie dog optimization algorithm has good optimization performance.

    Citation: Huangjing Yu, Yuhao Wang, Heming Jia, Laith Abualigah. Modified prairie dog optimization algorithm for global optimization and constrained engineering problems[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 19086-19132. doi: 10.3934/mbe.2023844

    Related Papers:

  • The prairie dog optimization (PDO) algorithm is a metaheuristic optimization algorithm that simulates the daily behavior of prairie dogs. The prairie dog groups have a unique mode of information exchange. They divide into several small groups to search for food based on special signals and build caves around the food sources. When encountering natural enemies, they emit different sound signals to remind their companions of the dangers. According to this unique information exchange mode, we propose a randomized audio signal factor to simulate the specific sounds of prairie dogs when encountering different foods or natural enemies. This strategy restores the prairie dog habitat and improves the algorithm's merit-seeking ability. In the initial stage of the algorithm, chaotic tent mapping is also added to initialize the population of prairie dogs and increase population diversity, even use lens opposition-based learning strategy to enhance the algorithm's global exploration ability. To verify the optimization performance of the modified prairie dog optimization algorithm, we applied it to 23 benchmark test functions, IEEE CEC2014 test functions, and six engineering design problems for testing. The experimental results illustrated that the modified prairie dog optimization algorithm has good optimization performance.



    加载中


    [1] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: A gravitational search algorithm, Inf. Sci., 179 (2009), 2232–2248. https://doi.org/10.1016/j.ins.2009.03.004 doi: 10.1016/j.ins.2009.03.004
    [2] H. Su, D. Zhao, A. A. Heidari, L. Liu, X. Zhang, M. Mafarja, et al., RIME: A physics-based optimization, Neurocomputing, 532 (2023), 183–214. https://doi.org/10.1016/j.neucom.2023.02.010 doi: 10.1016/j.neucom.2023.02.010
    [3] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, Optimization by simulated annealing, Science, 220 (1983), 671–680. https://www.science.org/doi/10.1126/science.220.4598.671 doi: 10.1126/science.220.4598.671
    [4] A. Hatamlou, Black hole: A new heuristic optimization approach for data clustering, Inf. Sci., 222 (2013), 175–184. https://doi.org/10.1016/j.ins.2012.08.023 doi: 10.1016/j.ins.2012.08.023
    [5] M. Abdel-Basset, R. Mohamed, S. A. A. Azeem, M. Jameel, M. Abouhawwash, Kepler optimization algorithm: A new metaheuristic algorithm inspired by Kepler's laws of planetary motion, Knowl. Based Syst., 268 (2023), 110454. https://doi.org/10.1016/j.knosys.2023.110454 doi: 10.1016/j.knosys.2023.110454
    [6] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-learning-based optimization: An optimization method for continuous nonlinear large scale problems, Inf. Sci., 183 (2012), 1–15. https://doi.org/10.1016/j.ins.2011.08.006 doi: 10.1016/j.ins.2011.08.006
    [7] I. Matoušová, P. Trojovský, M. Dehghani, E. Trojovská, J. Kostra, Mother optimization algorithm: A new human-based metaheuristic approach for solving engineering optimization, Sci. Rep., 13 (2023), 10312. https://doi.org/10.1038/s41598-023-37537-8 doi: 10.1038/s41598-023-37537-8
    [8] Z. W. Geem, J. H. Kim, G. V. Loganathan, A new heuristic optimization algorithm: Harmony search, Simulation, 2 (2001), 60–68. https://doi.org/10.1177/003754970107600201 doi: 10.1177/003754970107600201
    [9] Y. Zhang, Z. Jin, Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems, Expert Syst. Appl., 148 (2020), 113246. https://doi.org/10.1016/j.eswa.2020.113246 doi: 10.1016/j.eswa.2020.113246
    [10] S. Cheng, Q. Qin, J. Chen, Y. Shi, Brain storm optimization algorithm, Artif. Intell. Rev., 46 (2016), 445–458. https://doi.org/10.1007/s10462-016-9471-0 doi: 10.1007/s10462-016-9471-0
    [11] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of ICNN'95 - International Conference on Neural Networks, 4 (1995), 1942–1948. https://doi.org/10.1109/ICNN.1995.488968
    [12] G. G. Wang, S. Deb, Z. Cui, Monarch butterfly optimization, Neural Comput. Appl., 31 (2019), 1995–2014. https://doi.org/10.1007/s00521-015-1923-y doi: 10.1007/s00521-015-1923-y
    [13] A. Forestiero, C. Mastroianni, G. Spezzano, QoS-based dissemination of content in grids, Future Gener. Comput. Syst., 24.3 (2008), 235–244. https://doi.org/10.1016/j.future.2007.05.003 doi: 10.1016/j.future.2007.05.003
    [14] A. Forestiero, C. Mastroianni, G. Spezzano, Reorganization and discovery of grid information with epidemic tuning, Future Gener. Comput. Syst., 24.8 (2008), 788–797. https://doi.org/10.1016/j.future.2008.04.001 doi: 10.1016/j.future.2008.04.001
    [15] A. Forestiero, Bio-inspired algorithm for outliers detection, Multimed. Tools Appl., 76 (2017), 25659–25677. https://doi.org/10.1007/s11042-017-4443-1 doi: 10.1007/s11042-017-4443-1
    [16] J. Tu, H. Chen, M. Wang, A. H. Gandomi, The colony predation algorithm, J. Bionic Eng., 18 (2021), 674–710. https://doi.org/10.1007/s42235-021-0050-y doi: 10.1007/s42235-021-0050-y
    [17] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell. Mag., 1 (2006), 28–39. https://doi.org/10.1109/MCI.2006.329691 doi: 10.1109/MCI.2006.329691
    [18] H. Jia, H. Rao, C. Wen, S. Mirjalili, Crayfish optimization algorithm, Artif. Intell. Rev., 2023 (2023), 1–61. https://doi.org/10.1007/s10462-023-10567-4 doi: 10.1007/s10462-023-10567-4
    [19] P. Trojovský, D. Mohammad, H. Pavel, Siberian tiger optimization: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems, IEEE Access, 10 (2022), 132396–132431. https://doi.org/10.1109/ACCESS.2022.3229964 doi: 10.1109/ACCESS.2022.3229964
    [20] J. H. Holland, Genetic algorithms, Sci. Am., 267 (1992), 66–73. https://www.jstor.org/stable/24939139
    [21] N. Sinha, R. Chakrabarti, P. K. Chattopadhyay, Evolutionary programming techniques for economic load dispatch, IEEE Trans. Evol. Comput., 7 (2003), 83–94.
    [22] R. Storn, K. Price, Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces, J. Global. Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
    [23] M. Jaderyan, K. Hassan, Virulence optimization algorithm, Appl. Soft Comput., 43 (2016), 596–618. https://doi.org/10.1016/j.asoc.2016.02.038 doi: 10.1016/j.asoc.2016.02.038
    [24] D. Simon, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12 (2008), 702–713. https://doi.org/10.1109/TEVC.2008.919004 doi: 10.1109/TEVC.2008.919004
    [25] A. E. Ezugwu, J. O. Agushaka, L. Abualigah, S. Mirjalili, A. H. Gandomi, Prairie dog optimization algorithm, Neural Comput. Appl., 34 (2022), 20017–20065. https://doi.org/10.1007/s00521-022-07530-9 doi: 10.1007/s00521-022-07530-9
    [26] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1 (1997), 67–82. https://doi.org/10.1109/4235.585893 doi: 10.1109/4235.585893
    [27] J. Liu, S. Zhang, Z. Druzhinin, Performance prediction of the PEMFCs based on gate recurrent unit network optimized by improved version of prairie dog optimization algorithm, Int. J. Hydrogen Energy, 2023 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.349 doi: 10.1016/j.ijhydene.2023.03.349
    [28] L. Ngoc-Nguyen, S. Khatir, H. Q. Nguyen, T. Bui-Tien, M. A. Wahab, A practical review of prairie dog optimization algorithm in solving damage identification problems in engineering structures, in Proceedings of the International Conference of Steel and Composite for Engineering Structures: ICSCES 2022, (2023), 296–306. https://doi.org/10.1007/978-3-031-24041-6_24
    [29] D. Gürses, P. Mehta, S. M. Sait, S. Kumar, A. R. Yildiz, A multi-strategy boosted prairie dog optimization algorithm for global optimization of heat exchangers, Mater. Test., 65 (2023), 1396–1404. https://doi.org/10.1515/mt-2023-0082 doi: 10.1515/mt-2023-0082
    [30] L. Abualigah, A. Diabat, C. L. Thanh, S. Khatir, Opposition-based Laplacian distribution with Prairie Dog Optimization method for industrial engineering design problems, Comput. Methods Appl. Mech. Eng., 414 (2023), 116097. https://doi.org/10.1016/j.cma.2023.116097 doi: 10.1016/j.cma.2023.116097
    [31] S. Mirjalili, A. H. Gandomi, Chaotic gravitational constants for the gravitational search algorithm, Appl. Soft Comput., 53 (2017), 407–419. https://doi.org/10.1016/j.asoc.2017.01.008 doi: 10.1016/j.asoc.2017.01.008
    [32] Q. Liu, N. Li, H. Jia, Q. Qi, L. Abualigah, Modified remora optimization algorithm for global optimization and multilevel thresholding image segmentation, Mathematics, 10 (2022), 1014. https://doi.org/10.3390/MATH10071014 doi: 10.3390/MATH10071014
    [33] S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008
    [34] S. Zhao, T. Zhang, S. Ma, M. Wang, Sea-horse optimizer: A novel nature-inspired metaheuristic for global optimization problems, Appl. Intell., 53 (2023), 11833–11860. https://doi.org/10.1007/s10489-022-03994-3 doi: 10.1007/s10489-022-03994-3
    [35] H. Jia, X. Peng, C. Lang, Remora optimization algorithm, Expert Syst. Appl., 185 (2021), 115665. https://doi.org/10.1016/j.eswa.2021.115665 doi: 10.1016/j.eswa.2021.115665
    [36] S. Mirjalili, SCA: A sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 96 (2016), 120–133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022
    [37] A. Seyyedabbasi, F. Kiani, Sand cat swarm optimization: A nature-inspired algorithm to solve global optimization problems, Eng. Comput., 2022 (2022), 1–25. https://doi.org/10.1007/s00366-022-01604-x doi: 10.1007/s00366-022-01604-x
    [38] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw., 69 (2014), 46–61. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007
    [39] S. Wang, K. Sun, W. Zhang, H. Jia, Multilevel thresholding using a modified ant lion optimizer with opposition-based learning for color image segmentation, Math. Biosci. Eng., 18 (2021), 3092–3143. https://doi.org/10.3934/mbe.2021155 doi: 10.3934/mbe.2021155
    [40] H. Jia, Y. Li, D. Wu, H. Rao, C. Wen, L. Abualigah, Multi-strategy remora optimization algorithm for solving multi-extremum problems, J. Comput. Design Eng., 2023 (2023), qwad044. https://doi.org/10.1093/jcde/qwad044 doi: 10.1093/jcde/qwad044
    [41] G. Dhiman, V. Kumar, Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems, Knowl. Based Syst., 165 (2019), 169–196. https://doi.org/10.1016/j.knosys.2018.11.024 doi: 10.1016/j.knosys.2018.11.024
    [42] B. Abdollahzadeh, F. S. Gharehchopogh, S. Mirjalili, Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems, Int. J Intell. Syst., 36 (2021), 5887–5958. https://doi.org/10.1002/INT.22535 doi: 10.1002/INT.22535
    [43] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A. H. Gandomi, Marine predators algorithm: A nature-inspired metaheuristic, Expert Syst. Appl., 152 (2020), 113377. https://doi.org/10.1016/j.eswa.2020.113377 doi: 10.1016/j.eswa.2020.113377
    [44] A. Babalik, A. C. Cinar, M. S. Kiran, A modification of tree-seed algorithm using Deb's rules for constrained optimization, Appl. Soft. Comput., 63 (2018), 289–305. https://doi.org/10.1016/j.asoc.2017.10.013 doi: 10.1016/j.asoc.2017.10.013
    [45] A. Kaveh, M. Khayatazad, A new metaheuristic method: Ray optimization, Comput. Struct., 112 (2012), 283–294. https://doi.org/10.1016/j.compstruc.2012.09.003 doi: 10.1016/j.compstruc.2012.09.003
    [46] M. Mahdavi, M. Fesanghary, E. Damangir, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188 (2007), 1567–1579. https://doi.org/10.1016/j.amc.2006.11.033 doi: 10.1016/j.amc.2006.11.033
    [47] Q. He, L. Wang, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20 (2007), 89–99. https://doi.org/10.1016/j.engappai.2006.03.003 doi: 10.1016/j.engappai.2006.03.003
    [48] A. G. Hussien, M. Amin, M. A. E. Aziz, A comprehensive review of moth-flame optimisation: Variants, hybrids, and applications, J. Exp. Theory Artif. Intell., 32 (2020), 705–725. https://doi.org/10.1080/0952813X.2020.1737246 doi: 10.1080/0952813X.2020.1737246
    [49] V. K. Kamboj, A. Nandi, A. Bhadoria, S. Sehgal, An intensify harris hawks optimizer for numerical and engineering optimization problems, Appl. Soft Comput., 89 (2020), 106018. https://doi.org/10.1016/j.asoc.2019.106018 doi: 10.1016/j.asoc.2019.106018
    [50] D. Wu, H. Rao, C. Wen, H. Jia, Q. Liu, L. Abualigah, Modified sand cat swarm optimization algorithm for solving constrained engineering optimization problems, Mathematics, 10 (2022), 4350. https://doi.org/10.3390/MATH10224350 doi: 10.3390/MATH10224350
    [51] L. Abualigah, A. Diabat, S. Mirjalili, M. A. Elaziz, A. H. Gandomi, The arithmetic optimization algorithm, Comput. Methods Appl. Mech. Eng., 376 (2021), 113609. https://doi.org/10.1016/J.CMA.2020.113609 doi: 10.1016/J.CMA.2020.113609
    [52] L. Abualigah, M. A. Elaziz, P. Sumari, W. G. Zong, A. H. Gandomi, Reptile search algorithm (RSA): A nature-inspired metaheuristic optimizer, Expert Syst. Appl., 191 (2021), 116158. https://doi.org/10.1016/J.ESWA.2021.116158 doi: 10.1016/J.ESWA.2021.116158
    [53] S. Lu, H. M. Kim, A regularized inexact penalty decomposition algorithm for multidisciplinary design optimization problemswith complementarity constraints, J. Mech. Des., 132 (2010), 041005. https://doi.org/10.1115/1.4001206 doi: 10.1115/1.4001206
    [54] M. Song, H. Jia, L. Abualigah, Q. Liu, Z. Lin, D. Wu, et al., Modified harris hawks optimization algorithm with exploration factor and random walk strategy, Comput. Intell. Neurosci., 2022 (2022), 23. https://doi.org/10.1155/2022/4673665 doi: 10.1155/2022/4673665
    [55] V. Hayyolalam, A. A. P. Kazem, Black widow optimization algorithm: A novel metaheuristic approach for solving engineering optimization problems, Eng. Appl. Artif. Intell., 87 (2020), 103249. https://doi.org/10.1016/j.engappai.2019.103249 doi: 10.1016/j.engappai.2019.103249
    [56] P. Trojovsky, M. Dehghani, Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems, Front. Mech. Eng., 8 (2023), 136. https://doi.org/10.3389/FMECH.2022.1126450 doi: 10.3389/FMECH.2022.1126450
    [57] S. Wang, A. G. Hussien, H. Jia, L. Abualigah, R. Zheng, Enhanced remora optimization algorithm for solving constrained engineering optimization problems, Mathematics, 10 (2022), 1696. https://doi.org/10.3390/MATH10101696 doi: 10.3390/MATH10101696
    [58] Q. He, L. Wang, A hybrid particle swarm optimization with a feasibilitybased rule for constrained optimization, Appl. Math. Comput., 186 (2007), 1407–1422. https://doi.org/10.1016/j.amc.2006.07.134 doi: 10.1016/j.amc.2006.07.134
    [59] A. Laith, Y. Dalia, A. E. Mohamed, A. E. Ahmed, A. A. A. Mohammed, H. G. Amir, Aquila Optimizer: A novel metaheuristic optimization algorithm, Comput. Ind. Eng., 157 (2021), 107250. https://doi.org/10.1016/J.CIE.2021.107250 doi: 10.1016/J.CIE.2021.107250
    [60] J. You, H. Jia, D. Wu, H. Rao, C. Wen, Q. Liu, et al., Modified artificial gorilla troop optimization algorithm for solving constrained engineering optimization problems, Mathematics, 11 (2023), 1256. https://doi.org/10.3390/MATH11051256 doi: 10.3390/MATH11051256
    [61] A. H. Gandomi, X. S. Yang, A. H. Alavi, Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems, Eng. Comput., 29 (2023), 17–35. https://doi.org/10.1007/s00366-011-0241-y doi: 10.1007/s00366-011-0241-y
    [62] S. Li, H. Chen, M. Wangm, A. A. Heidari, S. Mirjalili, Slime mould algorithm: A new method for stochastic optimization, Future Gener. Comput. Syst., 111 (2020), 300–323. https://doi.org/10.1016/j.future.2020.03.055 doi: 10.1016/j.future.2020.03.055
    [63] A. H. Gandomi, X. Yang, A. H. Alavi, S. Talatahari, Bat algorithm for constrained optimization tasks, Neural Comput. Appl., 22 (2023), 1239–1255. https://doi.org/10.1007/s00521-012-1028-9 doi: 10.1007/s00521-012-1028-9
    [64] M. Efren, C. Carlos, An empirical study about the usefulness of evolution strategies to solve constrained optimization problem, Int. J. Gen. Syst., 37 (2008), 443–473. https://doi.org/10.1080/03081070701303470 doi: 10.1080/03081070701303470
    [65] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm—A novel metaheuristic optimization method for solving constrained engineering optimization problems, Comput. Struct., 110 (2012), 151–166. https://doi.org/10.1016/j.compstruc.2012.07.010 doi: 10.1016/j.compstruc.2012.07.010
    [66] G. I. Sayed, A. Darwish, A. E. Hassanien, A new chaotic multi-verse optimization algorithm for solving engineering optimization problems, J. Exp. Theor. Artif. Intell., 30 (2018), 293–317. https://doi.org/10.1080/0952813X.2018.1430858 doi: 10.1080/0952813X.2018.1430858
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1349) PDF downloads(87) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(14)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog