In this paper, we consider the dynamics of a slow-fast Bazykin's model with piecewise-smooth Holling type Ⅰ functional response. We show that the model has Saddle-node bifurcation and Boundary equilibrium bifurcation. Furthermore, it is also proven that the model has a homoclinic cycle, a heteroclinic cycle or two relaxation oscillation cycles for different parameters conditions. These results imply the dynamical behavior of the model is sensitive to the predator competition rate and the initial densities of prey and predators. In order to support the theoretical analysis, we present some phase portraits corresponding to different values of parameters by numerical simulation. These phase portraits include two relaxation oscillation cycles, an unstable relaxation oscillation cycle surrounded by a stable homoclinic cycle; the coexistence of a heteroclinic cycle and an unstable relaxation oscillation cycle. These results reveal far richer and much more complex dynamics compared to the model without different time scale or with smooth Holling type Ⅰ functional response.
Citation: Xiao Wu, Shuying Lu, Feng Xie. Relaxation oscillations of a piecewise-smooth slow-fast Bazykin's model with Holling type Ⅰ functional response[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 17608-17624. doi: 10.3934/mbe.2023782
In this paper, we consider the dynamics of a slow-fast Bazykin's model with piecewise-smooth Holling type Ⅰ functional response. We show that the model has Saddle-node bifurcation and Boundary equilibrium bifurcation. Furthermore, it is also proven that the model has a homoclinic cycle, a heteroclinic cycle or two relaxation oscillation cycles for different parameters conditions. These results imply the dynamical behavior of the model is sensitive to the predator competition rate and the initial densities of prey and predators. In order to support the theoretical analysis, we present some phase portraits corresponding to different values of parameters by numerical simulation. These phase portraits include two relaxation oscillation cycles, an unstable relaxation oscillation cycle surrounded by a stable homoclinic cycle; the coexistence of a heteroclinic cycle and an unstable relaxation oscillation cycle. These results reveal far richer and much more complex dynamics compared to the model without different time scale or with smooth Holling type Ⅰ functional response.
[1] | A. J. Lotka, Elements of Physical Biology, Williams and Wilkins, Baltimore, 1925. |
[2] | V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0 |
[3] | H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, New York, 1980. |
[4] | G. F. Gause, The Struggle for Existence, Williams and Wilkins, Baltimore, 1935. |
[5] | A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore, 1998. |
[6] | A. D. Bazykin, Volterra system and Michaelis-Menten equation, Problems of Mathematical Genetics, Novosibirsk State University, Novosibirsk, (1974), 103–143. |
[7] | C. S. Holling, The components of predation as revealed by a study of small-mammal predation of the European pine swafly, Canad. Entomol., 91 (1959), 293–320. https://doi.org/10.4039/Ent91293-5 doi: 10.4039/Ent91293-5 |
[8] | C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Can., 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv |
[9] | A. D. Bazykin, Structural and dynamic stability of model predator-prey systems, Int. Inst. Appl. Syst. Anal., 1976. |
[10] | A. D. Bazykin, F. S. Berezovskaya, T. I. Buriev, Dynamics of predator–prey system including predator saturation and competition, in Faktory Raznoobraziya v Matematicheskoi Ekologii i Populyatsionnoi Genetike, Pushchino, (1980), 6–33. |
[11] | J. Hainzl, Stability and Hopf bifurcation in a predator–prey system with several parameters, SIAM J. Appl. Math., 48 (1998), 170–190. https://doi.org/10.1137/0148008 doi: 10.1137/0148008 |
[12] | J. Hainzl, Multiparameter bifurcation of a predator-prey system, SIAM J. Math. Anal., 23 (1992), 150–180. https://doi.org/10.1137/0523008 doi: 10.1137/0523008 |
[13] | M. Lu, J. C. Huang, Global analysis in Bazykin's model with Holling Ⅱ functional response and predator competition, J. Diff. Equation, 280 (2021), 99–138. |
[14] | Y. Kuznetsov, Elements of Applied Bifurcation Theory, 3$^{nd}$ edition, Springer, New York, 2004. |
[15] | P. Chowdhury, S. Petrovskii, V. Volpert, M. Banerjee, Attractors and long transients in a spatio-temporal slow-fast Bazykin's model, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107014. https://doi.org/10.1016/j.cnsns.2022.107014 doi: 10.1016/j.cnsns.2022.107014 |
[16] | M. Banerjee, S. Ghorai, N. Mukherjee, Approximated spiral and target patterns in Bazykin's prey-predator model: multiscale perturbation analysis, Int. J. Bifur. Chaos Appl. Sci. Engrg., 27(3) (2017), 1750038. https://doi.org/10.1142/S0218127417500389 doi: 10.1142/S0218127417500389 |
[17] | J. M. Zhang, L. J. Zhang, C. M. Khalique, Stability and Hopf bifurcation analysis on a Bazykin model with delay, Abstr. Appl. Anal., (2014), 539684. https://doi.org/10.1155/2014/539684 doi: 10.1155/2014/539684 |
[18] | S. Muratori, S. Rinaldi, Remarks on competitive coexistence, SIAM J. Appl. Math., 49(5) (1989), 1462–1472. https://doi.org/10.1137/0149088 doi: 10.1137/0149088 |
[19] | N. C. Stenseth, W. Falck, O. N. Bjornstad, C. J. Krebs, Population regulation in snowshoe hare and Canadian lynx: Asymmetric food web configurations between hare and lynx, Proc. Natl. Acad. Sci. USA, 94 (1997), 5147–5152. https://doi.org/10.1073/pnas.94.10.5147 doi: 10.1073/pnas.94.10.5147 |
[20] | M. Scheffer, S. Rinaldi, Y. A. Kuznetsov, E. H. Van Nes, Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system, Oikos, 80 (1997), 519–532. https://doi.org/10.2307/3546625 doi: 10.2307/3546625 |
[21] | D. Ludwig, D. D. Jones, C. S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and forest, J. Anim. Ecol., 47 (1978), 315–332. https://doi.org/10.2307/3939 doi: 10.2307/3939 |
[22] | N. Finichel, Geometric singular perturbation theory for ordinary differential equations, J. Diff. Equation, 55 (1979), 763–783. https://doi.org/10.1016/0022-0396(79)90152-9 doi: 10.1016/0022-0396(79)90152-9 |
[23] | C. Kuehn, Multiple Time Scale Dynamics, Springer, 2015. |
[24] | W. Liu, Exchange lemmas for singular perturbation problems with certain turning points, J. Diff. Equation, 167 (2000), 134–180. https://doi.org/10.1006/jdeq.2000.3778 doi: 10.1006/jdeq.2000.3778 |
[25] | W. Liu, Geometric singular perturbations for multiple turning points: invariant manifolds and exchange lemmas, J. Dyn. Differ. Equations, 18 (2006), 667–691. https://doi.org/10.1007/s10884-006-9020-7 doi: 10.1007/s10884-006-9020-7 |
[26] | M. Krupa, P. Szmolyan, Extending geometric singular perturbation theory to nonhyperbolic points-fold and canard points in two dimensions, SIAM J. Math. Anal., 33 (2001), 286–314. https://doi.org/10.1137/S0036141099360919 doi: 10.1137/S0036141099360919 |
[27] | M. Krupa, P. Szmolyan, Relaxation oscillation and canard explosion, J. Diff. Equation, 174 (2001), 312–368. https://doi.org/10.1006/jdeq.2000.3929 doi: 10.1006/jdeq.2000.3929 |
[28] | P. De Maesschalck, S. Schecter, The entry-exit function and geometric singular perturbation theory, J. Diff. Equation, 260 (2016), 6697–6715. https://doi.org/10.1016/j.jde.2016.01.008 doi: 10.1016/j.jde.2016.01.008 |
[29] | C. Wang, X. Zhang, Stability loss delay and smoothness of the return map in slow-fast systems, SIAM J. Appl. Dyn. Syst., 17 (2018), 788–822. https://doi.org/10.1137/17M1130010 doi: 10.1137/17M1130010 |
[30] | M. di Bernardo, C. J. Budd, A. R. Champneys, P. Kowalczyk, Piecewise-smooth dynamical systems: Theory and applications, Springer-Verlag London, London, 2008. |
[31] | D. J. W. Simpson, Bifurcations in Piecewise-Smooth Continuous Systems, 70$^{nd}$ edition, World Scientific, 2010. |
[32] | A. Roberts, Canard explosion and relaxation oscillation in planar, piecewise-smooth, continuous systems, SIAM J. Appl. Dyn. Syst., 15(1) 2016,609–624. https://doi.org/10.1137/140998147 doi: 10.1137/140998147 |
[33] | S. M. Li, X. L. Wang, X. L. Li, K. L. Wu, Relaxation oscillations for Leslie-type predator-prey model with Holling type Ⅰ response functional function, Appl. Math. Lett., 120 (2021), 107328. https://doi.org/10.1016/j.aml.2021.107328 doi: 10.1016/j.aml.2021.107328 |
[34] | S. M. Li, C. Wang, K. L. Wu, Relaxation oscillations of a slow-fast predator-prey model with a piecewise smooth functional response, Appl. Math. Lett., 113 (2021), 106852. https://doi.org/10.1016/j.aml.2020.106852 doi: 10.1016/j.aml.2020.106852 |
[35] | T. Saha, P. J. Pal, M. Banerjee, Slow-fast analysis of a modified Lesile-Gower model with Holling type Ⅰ functional response, Nonlinear Dyn., 108 (2022), 4531–4555. https://doi.org/10.1007/s11071-022-07370-1 doi: 10.1007/s11071-022-07370-1 |
[36] | D. Hanselman, Mastering Matlab, University of Maine, 2001. |
[37] | L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 1991. |
[38] | J. A. C. Medrado, J. Torregrosa, Uniqueness of limit cycles for sewing planar piecewise linear systems, J. Math. Anal. Appl., 431 (2015), 529–544. https://doi.org/10.1016/j.jmaa.2015.05.064 doi: 10.1016/j.jmaa.2015.05.064 |
[39] | X. Wu, M. K. Ni, Dynamics in diffusive Leslie-Gower prey-predator model with weak diffusion, Nonlinear Anal. Model. Control, 27 (2022), 1168–1188. https://doi.org/10.15388/namc.2022.27.29535 doi: 10.15388/namc.2022.27.29535 |
[40] | R. E. Kooij, A. Zegeling, Predator-prey models with non-analytical functional response, Chaos Solitons Fractals, 123 (2019), 163–172. https://doi.org/10.3934/dcdsb.2004.4.1065 doi: 10.3934/dcdsb.2004.4.1065 |