Research article Special Issues

Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response


  • Received: 17 June 2021 Accepted: 26 August 2021 Published: 10 September 2021
  • In the paper, stability and bifurcation behaviors of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response are studied theoretically and numerically. Mathematical theory works mainly give some critical threshold conditions to guarantee the existence and stability of all possible equilibrium points, and the occurrence of Hopf bifurcation and Bogdanov-Takens bifurcation. Numerical simulation works mainly display that the Bazykin's predator-prey ecosystem has complex dynamic behaviors, which also directly proves that the theoretical results are effective and feasible. Furthermore, it is easy to see from numerical simulation results that some key parameters can seriously affect the dynamic behavior evolution process of the Bazykin's predator-prey ecosystem. Moreover, limit cycle is proposed in view of the supercritical Hopf bifurcation. Finally, it is expected that these results will contribute to the dynamical behaviors of predator-prey ecosystem.

    Citation: Shuangte Wang, Hengguo Yu. Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 7877-7918. doi: 10.3934/mbe.2021391

    Related Papers:

  • In the paper, stability and bifurcation behaviors of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response are studied theoretically and numerically. Mathematical theory works mainly give some critical threshold conditions to guarantee the existence and stability of all possible equilibrium points, and the occurrence of Hopf bifurcation and Bogdanov-Takens bifurcation. Numerical simulation works mainly display that the Bazykin's predator-prey ecosystem has complex dynamic behaviors, which also directly proves that the theoretical results are effective and feasible. Furthermore, it is easy to see from numerical simulation results that some key parameters can seriously affect the dynamic behavior evolution process of the Bazykin's predator-prey ecosystem. Moreover, limit cycle is proposed in view of the supercritical Hopf bifurcation. Finally, it is expected that these results will contribute to the dynamical behaviors of predator-prey ecosystem.



    加载中


    [1] Y. Z. Pei, L. S. Chen, Q. R. Zhang, C. G. Li, Extinction and performance of one-prey multi-predators of Holling type Ⅱ function response system with impulsive biological control, J. Theor. Biol., 235 (2005), 495–503. doi: 10.1016/j.jtbi.2005.02.003
    [2] C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, Mem. Entomol. Soc. Canada, 97 (1965), 3–60. doi: 10.4039/entm9741fv
    [3] S. B. Hsu, T. Wei, Y. Kuang, Global analysis of the Michaelis-Menten-type ratio-dependent predator-prey system, J. Math. Biol., 42 (2001), 489–506. doi: 10.1007/s002850100079
    [4] P. Misha, S. N. Raw, Dynamical complexities in a predator-prey system involving teams of two prey and one predator, J. Appl. Math. Comput., 61 (2019), 1–24. doi: 10.1007/s12190-018-01236-9
    [5] J. C. Huang, S. G. Ruan, J. Song, Bifurcation in a predator-prey system of Leslie type with generalized Holling type Ⅲ functional response, J. Differ. Equations, 257 (2014), 1721–1752. doi: 10.1016/j.jde.2014.04.024
    [6] J. Andrews, A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates, Biotechnol. Bioeng., 10 (1968), 707–723. doi: 10.1002/bit.260100602
    [7] S. N. Raw, P. Mishra, Modeling and analysis of inhibitory effect in plankton-fish model: application to the hypertrophic Swarzedzkie lake in eestern Poland, Nonlinear Anal. Real World Appl., 46 (2019), 465–492. doi: 10.1016/j.nonrwa.2018.09.026
    [8] Y. L. Li, D. M. Xiao, Bifurcations of a predator-prey system of Holling and Leslie types, Chaos Solitons Fractals, 34 (2007), 606–620. doi: 10.1016/j.chaos.2006.03.068
    [9] W. Sokol, J. A. Howell, Kinetics of phenol oxidation by washed cells, Biotechnol. Bioeng., 23 (1981), 2039–2049. doi: 10.1002/bit.260230909
    [10] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for trophic interaction, Ecology, 56 (1975), 881–892. doi: 10.2307/1936298
    [11] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. doi: 10.2307/3866
    [12] M. Fan, Y. Kuang, Dynamics of a nonautonomous predator-prey system with the Beddington-DeAngelis functional response, J. Math. Anal. Appl., 295 (2004), 15–39. doi: 10.1016/j.jmaa.2004.02.038
    [13] P. J. Pal, P. K. Mandal, Birfucation analysis of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and strong Allee-effect, Math. Comput. Simul., 97 (2014), 123–146. doi: 10.1016/j.matcom.2013.08.007
    [14] Y. Zhang, S. J. Gao, K. G. Fan, Q. Y. Wang, Asymptotic behavior of a non-autonomous predator-prey model with Hassell-Varley type functional response and random perturbation, J. Appl. Math. Comput., 49 (2015), 573–594. doi: 10.1007/s12190-014-0854-6
    [15] K. H. Kyung, B. Hunki, The dynamical complexity of a predator-prey system with Hassell-Varley functional response and impulsive effect, Math. Comput. Simul., 94 (2013), 1–14. doi: 10.1016/j.matcom.2013.05.011
    [16] S. B. Hsu, T. W. Hwang, Y. Kuang, Global dynamics of a predator-prey model with Hassell-Varley type functional response, Discrete Contin. Dyn. Syst. B, 10 (2008), 857–871. doi: 10.3934/dcdsb.2008.10.857
    [17] K. Wang, Periodic solutions to a delayed predator-prey model with Hassell-Varley type functional response, J. Comput. Appl. Math., 12 (2011), 137–145.
    [18] F. Rao, S. J. Jiang, Y. Q. Li, H. Liu, Stochastic analysis of a Hassell-Varley type predation model, Abstr. Appl. Anal., 2013 (2013), 1–10.
    [19] J. P. Tripathi, V. Tiwari, A delayed non-autonomous predator-prey model with Crowley-Martin functional response, International Conference on Mathematics and Computing, 2018. Available from: https://link.springer.com/chapter/10.1007/978-981-13-0023-3_16.
    [20] J. L. Ren, L. P. Yu, S. F. Siegmund, Bifurcations and chaos in a discrete predator-prey model with Crowley-Martin functional response, Nonlinear Dyn., 90 (2017), 19–41. doi: 10.1007/s11071-017-3643-6
    [21] B. Dubey, S. H. Agarwal, A. Kumar, Optimal harvesting policy of a prey-predator model with Crowley-Martin-type functional response and stage structure in the predator, Nonlinear Anal. Modell. Control, 23 (2018), 493–514. doi: 10.15388/NA.2018.4.3
    [22] S. B. Li, J. H. Wu, Y. Y. Dong, Uniqueness and stability of a predator-prey model with C-M functional response, Comput. Math. Appl., 69 (2015), 1080–1095. doi: 10.1016/j.camwa.2015.03.007
    [23] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, Singapore World Scientific, 1998.
    [24] A. D. Bazykin, Structural and Dynamic Stability of Model Predator-Prey Systems, International Institute for Applied Systems Analysis, 1976.
    [25] H. I. Freedman, Deterministic Mathematical Models in Population Ecology, Marcel Dekker, 1980.
    [26] W. Metzler, W. Wischniewsky, Bifurcations of equalibria in Bazykin's predator-prey model, Math. Modell., 6 (1985), 111–123. doi: 10.1016/0270-0255(85)90003-X
    [27] Y. Q. Wang, Z. J. Jing, K. Y. Chan, Multiple limit cycles and global stability in predator prey model, Acta Math. Appl. Sin., 15 (1999), 206–219. doi: 10.1007/BF02720497
    [28] H. I. Freedman, Stability analysis of a predator prey system with mutual interference and density dependent death rate, Bull. Math. Biol., 41 (1979), 67–78. doi: 10.1016/S0092-8240(79)80054-3
    [29] J. Hainzl, Stability and Hopf bifurcation in a predator-prey system with several parameters, SIAM J. Appl. Math., 48 (1988), 170–190. doi: 10.1137/0148008
    [30] N. D. Kazarinoff, P. Van Den Driessche, A model predator-prey system with functional response, Math. Biosci., 39 (1978), 125–134. doi: 10.1016/0025-5564(78)90031-7
    [31] X. X. Qiu, H. B. Xiao, Qualitative analysis of Holling type Ⅱ predator-prey systems with prey refuges and predator restricts, Nonlinear Anal. Real World Appl., 14 (2013), 1896–1906. doi: 10.1016/j.nonrwa.2013.01.001
    [32] M. Lu, J. C. Huang, Global analysis in Bazykin's model with Holling Ⅱ functional response and predator competition, J. Differ. Equations, 280 (2021), 99–138. doi: 10.1016/j.jde.2021.01.025
    [33] G. Birkhoff, G. C. Rota, Ordinary Differential Equations Introductions to Higher Mathematics, Ginn and Company, 1962.
    [34] F. D. Chen, On a Nonlinear Nonautonomous predator-prey model with diffusion and distributed delay, J. Comput. Appl. Math., 180 (2005), 433–495. doi: 10.1016/j.cam.2004.11.011
    [35] Z. F. Zhang, T. R. Ding, W. Z. Huang, Z. X. Dong, Qualitative Theory of Differential Equations, Science Press, 1992.
    [36] L. Perko, Differential Equations and Dynamical Systems, Springer-Verlag, 2001.
    [37] S. T. Wang, H. G. Yu, Complexity analysis of a modified predator-prey System with Beddington-DeAngelis functional response and Allee-like effect on predator, Discrete Dyn. Nature Soc., 2021 (2021), 1–18.
    [38] J. C. Huang, Y. J. Gong, J. Chen, Multiple bifurcations in a predator-prey system of Holling and Leslie type with constant-yield prey harvesting, Int. J. Bifurcation Chaos, 23 (2013), 1–24.
    [39] B. Tang, Y. N. Xiao, Bifurcation analysis of a predator-prey model with anti-predator behavior, Chaos Solitons Fractals, 70 (2015), 58–68. doi: 10.1016/j.chaos.2014.11.008
    [40] J. H. Shen, H. X. Chen, Z. Y. Zhou, S. H. Chen, Approximation of limit cycles in two-dimensional nonlinear systems near a Hopf bifurcation by canonical transformations, J. Eng. Math., 92 (2015), 185–202. doi: 10.1007/s10665-014-9762-x
    [41] D. Viswanath, The Lindstedt-Poincare technique as an algorithm for computing periodic orbits, SIAM Rev., 43 (2001), 478–495. doi: 10.1137/S0036144500375292
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3050) PDF downloads(249) Cited by(8)

Article outline

Figures and Tables

Figures(18)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog