Research article

A personalized multitasking framework for real-time prediction of blood glucose levels in type 1 diabetes patients


  • Received: 18 November 2023 Revised: 20 December 2023 Accepted: 27 December 2023 Published: 18 January 2024
  • Real-time prediction of blood glucose levels (BGLs) in individuals with type 1 diabetes (T1D) presents considerable challenges. Accordingly, we present a personalized multitasking framework aimed to forecast blood glucose levels in patients. The patient data was initially categorized according to gender and age and subsequently utilized as input for a modified GRU network model, creating five prediction sub-models. The model hyperparameters were optimized and tuned after introducing the decay factor and incorporating the TCN network and attention mechanism into the GRU model. This step was undertaken to improve the capability of feature extraction. The Ohio T1DM clinical dataset was used to train and evaluate the performance of the proposed model. The metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Clark Error Grid Analysis (EGA), were used to evaluate the performance. The results showed that the average RMSE and the MAE of the proposed model were 16.896 and 9.978 mg/dL, respectively, over the prediction horizon (PH) of 30 minutes. The average RMSE and the MAE were 28.881 and 19.347 mg/dL, respectively, over the PH of 60 min. The proposed model demonstrated excellent prediction accuracy. In addition, the EGA analysis showed that the proposed model accurately predicted 30-minute and 60-minute PH within zones A and B, demonstrating that the framework is clinically feasible. The proposed personalized multitask prediction model in this study offers robust assistance for clinical decision-making, playing a pivotal role in improving the outcomes of individuals with diabetes.

    Citation: Huazhong Yang, Wang Li, Maojin Tian, Yangfeng Ren. A personalized multitasking framework for real-time prediction of blood glucose levels in type 1 diabetes patients[J]. Mathematical Biosciences and Engineering, 2024, 21(2): 2515-2541. doi: 10.3934/mbe.2024111

    Related Papers:

  • Real-time prediction of blood glucose levels (BGLs) in individuals with type 1 diabetes (T1D) presents considerable challenges. Accordingly, we present a personalized multitasking framework aimed to forecast blood glucose levels in patients. The patient data was initially categorized according to gender and age and subsequently utilized as input for a modified GRU network model, creating five prediction sub-models. The model hyperparameters were optimized and tuned after introducing the decay factor and incorporating the TCN network and attention mechanism into the GRU model. This step was undertaken to improve the capability of feature extraction. The Ohio T1DM clinical dataset was used to train and evaluate the performance of the proposed model. The metrics, including Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Clark Error Grid Analysis (EGA), were used to evaluate the performance. The results showed that the average RMSE and the MAE of the proposed model were 16.896 and 9.978 mg/dL, respectively, over the prediction horizon (PH) of 30 minutes. The average RMSE and the MAE were 28.881 and 19.347 mg/dL, respectively, over the PH of 60 min. The proposed model demonstrated excellent prediction accuracy. In addition, the EGA analysis showed that the proposed model accurately predicted 30-minute and 60-minute PH within zones A and B, demonstrating that the framework is clinically feasible. The proposed personalized multitask prediction model in this study offers robust assistance for clinical decision-making, playing a pivotal role in improving the outcomes of individuals with diabetes.



    加载中


    [1] S. Del Prato, P. Marchetti, R. C. Bonadonna, Phasic insulin release and metabolic regulation in type 2 diabetes, Diabetes, 51 (2002), S109–S116. https://doi.org/10.2337/diabetes.51.2007.s109 doi: 10.2337/diabetes.51.2007.s109
    [2] R. Balaji, R. Duraisamy, M. Kumar, Complications of diabetes mellitus: A review, Drug Invent. Today, 12 (2019).
    [3] I. W. Suryasa, M. Rodríguez-Gámez, T. Koldoris, Health and treatment of diabetes mellitus, Int. J. Health Sci., 5 (2021).
    [4] N. Khaltaev, S. Axelrod, Global trends in diabetes-related mortality with regard to lifestyle modifications, risk factors, and affordable management: A preliminary analysis, Chronic Dis. Transl. Med., 7 (2021), 182–189. https://doi.org/10.1016/j.cdtm.2021.03.003 doi: 10.1016/j.cdtm.2021.03.003
    [5] P. P. Samant, M. M. Niedzwiecki, N. Raviele, V. Tran, J. Mena-Lapaix, D. I. Walker, et al., Sampling interstitial fluid from human skin using a microneedle patch, Sci. Transl. Med., 12 (2020), eaaw0285. https://doi.org/10.1126/scitranslmed.aaw0285 doi: 10.1126/scitranslmed.aaw0285
    [6] H. Zafar, A. Channa, V. Jeoti, G. M. Stojanovic, Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring, Sensors, 22 (2022), 638. https://doi.org/10.3390/s22020638 doi: 10.3390/s22020638
    [7] M. Shokrekhodaei, D. P. Cistola, R. C. Roberts, S. Quinones, Non-Invasive glucose monitoring using optical sensor and machine learning techniques for diabetes applications, IEEE Access, 9 (2021), 73029–73045. https://doi.org/10.1109/access.2021.3079182 doi: 10.1109/access.2021.3079182
    [8] M. M. Rodgers, V. M. Pai, R. S. Conroy, Recent advances in wearable sensors for health monitoring, IEEE Sensors J., 15 (2014), 3119–3126. https://doi.org/10.1109/JSEN.2014.2357257 doi: 10.1109/JSEN.2014.2357257
    [9] Y. Wang, B. Yang, Z. Hua, J. Zhang, P. Guo, D. Hao, et al., Recent advancements in flexible and wearable sensors for biomedical and healthcare applications, J. Phys. D: Appl. Phys., 55 (2021), 134001. https://doi.org/10.1088/1361-6463/ac3c73 doi: 10.1088/1361-6463/ac3c73
    [10] Y. Deng, L. Lu, L. Aponte, A. M. Angelidi, V. Novak, G. E. Karniadakis, et al., Deep transfer learning and data augmentation improve glucose levels prediction in type 2 diabetes patients, NPJ Digital Med., 4 (2021), 109. https://doi.org/10.1038/s41746-021-00480-x doi: 10.1038/s41746-021-00480-x
    [11] S. H. A. Faruqui, Y. Du, R. Meka, A. Alaeddini, C. Li, S. Shirinkam, et al., Development of a deep learning model for dynamic forecasting of blood glucose level for type 2 diabetes mellitus: secondary analysis of a randomized controlled trial, JMIR mHealth, uHealth, 7 (2019), e14452. https://doi.org/10.2196/14452 doi: 10.2196/14452
    [12] T. Zhu, K. Li, P. Herrero, P. Georgiou, Basal glucose control in type 1 diabetes using deep reinforcement learning: An in silico validation, IEEE J. Biomed. Health. Inf., 25 (2020), 1223–1232. https://doi.org/10.1109/JBHI.2020.3014556 doi: 10.1109/JBHI.2020.3014556
    [13] M. Zhang, K. B. Flores, H. T. Tran, Deep learning and regression approaches to forecasting blood glucose levels for type 1 diabetes, Biomed. Signal Process. Control, 69 (2021), 102923. https://doi.org/10.1016/j.bspc.2021.102923 doi: 10.1016/j.bspc.2021.102923
    [14] X. Lu, R. Song, A hybrid deep learning model for the blood glucose prediction, in 2022 IEEE 11th Data Driven Control and Learning Systems Conference (DDCLS), (2022), 1037–1043.
    [15] A. Z. Woldaregay, E. Årsand, S. Walderhaug, D. Albers, L. Mamykina, T. Botsis, et al., Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes, Artif. Intell. Med., 98 (2019), 109–134. https://doi.org/10.1016/j.artmed.2019.07.007 doi: 10.1016/j.artmed.2019.07.007
    [16] A. Aliberti, I. Pupillo, S. Terna, E. Macii, S. Di Cataldo, E. Patti, et al., A multi-patient data-driven approach to blood glucose prediction, IEEE Access, 7 (2019), 69311–69325. https://doi.org/10.1109/ACCESS.2019.2919184 doi: 10.1109/ACCESS.2019.2919184
    [17] M. AlQuraishi, P. K. Sorger, Differentiable biology: using deep learning for biophysics-based and data-driven modeling of molecular mechanisms, Nat. Methods, 18 (2021), 1169–1180.
    [18] M. Halvorsen, K. D. Benam, H. Khoshamadi, A. L. Fougner, Blood glucose level prediction using subcutaneous sensors for in vivo study: compensation for measurement method slow dynamics using kalman filter approach, in 2022 IEEE 61st Conference on Decision and Control (CDC), (2022), 6034–6039. https://doi.org/10.1109/CDC51059.2022.9992638
    [19] E. Manzoni, M. Rampazzo, S. Del Favero, Detection of glucose sensor faults in an artificial pancreas via whiteness test on kalman filter residuals, IFAC-PapersOnLine, 54 (2021), 274–279. https://doi.org/10.1016/j.ifacol.2021.08.371 doi: 10.1016/j.ifacol.2021.08.371
    [20] J. Martinsson, A. Schliep, B. Eliasson, O. Mogren, Blood glucose prediction with variance estimation using recurrent neural networks, J. Healthcare Inf. Res., 4 (2020), 1–18. https://doi.org/10.1007/s41666-019-00059-y doi: 10.1007/s41666-019-00059-y
    [21] S. Srivastava, L. Sharma, V. Sharma, A. Kumar, H. Darbari, Prediction of diabetes using artificial neural network approach, in Engineering Vibration, Communication and Information Processing: ICoEVCI 2018, (2019), 679–687. https://doi.org/10.1007/978-981-13-1642-5_59
    [22] R. Gayathri, P. B. Pati, T. Singh, R. R. Nair, A framework for the prediction of diabtetes mellitus using hyper-parameter tuned XGBOOST classifier, in 2022 13th International Conference on Computing Communication and Networking Technologies (ICCCNT), (2022), 1–5. https://doi.org/10.1109/ICCCNT54827.2022.9984315.
    [23] D. Bhulakshmi, G. Gandhi, The Prediction of Diabetes in Pima Indian Women Mellitus Based on XGBOOST Ensemble Modeling Using Data Science, Technical Report, 2020.
    [24] F. Prendin, S. Del Favero, M. Vettoretti, G. Sparacino, A. Facchinetti, Forecasting of glucose levels and hypoglycemic events: head-to-head comparison of linear and nonlinear data-driven algorithms based on continuous glucose monitoring data only, Sensors, 21 (2021), 1647. https://doi.org/10.3390/s21051647 doi: 10.3390/s21051647
    [25] B. Singh, S. K. Henge, S. K. Mandal, M. K. Yadav, P. T. Yadav, A. Upadhyay, et al., Auto-regressive integrated moving average threshold influence techniques for stock data analysis, Int. J. Adv. Comput. Sci. Appl., 14 (2023), 446–455. https://doi.org/10.14569/IJACSA.2023.0140648 doi: 10.14569/IJACSA.2023.0140648
    [26] M. F. Rabby, Y. Tu, M. I. Hossen, I. Lee, A. S. Maida, X. Hei, Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction, BMC Med. Inf. Decis. Making, 21 (2021), 101. https://doi.org/10.1186/s12911-021-01462-5 doi: 10.1186/s12911-021-01462-5
    [27] A. Şahin, A. Aydın, Personalized advanced time blood glucose level prediction, Arabian J. Sci. Eng., 46 (2021), 9333–9344. https://doi.org/10.1007/s13369-020-05263-2 doi: 10.1007/s13369-020-05263-2
    [28] Y. Wang, A comparison of machine learning algorithms in blood glucose prediction for people with Type 1 diabetes, in Proceedings of the 2nd International Symposium on Artificial Intelligence for Medicine Sciences, (2021), 351–360. https://doi.org/10.1016/j.icte.2021.02.004
    [29] B. De Paoli, F. D'Antoni, M. Merone, S. Pieralice, V. Piemonte, P. Pozzilli, Blood glucose level forecasting on type-1-diabetes subjects during physical activity: a comparative analysis of different learning techniques, Bioengineering, 8 (2021), 72. https://doi.org/10.3390/bioengineering8060072 doi: 10.3390/bioengineering8060072
    [30] I. Rodríguez-Rodríguez, I. Chatzigiannakis, J. V. Rodríguez, M. Maranghi, M. Gentili, M. Á. Zamora-Izquierdo, Utility of big data in predicting short-term blood glucose levels in type 1 diabetes mellitus through machine learning techniques, Sensors, 19 (2019), 4482. https://doi.org/10.3390/s19204482 doi: 10.3390/s19204482
    [31] K. Li, J. Daniels, C. Liu, P. Herrero, P. Georgiou, Convolutional recurrent neural networks for glucose prediction, IEEE J. Biomed. Health Inf., 24 (2020), 603–613. https://doi.org/10.1109/JBHI.2019.2908488 doi: 10.1109/JBHI.2019.2908488
    [32] W. Seo, S. W. Park, N. Kim, S. M. Jin, S. M. Park, A personalized blood glucose level prediction model with a fine-tuning strategy: A proof-of-concept study, Comput. Methods Programs Biomed., 211 (2021), 106424. https://doi.org/10.1016/j.cmpb.2021.106424 doi: 10.1016/j.cmpb.2021.106424
    [33] J. Martinsson, A. Schliep, B. Eliasson, O. Mogren, Blood glucose prediction with variance estimation using recurrent neural networks, J. Healthcare Inf. Res., 4 (2020), 1–18. https://doi.org/10.1007/s41666-019-00059-y doi: 10.1007/s41666-019-00059-y
    [34] T. Zhu, K. Li, P. Herrero, J. Chen, P. Georgiou, A deep learning algorithm for personalized blood glucose prediction, in KHD@ IJCAI, (2018), 64–78. https://doi.org/10.1109/CAC53003.2021.9727450
    [35] M. M. H. Shuvo, S. K. Islam, Deep multitask learning by stacked long short-term memory for predicting personalized blood glucose concentration, IEEE J. Biomed. Health Inf., 27 (2023), 1612–1623. https://doi.org/10.1109/JBHI.2022.3233486 doi: 10.1109/JBHI.2022.3233486
    [36] T. Yang, X. Yu, N. Ma, R. Wu, H. Li, An autonomous channel deep learning framework for blood glucose prediction, Appl. Soft Comput., 120 (2022), 108636. https://doi.org/10.1016/j.asoc.2022.108636 doi: 10.1016/j.asoc.2022.108636
    [37] C. Marling, R. Bunescu, The OhioT1DM dataset for blood glucose level prediction: Update 2020, in CEUR Workshop Proceedings, 2675 (2020), 71.
    [38] D. Alshayban, R. Joseph, Health-related quality of life among patients with type 2 diabetes mellitus in Eastern Province, Saudi Arabia: A cross-sectional study, PloS One, 15 (2020), e0227573. https://doi.org/10.1371/journal.pone.0227573 doi: 10.1371/journal.pone.0227573
    [39] L. Caperon, A. Arjyal, P. KC, J. Kuikel, J. Newell, R. Peters, et al., Developing a socio-ecological model of dietary behaviour for people living with diabetes or high blood glucose levels in urban Nepal: A qualitative investigation, PLoS One, 14 (2019), e0214142. https://doi.org/10.1371/journal.pone.0214142 doi: 10.1371/journal.pone.0214142
    [40] M. V. Franchi, D. P. Fitze, B. J. Raiteri, D. Hahn, J. Spörri, Ultrasound-derived biceps femoris long-head fascicle length: extrapolation pitfalls, Med. Sci. Sports Exercise, 52 (2020), 233–243. https://doi.org/10.1249/MSS.0000000000002123 doi: 10.1249/MSS.0000000000002123
    [41] B. Sencer, Y. Kakinuma, Y. Yamada, Linear interpolation of machining tool-paths with robust vibration avoidance and contouring error control, Precis. Eng., 66 (2020), 269–281. https://doi.org/10.1016/j.precisioneng.2020.04.007 doi: 10.1016/j.precisioneng.2020.04.007
    [42] U. N. Yoon, M. D. Hong, G. S. Jo, Interp-SUM: Unsupervised video summarization with piecewise linear interpolation, Sensors, 21 (2021), 4562. https://doi.org/10.3390/s21134562 doi: 10.3390/s21134562
    [43] I. Ostroumov, N. Kuzmenko, Accuracy improvement of VOR/VOR navigation with angle extrapolation by linear regression, Telecommun. Radio Eng., 78 (2019). https://doi.org/10.1615/TelecomRadEng.v78.i15.90 doi: 10.1615/TelecomRadEng.v78.i15.90
    [44] D. Simon, Kalman filtering, Embedded Syst. Program., 14 (2001), 72–79.
    [45] M. Khodarahmi, V. Maihami, A review on Kalman filter models, Arch. Comput. Methods Eng., 30 (2023), 727–747. https://doi.org/10.1007/s11831-022-09815-7 doi: 10.1007/s11831-022-09815-7
    [46] N. A. Sudibyo, A. Iswardani, A. W. Septyanto, T. G. Wicaksono, Prediksi inflasi di indonesia menggunakan metode moving average, single exponential smoothing dan double exponential smoothing, Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika, 1 (2020), 123–129. https://doi.org/10.46306/lb.v1i2 doi: 10.46306/lb.v1i2
    [47] N. S. Muhamad, A. M. Din, Exponential smoothing techniques on daily temperature level data, in Proceedings of the 6th International Conference on Computing and Informatics, (2017), 62–68.
    [48] F. Xiao, C. Li, Y. Fan, G. Yang, X. Tang, State of charge estimation for lithium-ion battery based on Gaussian process regression with deep recurrent kernel, Int. J. Electr. Power Energy Syst., 124 (2021), 106369. https://doi.org/10.1016/j.ijepes.2020.106369 doi: 10.1016/j.ijepes.2020.106369
    [49] J. Bi, X. Zhang, H. Yuan, J. Zhang, M. Zhou, A hybrid prediction method for realistic network traffic with temporal convolutional network and LSTM, IEEE Trans. Autom. Sci. Eng., 19 (2021), 1869–1879. https://doi.org/10.1109/TASE.2021.3077537 doi: 10.1109/TASE.2021.3077537
    [50] S. Gao, Y. Huang, S. Zhang, J. Han, G. Wang, M. Zhang, et al., Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation, J. Hydrol., 589 (2020), 125188. https://doi.org/10.1016/j.jhydrol.2020.125188 doi: 10.1016/j.jhydrol.2020.125188
    [51] M. Pan, H. Zhou, J. Cao, Y. Liu, J. Hao, S. Li, et al., Water level prediction model based on GRU and CNN, IEEE Access, 8 (2020), 60090–60100. https://doi.org/10.1109/ACCESS.2020.2982433 doi: 10.1109/ACCESS.2020.2982433
    [52] Y. He, J. Zhao, Temporal convolutional networks for anomaly detection in time series, in Journal of Physics: Conference Series, 1213 (2019), 042050. https://doi.org/10.1088/1742-6596/1213/4/042050
    [53] J. Yan, L. Mu, L. Wang, R. Ranjan, A. Y. Zomaya, Temporal convolutional networks for the advance prediction of ENSO, Sci. Rep., 10 (2020), 8055. https://doi.org/s41598-020-65070-5
    [54] J. L. Parkes, S. L. Slatin, S. Pardo, B. H. Ginsberg, A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose, Diabetes Care, 23 (2000), 1143–1148. https://doi.org/10.2337/diacare.23.8.1143 doi: 10.2337/diacare.23.8.1143
    [55] J. L. Bedini, J. F. Wallace, S. Pardo, T. Petruschke, Performance evaluation of three blood glucose monitoring systems using ISO 15197: 2013 accuracy criteria, consensus and surveillance error grid analyses, and insulin dosing error modeling in a hospital setting, J. Diabetes Sci. Technol., 10 (2016), 85–92. https://doi.org/10.1177/1932296815609368 doi: 10.1177/1932296815609368
    [56] S. L. Cichosz, T. Kronborg, M. H. Jensen, O. Hejlesen, Penalty weighted glucose prediction models could lead to better clinically usage, Comput. Biol. Med., 138 (2021), 104865. https://doi.org/10.1016/j.compbiomed.2021.104865 doi: 10.1016/j.compbiomed.2021.104865
    [57] S. L. Cichosz, M. H. Jensen, O. Hejlesen, Short-term prediction of future continuous glucose monitoring readings in type 1 diabetes: Development and validation of a neural network regression model, Int. J. Med. Inf., 151 (2021), 104472. https://doi.org/10.1016/j.ijmedinf.2021.104472 doi: 10.1016/j.ijmedinf.2021.104472
    [58] T. Agrawal, Hyperparameter Optimization in Machine Learning: Make Your Machine Learning and Deep Learning Models More Efficient, New York, NY, (2021), 109–129.
    [59] T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, Optuna: A next-generation hyperparameter optimization framework, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, (2019), 2623–2631.
    [60] W. L. Clarke, The original Clarke Error Grid Analysis (EGA), Diabetes Technol. Ther., 7 (2005), 776–779. https://doi.org/10.1089/dia.2005.7.776 doi: 10.1089/dia.2005.7.776
    [61] C. Midroni, P. J. Leimbigler, G. Baruah, M. Kolla, A. J. Whitehead, Y. Fossat, Predicting glycemia in type 1 diabetes patients: experiments with XGBoost, Heart, 60 (2018), 120. https://doi.org/10.1007/s41666-019-00063-2 doi: 10.1007/s41666-019-00063-2
    [62] T. Zhu, K. Li, J. Chen, P. Herrero, P. Georgiou, Dilated recurrent neural networks for glucose forecasting in type 1 diabetes, J. Healthcare Inf. Res., 4 (2020), 308–324. https://doi.org/10.1007/s41666-020-00068-2 doi: 10.1007/s41666-020-00068-2
    [63] K. Gu, R. Dang, T. Prioleau, Neural physiological model: A simple module for blood glucose prediction, in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), (2020), 5476–5481.
    [64] F. Tena, O. Garnica, J. Lanchares, J. I. Hidalgo, Ensemble models of cutting-edge deep neural networks for blood glucose prediction in patients with diabetes, Sensors, 21 (2021), 7090. https://doi.org/10.3390/s21217090 doi: 10.3390/s21217090
    [65] J. Daniels, P. Herrero, P. Georgiou, A multitask learning approach to personalized blood glucose prediction, IEEE J. Biomed. Health. Inf., 26 (2021), 436–445. https://doi.org/10.1109/JBHI.2021.3100558 doi: 10.1109/JBHI.2021.3100558
    [66] K. Li, C. Liu, T. Zhu, P. Herrero, P. Georgiou, GluNet: a deep learning framework for accurate glucose forecasting, IEEE J. Biomed. Health Inf., 24 (2020), 414–423. https://doi.org/10.1109/JBHI.2019.2931842 doi: 10.1109/JBHI.2019.2931842
    [67] J. Daniels, P. Herrero, P. Georgiou, A multitask learning approach to personalized blood glucose prediction, IEEE J. Biomed. Health Inf., 26 (2021), 436–445. https://doi.org/10.1109/JBHI.2021.3100558 doi: 10.1109/JBHI.2021.3100558
    [68] G. Cappon, F. Prendin, A. Facchinetti, G. Sparacino, S. D. Favero, Individualized models for glucose prediction in type 1 diabetes: comparing black-box approaches to a physiological white-box one, IEEE Trans. Biomed. Eng., 70 (2023), 3105–3115. https://doi.org/10.1109/TBME.2023.3276193 doi: 10.1109/TBME.2023.3276193
    [69] J. Pavan, F. Prendin, L. Meneghetti, G. Cappon, G. Sparacino, A. Facchinetti, et al., Personalized machine learning algorithm based on shallow network and error imputation module for an improved blood glucose prediction, in KDH@ ECAI, (2020), 95–99.
    [70] D. Y. Kim, D. S. Choi, J. Kim, S. W. Chun, H. W. Gil, N. J. Cho, et al., Developing an individual glucose prediction model using recurrent neural network, Sensors, 20 (2020), 6460. https://doi.org/10.3390/s20226460 doi: 10.3390/s20226460
    [71] H. V. Dudukcu, M. Taskiran, T. Yildirim, Blood glucose prediction with deep neural networks using weighted decision level fusion, Biocybern. Biomed. Eng., 41 (2021), 1208–1223. https://doi.org/10.1016/j.bbe.2021.08.007 doi: 10.1016/j.bbe.2021.08.007
    [72] M. Versaci, G. Angiulli, P. Crucitti, D. De Carlo, F. Lagana, D. Pellicano, et al., A fuzzy similarity-based approach to classify numerically simulated and experimentally detected carbon fiber-reinforced polymer plate defects, Sensors, 22 (2022), 4232. https://doi.org/10.3390/s22114232 doi: 10.3390/s22114232
    [73] S. A. Mokeddem, A fuzzy classification model for myocardial infarction risk assessment, Appl. Intell., 48 (2018), 1233–1250. https://doi.org/10.1007/s10489-017-1102-1 doi: 10.1007/s10489-017-1102-1
    [74] C. Midroni, P. J. Leimbigler, G. Baruah, M. Kolla, A. J. Whitehead, Y. J. H. Fossat, Predicting glycemia in type 1 diabetes patients: experiments with XGBoost, Heart, 60 (2018), 120.
    [75] T. Yang, X. Yu, N. Ma, R. Wu, H. Li, An autonomous channel deep learning framework for blood glucose prediction, Appl. Soft Comput., 120 (2022), 108636. https://doi.org/10.1016/j.asoc.2022.108636 doi: 10.1016/j.asoc.2022.108636
    [76] M. M. H. Shuvo, S. K. Islam, Deep multitask learning by stacked long short-term memory for predicting personalized blood glucose concentration, IEEE J. Biomed. Health Inf., 27 (2023), 1612–1623. https://doi.org/10.1109/JBHI.2022.3233486 doi: 10.1109/JBHI.2022.3233486
    [77] H. Khadem, H. Nemat, J. Elliott, M. Benaissa, Blood glucose level time series forecasting: nested deep ensemble learning lag fusion, Bioengineering, 10 (2023), 487. https://doi.org/10.3390/bioengineering10040487 doi: 10.3390/bioengineering10040487
    [78] D. Y. Kim, D. S. Choi, J. Kim, S. W. Chun, H. W. Gil, N. J. Cho, et al., Developing an individual glucose prediction model using recurrent neural network, Sensors, 20 (2020), 6460. https://doi.org/10.3390/s20226460 doi: 10.3390/s20226460
    [79] J. Freiburghaus, A. Rizzotti, F. Albertetti, A deep learning approach for blood glucose prediction of type 1 diabetes, in Proceedings of the Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence (ECAI 2020), (2020), 29–30.
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(842) PDF downloads(79) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog