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Abstract: Real-time prediction of blood glucose levels (BGLs) in individuals with type 1 diabetes 
(T1D) presents considerable challenges. Accordingly, we present a personalized multitasking 
framework aimed to forecast blood glucose levels in patients. The patient data was initially categorized 
according to gender and age and subsequently utilized as input for a modified GRU network model, 
creating five prediction sub-models. The model hyperparameters were optimized and tuned after 
introducing the decay factor and incorporating the TCN network and attention mechanism into the 
GRU model. This step was undertaken to improve the capability of feature extraction. The Ohio T1DM 
clinical dataset was used to train and evaluate the performance of the proposed model. The metrics, 
including Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Clark Error Grid 
Analysis (EGA), were used to evaluate the performance. The results showed that the average RMSE 
and the MAE of the proposed model were 16.896 and 9.978 mg/dL, respectively, over the prediction 
horizon (PH) of 30 minutes. The average RMSE and the MAE were 28.881 and 19.347 mg/dL, 
respectively, over the PH of 60 min. The proposed model demonstrated excellent prediction accuracy. 
In addition, the EGA analysis showed that the proposed model accurately predicted 30-minute and 60-
minute PH within zones A and B, demonstrating that the framework is clinically feasible. The proposed 
personalized multitask prediction model in this study offers robust assistance for clinical decision-
making, playing a pivotal role in improving the outcomes of individuals with diabetes. 
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1. Introduction 

Diabetes, characterized by insufficient insulin secretion or inadequate cellular response, leads to 
sustained elevated glucose levels, posing significant health risks [1,2]. Annually, over 1.5 million 
people worldwide succumb to diabetes-related complications, with 422 million diagnosed in 2019. 
Projections indicate a surge to 700 million patients by 2045, firmly establishing diabetes as a primary 
global cause of mortality. The treatment protocol for type I diabetes includes oral medications or 
insulin injections aimed at maintaining blood glucose within the normal range [3,4]. Nevertheless, 
real-time monitoring remains challenging, often necessitating invasive blood sampling. Mobility 
issues, particularly prevalent in the middle-to-older age group, result in inconveniences and frequent 
hospital visits. Addressing these challenges is imperative; thus, the exploration of noninvasive or 
predictive approaches becomes crucial [5]. Our research responds to this imperative, accentuating its 
contributions and innovations in enhancing the quality of life for diabetic patients. 

With the rapid progress in wearable devices and microsensor technology, the exploration of 
wearable sensor devices for blood glucose level monitoring has gained considerable attention [6,7]. 
Continuous glucose monitoring technology enables real-time tracking of blood glucose levels [8,9]. 
This is achieved by projecting future changes in glucose levels through frequent synchronized data 
sampling. In recent years, deep learning technologies have successfully personalized predictions of 
future blood glucose levels. These predictions utilize continuous glucose monitoring records, insulin 
usage information and individually reported physiological data. 

Researchers are investigating methods to predict blood glucose levels from physiological data, 
aiming to reduce the need for frequent patient visits and the discomfort caused by punctures [10]. 
Precise blood glucose prediction can alleviate the burden of Type 1 diabetes [11]. Personalized 
prediction faces challenges, including carbohydrate intake, insulin timing, sleep quality and physical 
activity, influencing glucose fluctuations. Unlike a uniform model, personalized predictions adopt 
distinct models for each patient. Using pre-classification, multitask learning partially alleviates 
dynamic glucose variations among patients of different ages and genders [12,13]. 

The primary study goal is to develop a pre-classification-based multitask deep learning model 
predicting blood glucose levels. This model utilizes continuous glucose monitoring (CGM) data at 
time point T and other life event data to forecast levels at T + PH. Considered prediction windows 
are 30 and 60 minutes. Patient data was initially pre-classified based on sex and age. Subsequently, the 
proposed framework, TG-DANet (TCN-GRU-D-Attention Network), predicted glucose levels. 
Multidimensional time-series data were pre-processed, and aligned with monitoring records and life 
event data before being fed into TG-DANet for training. The framework is trained on pre-classified 
data. Based on outcomes, five sub-models Mi (i = 1…5). were trained for personalized predictions. 
These models were then used for blood glucose level prediction. Primary contributions are as follows. 

1) Propose a data-driven blood glucose level prediction model based on pre-classification, which 
can accurately forecast future blood glucose levels. 

2) The pre-classification deep learning approach, based on TG-DANet, helps effectively 
categorize and predict patients of different ages and sexes. This approach yields outstanding 
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predictive performance within personalized patient contexts. 
3) The introduction of an enhanced GRU model (GRU-D) that incorporates a decay mechanism 

to regulate fading hidden states optimizes the capture of long-term dependencies based on 
time steps, thereby enhancing the model’s predictive capability. 

4) Blood glucose prediction analysis, using real clinical patient data, demonstrated the 
remarkable accuracy of the model. Comparative evaluations against baseline models and the 
published literature confirm the superiority of the proposed model. 

The rest of this paper is organized as follows. Section 2 discusses relevant research efforts related 
to predicting blood glucose levels, emphasizing the shortcomings of current studies. Section 3 outlines 
the dataset that was adopted and the pre-processing methods used. Section 4 elaborates on the modeling 
process of the personalized blood glucose prediction system and the methodology for optimizing the 
model configuration through hyperparameter tuning. Section 5 presents and analyzes the experimental 
results. Finally, Section 6 encapsulates the research findings, articulates the conclusions drawn and 
outlines potential areas for future research. 

2. Related works 

The prevalent predictive models for blood glucose levels include data-driven models [14] and 
physiological and hybrid models [15,16]. Among these, data-driven models exhibit superior flexibility 
and generality compared to physiological and hybrid models. Data-driven models do not require many 
physiological parameters or specialized knowledge [17]. They can rapidly establish accurate blood 
glucose prediction models, yielding predictive performance similar to physiological models. Therefore, 
we used data-driven models to predict blood glucose levels [18]. 

In previous relevant studies, numerous scholars have utilized various algorithms, including 
Kalman filtering [19,20], artificial neural networks [21,22], XGBoost [23,24] and autoregressive 
integrated moving average (ARIMA) [25,26], to predict blood glucose levels. However, these studies 
often rely solely on calibrated individual or limited physiological data for predicting blood glucose 
levels. Consequently, these models exhibit deficiencies in incorporating relevant lifestyle data and 
continuous glucose monitoring information, making them inadequate for addressing personalized 
patient variations. For instance, in 2021, Md Fazle Rabby et al. [26] employed Kalman filtering and 
the StackLSTM algorithm for predicting blood glucose levels. Asiye Şahin et al. [27] proposed using 
an artificial neural network (ANN). Yiyang Wang et al. [28] utilized the XGBoost algorithm for 
prediction, while Federico D’Antoni et al. [29] introduced the autoregressive shifting algorithm for 
glucose prediction. However, these studies did not consider the impact of multiple variables, resulting 
in limited predictive accuracy. Although autoregressive models are considered classical statistical 
approaches, their implementation requires significant domain expertise, making them less suitable for 
computer scientists conducting disease prediction research. Consequently, deep learning and machine 
learning methods have gained widespread popularity because they can produce favorable outcomes 
without requiring extensive domain knowledge. Deep learning algorithms have shown promising results 
in predicting blood glucose levels. For instance, CNN [30,31], DRNN [32], FCNN [33], CRNN [34] and 
multilayer LSTM models have been extensively studied for predicting blood glucose levels. In addition, 
studies have explored using multiple variables to predict blood glucose levels. For example, the 
multitask prediction model (D-MTL) proposed by Shuvo et al. [35] experimented with selected 
features and ultimately identified four variables: continuous glucose monitoring data, insulin dosage, 
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carbohydrate intake and fingertip glucose content. These features were input into the model for 
predicting blood glucose. Experimental results indicated an RMSE evaluation metric of 18.06 ± 2.74 
mg/dL within a 30-minute prediction window. Tao Yang et al. [36] introduced a deep learning 
framework that utilizes an automated channel for personalized prediction of blood glucose levels. The 
authors utilized continuous glucose monitoring data, carbohydrate intake, insulin dosage and time-
related information to predict patient blood glucose levels. Although these prediction methodologies 
have achieved certain levels of success, their selection of features primarily relies on empirical grounds, 
thus failing to maximize their value in clinical practice. 

The existing limitations in blood glucose prediction research primarily manifest in the following 
aspects: 1) Temporal Scale: Predictive models struggle to capture real-time changes in these factors. 2) 
Lack of Relevant Clinical Data: Often, there is a lack of data regarding medication dosages, specialized 
diets, or specific physiological conditions. 3) External Interference Factors: The external environment 
and the patient’s lifestyle can impact the accuracy of predictive models. This study mainly focused on 
using the authentic clinical dataset OhioT1DM to predict blood glucose levels for the next 30 and 60 
minutes. In addition to employing model evaluations, the proposed model was assessed using Clarke 
Error Grid Analysis. These methodologies provide a more comprehensive model performance 
evaluation, resulting in more robust results and conclusions. 

3. Dataset and pre-processing 

The OHIOT1DM dataset is used for validating and predicting the proposed model. Sourced from 
clinical real-world data at Ohio State University, this dataset pertains to blood glucose prediction. The 
utilization of this dataset requires adherence to relevant protocols and necessitates an application 
process to acquire usage permissions. The OHIOT1DM [37] dataset includes data from 12 individuals 
who were diagnosed with type 1 diabetes and took part in the Blood Glucose Level Prediction (BGLP) 
challenge in 2018 and 2020. The dataset covers eight weeks for each participant. This dataset includes 
continuous glucose monitoring (CGM) data collected at 5-minute intervals, fingertip capillary blood 
glucose levels obtained through self-monitoring, insulin dosages (including bolus and basal dosages), 
self-reported meal times, estimated carbohydrate intake, self-reported physical activity, sleep patterns, 
stress levels and data from Basis Peak or Empatica Embrace devices. The Basis Peak wristband data 
includes information on 5-minute heart rate, galvanic skin response (GSR), skin temperature, ambient 
temperature and step count. Each patient was represented within the dataset by an XML file for training 
and testing. There were 24 XML files encompassing all the data for the 12 patients. Specifically, the 
final ten days of patient data were allocated for testing, while the remaining data were designated for 
training. Table 1 summarizes the dataset, including gender, age and sample count for the training and 
testing sets. 

In this study, solely evaluating the model’s performance using continuous glucose monitoring 
(CGM) data did not comprehensively reflect its capabilities. Hence, we employed a feature 
incrementation approach to observe the model’s performance and analyze the significance of these 
features. A series of ablation experiments were conducted to facilitate feature selection, and the 
quantitative results are presented in Tables 2–6. According to relevant studies, an individual’s sex and 
age can influence their blood glucose levels [38,39]. Consequently, by implementing a pre-
classification strategy, we categorized patients according to gender and age to develop personalized 
prediction models. Building upon the OhioT1DM dataset, we categorized the data into five classes 
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corresponding to the five personalized prediction models proposed in this study. 

Table 1. Gender, Age, Training samples and testing samples of the OhioT1DM dataset. 

PID Gender Age Training samples Testing samples 

540 male 20–40 11,947 2884 
552 9080 2352 

563 male 40–60 12,124 2570 

570 10,982 2745 

544 10,623 2704 

584 12,150 2653 

596 male 60–80 10,877 2731 

567 female 20–40 10,858 2377 

559 female 40–60 10,796 2514 

575 11,866 2590 

588 12,640 2791 

591 10,847 2760 

Table 2. Ablation study on input features (use of patients #540 and #552). 

Input features Metric 30-min PH 60-min PH
CGM RMSE 16.754 26.725 

MAE 8.646 16.629 
CGM, Sleep RMSE 16.61 26.441 

MAE 8.643 16.618 
CGM, Sleep, Bl RMSE 16.584 26.424 

MAE 8.592 16.594 
CGM, Sleep, Bl, FG RMSE 16.562 26.386 

MAE 8.564 16.564 
CGM, Sleep, Bl, FG, C RMSE 16.552 26.153 

MAE 8.524 16.365 
CGM, Sleep, Bl, FG, C, Ba RMSE 17.152 27.102 

MAE 8.984 16.985 
CGM, Sleep, Bl, FG, C, Ba, GSR RMSE 17.852 27.513 

MAE 9.251 17.654 
CGM, Sleep, Bl, FG, C, Ba, GSR, ST RMSE 18.352 27.985 

MAE 9.684 18.654 
Note: CGM: continuous glucose monitoring; Sleep: sleep quality; Ba: Basal insulin rate; FG: finger 
stick glucose; C: carbohydrates; Bl: Insulin Injection Volume. GSR: Galvanic skin response; ST: 
skin temperature. The average MAE and RMSE of PID are #540 and #552, with bold representing 
the best performance. 

These models are denoted as TG-DANeti (i = 1,2,3,4,5). These models utilize TG-DANet as their 
foundational architecture, differing primarily in parameter adjustments. These parameters were 
obtained using separate training datasets and the Optuna hyperparameter optimization framework, 
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thereby improving the customization of blood glucose prediction for patients. Tables 2–4 and 6 
demonstrate that the five input features significantly impact the CGM trends. Conversely, Table 5 
identifies four input features that notably influence continuous glucose monitoring (CGM) trends. 
Different combinations of additional features did not result in significant performance improvements 
and could compromise predictive accuracy. 

Table 3. Ablation study on input features (Using Patient #544, #563, #570 and #584). 

Input features Metric 30-min PH 60-min PH
CGM RMSE 16.75 31.435 

MAE 9.084 17.894 
CGM, Ba RMSE 16.65 31.441 

MAE 8.943 17.618 
CGM, Ba, Bl RMSE 16.484 31.324 

MAE 8.658 17.596 
CGM, Ba, Bl, FG, RMSE 16.352 31.316 

MAE 8.532 17.564 
CGM, Ba, Bl, FG, C RMSE 16.252 31.032 

MAE 8.324 17.246 
CGM, Ba, Bl, FG, C, GSR RMSE 16.952 31.502 

MAE 9.284 17.985 
CGM, Ba, Bl, FG, C, GSR, ST RMSE 17.252 31.513 

MAE 9.651 18.054 
CGM, Ba, Bl, FG, C, GSR, ST, Sleep RMSE 18.352 31.985 

MAE 9.984 18.651 
Note: The average MAE and RMSE of PID are #544, #563, #570 and #584, with bold representing the 
best performance. 

To enhance the stability of the model, data smoothing was applied before incorporating selected 
features. Given the potential for sensor device quality issues [40], power interruptions and connectivity 
problems, random missing values may be present in continuous glucose monitoring (CGM) data. In 
addressing this, linear interpolation was utilized to fill missing data gaps in the test set. However, to 
maintain the integrity of physiological patterns, we carefully considered the duration of missing values 
and opted to discard samples with continuous gaps exceeding two hours, as prolonged intervals could 
adversely affect prediction accuracy. Data preprocessing methods for other features were aligned with 
those used for CGM data. It is important to note that our model relies on sample data with consistent 
scales. If the lengths of other features do not match those of the CGM data, we employed a method to 
fill in the missing portions. Following the treatment for handling missing values, data normalization 
was performed to ensure uniform scaling across input features. 

In addressing missing data, linear interpolation [41] was applied to the training set, while linear 
extrapolation [42,43] was employed for the test set to prevent encounters with future data. Additionally, 
Kalman filtering [44,45] was utilized specifically for pre-processing blood glucose data to mitigate 
sensor readings and device errors. It is imperative to underscore that the target variable for prediction 
was deliberately excluded from both the smoothing and filtering processes. This intentional omission is 
rooted in our acknowledgment of the potential hazards associated with artificially augmenting 
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predictability at the potential cost of physiological accuracy. We have opted for this approach to 
circumvent any inadvertent distortion of the signal, particularly because Continuous Glucose Monitoring 
(CGM) values are inherently subjected to filtering by the manufacturer. 

Table 4. Ablation study on input features (Using Patient #596). 

Input features Metric 30-min PH 60-min PH
CGM RMSE 17.408 30.693 

MAE 12.591 22.421 
CGM, GSR RMSE 17.362 30.441 

MAE 12.343 22.118 
CGM, GSR, Bl RMSE 17.184 30.324 

MAE 12.185 21.952 
CGM, GSR, Bl, FG RMSE 16.985 29.954 

MAE 11.841 21.564 
CGM, GSR, Bl, FG, C RMSE 16.658 29.214 

MAE 11.251 21.062 
CGM, GSR, Bl, FG, C, Ba RMSE 17.952 31.502 

MAE 12.884 22.985 
CGM, GSR, Bl, FG, C, Ba, ST RMSE 18.252 31.513 

MAE 12.951 23.054 
CGM, Ba, Bl, FG, C, GSR, ST, Sleep RMSE 18.352 31.985 

MAE 13.284 23.651 
Note: The average MAE and RMSE of PID is 596, with bold representing the best performance. 

Table 5. Ablation study on input features (Using Patient #567). 

Input features Metric 30-min PH 60-min PH
CGM RMSE 16.842 26.683 

MAE 9.35 18.421 
CGM, ST RMSE 16.781 26.541 

MAE 9.343 18.118 
CGM, ST, Bl RMSE 16.454 26.324 

MAE 9.185 18.052 
CGM, ST, Bl, C RMSE 16.283 25.954 

MAE 8.841 17.864 
CGM, ST, Bl, C, Ba RMSE 17.458 29.853 

MAE 11.304 21.352 
CGM, ST, Bl, C, Ba, GSR RMSE 17.852 31.502 

MAE 12.264 22.385 
CGM, ST, Bl, C, Ba, GSR, Sleep RMSE 18.154 31.412 

MAE 12.354 23.158 
CGM, ST, Bl, C, Ba, GSR, Sleep, FG RMSE 18.184 31.845 

MAE 13.325 23.647 
Note: The average MAE and RMSE of PID is #567, with bold representing the best performance. 
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Despite the substantial advancements made by continuous glucose monitoring (CGM) devices in 
real-time glucose monitoring, their accuracy is constrained by limitations such as measurement errors, 
latency, inconvenience of use and high costs. These limitations often lead to outliers, which, in turn, 
result in misleading predictive outcomes. 

Time-series smoothing [46] has proven to be a practical approach to overcoming these issues. This 
study used double exponential smoothing to preprocess the data, making the blood glucose level data more 
continuous and stable. This enhancement aimed to improve the predictive accuracy of the model. 

Table 6. Ablation study on input features (Using Patient #559, #575, #588 and #591). 

Input features Metric 30-min PH 60-min PH

CGM 
RMSE 18.596 33.242 
MAE 13.574 24.150 

CGM, Bl 
RMSE 18.425 32.568 
MAE 13.422 23.984 

CGM, Bl, C 
RMSE 18.465 32.452 
MAE 13.254 23.658 

CGM, Bl, C, GSR 
RMSE 18.312 32.284 
MAE 13.152 23.429 

CGM, Bl, C, GSR, ST 
RMSE 18.214 32.052 
MAE 12.951 23.254 

CGM, Bl, C, GSR, ST, Ba 
RMSE 18.956 33.451 
MAE 13.845 24.521 

CGM, Bl, C, GSR, ST, Ba, Sleep 
RMSE 19.325 33.584 
MAE 13.984 24.985 

CGM, Bl, C, GSR, ST, Ba, Sleep 
RMSE 19.685 33.845 
MAE 14.251 25.162 

Note: The average MAE and RMSE of PID are 559, 575, 588 and 591, with bold representing the 
best performance. 

Double exponential smoothing [47] preprocessing was applied to all the feature data. The purpose 
was to capture the level and trend components of the data as they change over time. The mathematical 
principles underlying double exponential smoothing involve two primary stages. 

One: Level component smoothing 

𝐿 𝛼𝑌 1 𝛼 𝐿 𝑇 1  

where 𝑳𝒕 is the level component at time t, 𝒀𝒕 is the actual value at time t, α is the level component 
smoothing coefficient (0 < α < 1) and 𝑻𝒕 𝟏 is the trend component at time t-1. 

Two: Trend component smoothing 

𝑇 𝛽 𝐿 𝐿 1 𝛽 𝑇 2  

where β is the smoothing coefficient for the trend component (0 < β < 1). 
Finally, the formula for double exponential smoothing of the data is represented by Eq (3). 

𝑌 𝐿 𝑇 3  
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where 𝑌  represents the smoothed data and 𝐿  and 𝑇  are the current time level and trend components, 
respectively. We conducted multiple experiments because the smoothing coefficients α and β for the 
level and trend components are two unknown parameters when using double exponential smoothing. 
We set α to 0.9 and β to 0.1. Figure 1 illustrates the effect of different parameters α and β on the training 
set data of patient #559 after double exponential smoothing for the first 1000 data points. As shown in 
Figure 1(a)–(d), as α increases, the Relative Error compared with the original data decreases, and as β 
decreases, the Relative Error and the Relative Error of β decrease. Figure 1 demonstrates the impact 
of different parameters, α and β, on the CGM values using double exponential smoothing. Pre-
processing data with double exponential smoothing allows for a balance between data smoothness and 
responsiveness. This method combines short- and long-term trends, effectively reducing noise and 
sudden fluctuations by assigning weights to past data. 

 

Figure 1. Depicts the impact of different parameters, α and β, on the CGM values through 
double exponential smoothing. 

This allows for the extraction of more stable and accurate blood glucose trends. The range for the 
α and β parameters of the double exponential smoothing used in this study was 0.1–0.9. Figure 1(a)–
(d) illustrates the influence of different combinations of parameters α and β on CGM data.  In practical 
applications, the selection of appropriate values for α and β is typically based on empirical evidence 
and the results of actual data analysis. In this context, the choice of α values of 0.9 and 0.1 is grounded 
in the observation of the difference in Minimum Relative Error (MEL). Smaller differences in MEL 
indicate a better smoothing effect. In specific computations, the values of MEL are 11.744 mg/dL when 
α is 0.9 and α is 0.1, as calculated using Eq (4). 
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𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟
|𝑆𝑚𝑜𝑜𝑡ℎ𝑒𝑑 𝐷𝑎𝑡𝑎 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎|

|𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝐷𝑎𝑡𝑎|
4  

where, Smoothed Data refers to the data that has undergone a smoothing process, while Original Data 
denotes the raw, unprocessed data. 

To determine the optimal parameter combination, a range of α and β values from 0 to 1, with an 
interval of 0.01, was systematically explored in the study. Through cross-validation of each dataset, 
the combination of α = 0.9 and β = 0.1 was ultimately identified as yielding the best performance. 
Figure 1 illustrates the images under different scenarios, where α varies between 0.1, 0.3, 0.6 and 0.9, 
and β varies between 0.1, 0.3, 0.6 and 0.9. These images reflect the smoothing effects under different 
parameter combinations. Overall, through such experiments and observations, the optimal parameter 
selection for achieving the best smoothing effect on the data in this study was determined. 

4. Proposed model 

Personalized prediction of blood glucose levels was achieved through three major approaches: 1) 
Training a single model to predict blood glucose levels for all patients; 2) training independent models 
for each patient; and 3) introducing a pre-classification training model for blood glucose prediction. 
Because blood glucose dynamics vary for each patient, training a single predictive model for all 
patients’ blood glucose levels is inaccurate. However, training separate models for each patient incurs 
significant costs. Therefore, the pre-classification predictive model proposed in this study addresses 
the issue of inaccurate predictions made by a single model and the high costs associated with training 
individual models for each patient. By categorizing patients based on gender and age and applying the 
model to data within the respective category, we can improve prediction accuracy while reducing 
computational costs. In this study, we trained five models to predict the blood glucose levels in patients. 

 

Figure 2. The proposed flowchart for predicting personalized blood glucose levels. 

Although traditional RNN structures, as described in [48], can retain historical information to 
enhance prediction accuracy, they have limited capabilities in modeling complex temporal patterns and 
long-range dependencies. In addition, they are prone to the issues of vanishing and exploding gradients. 
These concerns have been partially addressed in the context of Gated Recurrent Unit (GRU) recurrent 
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neural networks. By introducing a time-step decay mechanism, the GRU can more effectively manage 
the preservation of historical information, thereby enhancing its ability to model long sequential 
dependencies. To further improve prediction accuracy, this study integrates a Temporal Convolutional 
Network (TCN) [49] into the model prediction process. The TCN is used to extract local features from 
input sequences. However, relying solely on a single TCN-GRU model may not fully capture essential 
features and long sequential relationships. Therefore, by incorporating an attention mechanism, the 
time-series model dynamically weighs different time steps to capture crucial temporal dependencies 
and improve prediction accuracy and interpretability. The proposed workflow for predicting 
personalized patient blood glucose levels is shown in Figure 2. 

By pre-classifying the dataset and aggregating the data of the same category, this study divided 
the data into five distinct classes based on gender and age. Five training models were established for 
each class, each utilizing the proposed TG-DANet algorithm for training. This resulted in distinct 
model parameters and prediction outcomes. Using the CGM data predictions as a baseline, a stepwise 
feature training and selection approach was applied to these five models. Among males aged 20–40 
years, the optimal feature combination consisted of Continuous Glucose Monitoring (CGM), Sleep, 
FG, C and Bl. The best feature combination within the 40–60 age range was CGM, Ba, FG, C and Bl. 
The optimal feature combination for individuals aged 60–80 included CGM, FG, C, Bl and GSR. 
Similarly, the optimal feature combination for females aged 20–40 included CGM, C, Bl and ST. 
Within the age range of 40–60, the best combination of features involved CGM, C, Bl, GSR and ST. 

In the proposed TG-DANet algorithm, a dropout rate of 0.2 is employed to prevent overfitting 
and improve the accuracy of the output data. Each output consists of 12 data points, representing 
predictions for a 60-minute interval, with a 5-minute interval between each data point. In this study, 
predictions were made for blood glucose levels over the next 30 and 60 minutes. The GRU neural 
network, a variant of recurrent neural networks, addresses the issue of vanishing gradients commonly 
found in traditional RNNs while demonstrating improved training and inference efficiency. The GRU 
introduces gating mechanisms, such as update gates and reset gates, to effectively regulate the flow of 
information. It uses candidate hidden states to balance retaining previous memories and incorporating 
new information. This enables it to effectively capture long-range dependencies and excel in 
processing lengthy sequential data. Compared to Long Short-Term Memory (LSTM), the Gated 
Recurrent Unit (GRU) offers a more concise structure with fewer parameters, reducing the risk of 
overfitting. The architecture of the TG-DANet network model proposed in this study is shown in 
Figure 3. Within each GRU network [50,51], the following equations define the update and reset gates. 

𝑧 𝜎 𝑊 ⋅ ℎ , 𝑥                   5  

𝑟 𝜎 𝑊 ⋅ ℎ , 𝑥                  6  

ℎ tanh 𝑊 ⋅ 𝑟 ⊙ ℎ , 𝑥 7  

ℎ 1 𝑧 ⊙ ℎ 𝑧 ⊙ ℎ 8  

In the above four equations, Equation (5) represents the update gate of the GRU network. Here, 
𝒛𝒕 is the output of the update gate, σ denotes the sigmoid activation function, 𝑾𝒛 stands for the weight 
of the update gate, 𝒉𝒕 𝟏 represents the hidden state from the previous time step and 𝒙𝒕 is the input at 
the current time step. In Eq (6), 𝒓𝒕 signifies the output of the reset gate and 𝑾𝒓 corresponds to the 
weight of the reset gate. In Eq (6), 𝒉𝒕 denotes the candidate’s hidden state, 𝑾𝒉 represents the weight 
matrix of the candidate hidden state and ⊙ denotes element-wise multiplication. In Eq (8), 𝒉𝒕 stands 
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for the hidden state at the current time step. 
GRU-D is an enhanced model based on a Gated Recurrent Unit (GRU) designed to address long-

term dependency issues. Its uniqueness lies in incorporating a decay mechanism to control the retention 
of historical information, thereby mitigating the challenges associated with long-term dependencies. 
The decay coefficient, referred to as “decay” controls the extent of attenuation and effectively 
incorporates the missingness in the input features and RNN states, leading to enhanced predictive 
performance. In this study, the decay coefficient was set at 0.43. 

Temporal Convolutional Networks (TCN) [52] are a method based on convolutional neural 
networks for time series prediction. It utilizes temporal convolutional operations to capture patterns 
and features in sequences, taking advantage of the parallel computational benefits of multiple one-
dimensional convolutional neural networks and the capability to model both short- and long-term 
dependencies. Consequently, TCN excels in multistep prediction tasks. A key feature of TCN is the 
utilization of residual connections, which helps alleviate the problem of vanishing gradients. This 
enables the network to be trained more effectively and deeply. 

 

Figure 3. The architecture of the TG-DANet network model. 

In a TCN, one-dimensional convolution operations capture local and global patterns within time  
sequences. The convolution operation for an input sequence X can be expressed as Eq (9). 

𝑦 𝑓 𝑤 ∗ 𝑥 𝑡: 𝑡 𝑘 1 𝑏 9  

In Eq (9), 𝒚 𝒕  represents the output value of the convolution operation at time step t, indicating 
the feature value. The function f represents the activation function, and in this study, the Rectified 
Linear Unit (ReLU) activation function was used. Variable w corresponds to the weight of the 
convolutional kernel, which takes the form of a filter with dimensions (k, 1). Here, k represents the 
size of the kernel and determines the number of time steps covered in each convolution operation. The 
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expression x[t:t+k-1] represents the window of the input sequence x from time step t to t+k-1. This 
window is used for element-wise multiplication and summation with the convolutional kernel, 
resulting in the convolution operation. Finally, b represents the bias term obtained by adding an offset 
after the convolution operation. Within the TCN [53], residual connections are incorporated into the 
outputs of the convolutional layers to facilitate the practical training of deep networks. In the context 
of residual relationships, the output of the convolutional layer is added to the input, resulting in the 
output of a residual block. Specifically, within the TCN, the structure of the residual connections is 
described by Eq (10). 

𝒚 𝒕 𝒙 𝒕 𝒇 𝒘 ∗ 𝒙 𝒕: 𝒕 𝒌 𝟏 𝒃 𝟏𝟎  

where 𝒚 𝒕  represents the feature value of the residual output block at time step t and 𝒙 𝒕  signifies the 
value of the input sequence x at time step t. The term 𝒘 ∗ 𝒙 𝒕: 𝒕 𝒌 𝟏 𝒃  denotes the output of 
the convolutional layer, which results from applying the activation function to the convolutional 
operation. By adding 𝒙 𝒕   to 𝒘 ∗ 𝒙 𝒕: 𝒕 𝒌 𝟏 𝒃  , the residual connection produces the final 
output of the prediction. 

4.1. Hyperparameter optimization 

To achieve optimal prediction results, we utilized the advanced hyperparameter optimization 
framework, Optuna, to optimize and fine-tune the parameters of the proposed algorithm. These 
hyperparameters include the number of hidden units in the GRU-D network, learning rate, dropout 
rate, activation function, choice of optimizer and decay rate. By adjusting these hyperparameters, the 
prediction accuracy of the model could be improved. The specific outcomes of the hyperparameter 
tuning process are presented in Table 7. The optimal hyperparameters were then used as inputs for the 
proposed model to make predictions. This resulted in reduced values for the evaluation metrics, such 
as RMSE and MAE. 

Table 7. Optimal hyperparameters for the TG-DANet model. 

Hyperparameter Search space Optimal value 

TG-
DANet1 

TG-
DANet2 

TG-
DANet3 

TG-
DANet4 

TG-
DANet5 

Hidden layer [32,64,128,256] 128 128 64 128 128 

Learning rate [10-5, … 10-1] 0.001 0.001 0.001 0.001 0.001 

Dropout rate [0.1,0.2, … 0.9] 0.3 0.2 0.3 0.4 0.3 

Activation 
function 

[Relu, tanh, Sigmoid] Relu Relu Relu Relu Relu 

Batch size [32,64,128,256,512] 32 32 64 64 64 

Optimizer [Adam, SGD, 
RMSProp] 

Adam Adam SGD Adam Adam 

Decay [0.00, … 0.90] 0.43 0.43 0.42 0.41 0.43 
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4.2. Evaluation metrics 

4.2.1. Root mean square error and mean absolute error 

The metrics used in this study to evaluate the performance of the regression model included the 
root mean square error (RMSE) and mean absolute error (MAE). Smaller values of RMSE and MAE 
indicate better model performance. 

𝑅𝑀𝑆𝐸
∑ 𝑦 𝑦

𝑛
11  

𝑀𝐴𝐸
1
𝑛

|𝑦 𝑦 | 12  

where 𝑦  denotes the true value of the i-th sample, 𝑦  denotes the predicted value of the ith sample and 
n represents the number of samples. 

4.2.2. Clarke error grid analysis 

The Clarke Error Grid Analysis (EGA) represents a pivotal clinical metric employed for the 
meticulous evaluation of prediction accuracy in blood glucose level assessments. This analysis entails 
a comprehensive examination of the disparities between the actual measured values and the 
corresponding predicted values, serving as a robust benchmark for assessing the efficacy of prediction 
models. The outcomes of blood glucose level predictions are systematically categorized into five 
distinct zones, denoted as Zones A, B, C, D and E. Each of these delineated zones holds specific 
significance, elucidated in detail within Table 8. 

Table 8. Meanings of each region in Clarke EGA. 

Regions Implication 
A Predicted values are close to actual values, with errors within ±20%. The model 

exhibits good accuracy.
B Predicted values have some errors compared to actual values, but these errors do not 

impact patient treatment, with errors generally within the range of ±20%–±30%.
C Errors between predicted and actual values are significant, potentially leading to 

erroneous clinical decisions and increased patient treatment risks. Unsuitable for 
clinical decision-making.

D Errors between predicted and actual values are very large, potentially causing severe 
risks and clinical errors to patients during validation.

E Predicted values are in the opposite direction of the actual values, possibly 
resulting in life-threatening treatment mistakes. Fundamental improvements to the 
model are required. 
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4.2.3. Consensus error grid analysis 

Consensus Error Grid Analysis (CEGA) [54,55] constitutes a vital methodology for assessing the 
performance of classification models, particularly within the realm of blood glucose level prediction. 
This analytical framework, deeply rooted in statistical methods and predictive modeling, serves as a 
crucial tool for the evaluation of blood glucose level prediction applications, emphasizing precision 
and reliability [56]. CEGA involves a detailed exploration of the concordance between predicted and 
observed outcomes, organized within a predefined grid characterized by zones indicating the severity 
of errors, ranging from inconsequential to clinically significant [57]. The zones, labeled A through E, 
represent the gradation of errors, with A and B reflecting clinically acceptable deviations and C, D and 
E indicating errors of increasing severity. 

5. Experimental result 

5.1. Experimental setup 

This section presents the experimental results and their configurations. In the experiments, the root-
mean-square error (RMSE) and mean absolute error (MAE) were employed as evaluation metrics for the 
models. The proposed models predicted blood glucose levels for the next 30 and 60 minutes. The 
OhioT1DM dataset was divided into training and testing sets for model training and evaluation. The 
experimental setup featured a computer with an Intel Core i7-8565U CPU, 12GB of DDR4 memory and 
a 256 GB solid-state drive. An NVIDIA GeForce RTX 2080 Ti graphics card was also used to accelerate 
the computations through GPU acceleration. The operating system used was Windows 10 Professional 
Edition (Version 21H2). The experimental implementation was performed using the Python 
programming language (version: 3.8.10), along with machine learning libraries such as TensorFlow 
(version: 2.11.0), Keras (version: 2.11.0) and Scikit-learn (version: 0.24.2). 

At the beginning of the training, an initial learning rate of 0.001 was set using the Adam optimizer. 
The dropout rate was set to 0.3, and the chosen activation function was ReLU. The hidden layer 
comprises 64 units, with a batch size of 64 and a decay rate of 0.40. The GRU-D model was fine-tuned 
using the Optuna hyperparameter optimization framework [58,59]. Optuna is an open-source Python 
library specializing in automated hyperparameter optimization and machine learning model tuning. 
Using various optimization algorithms, such as Bayesian optimization, Optuna explores the parameter 
space and helps users identify the optimal hyperparameter configuration, thereby improving model 
performance and effectiveness. During the training process, the training set was divided into multiple 
mini-batches. Each epoch updated the model parameters using the average loss of these mini-batches. 
This mini-batch training approach can improve model performance while reducing computation time 
and resource usage. 

5.2. Experimental results and discussion 

5.2.1. Comparing the experimental results for different PHs 

Table 9 presents the RMSE and MAE evaluation metrics for each tested model, demonstrating 
the predictive performance of the proposed models across 12 patients. From the data in Table 9, it is 
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evident that the proposed models yield satisfactory predictive results. As the pH increases, there is a 
slight decrease in predictive accuracy. Specifically, for pHs of 30 and 60 minutes, the RMSE values 
ranged from 15.851 to 18.951 mg/dL and the MAE values ranged from 7.951 to 14.303 mg/dL. In 
terms of predictive efficacy, the TG-DANet2 model demonstrated the most accurate prediction for 
patient #563. Notably, there were variations in the predictive outcomes among the five sub-models 
used in this study. Among these, the TG-DANet2 model performed optimally, whereas the TG-DANet5 
model showed comparatively poorer predictive performance. However, due to the adopted pre-
classification training paradigm, each model’s predictions were influenced by patient-specific data. 
The personalized effects of patient data are leveraged by integrating patient information with the 
Optuna hyperparameter optimization framework. This framework adjusts the model parameters using 
individual patient features and physiological data, enabling customized treatment recommendations. 
The distinct predictive outcomes of each sub-model can be attributed to variations and idiosyncrasies 
in the physiological data of the individual patients. The approach proposed in this study enables the 
dynamic updating of model parameters based on real-time patient physiological data, thereby 
facilitating more accurate predictions. Overall, the average predictions also demonstrated satisfactory 
predictive performance. 

Table 9. Prediction results of the proposed model (Using RMSE and MAE as evaluation indicators). 

Model PID 
30-min PH 60-min PH 
RMSE MAE RMSE MAE

TG-DANet1 
540 17.021 8.251 27.384 17.015
552 16.083 8.797 24.922 15.715

Average1 - 16.552 8.524 26.153 16.365 

TG-DANet2 

563 15.851 7.951 29.351 16.941
570 16.365 8.162 30.584 17.215
544 16.021 8.462 31.512 16.842
584 16.771 8.621 32.879 17.986

Average2 - 16.252 8.324 31.032 17.246 
TG-DANet3 596 16.658 11.251 29.214 21.062
Average3 - 16.658 11.251 29.214 21.062 
TG-DANet4 567 16.283 8.841 25.954 17.864
Average4 - 16.283 8.841 25.954 17.864 

TG-DANet5 

559 17.851 11.684 30.851 22.654
575 17.685 11.865 31.658 22.479
588 18.951 13.952 33.584 23.685
591 18.369 14.303 32.115 24.198

Average5 - 18.214 12.951 32.052 23.254 
Averageavg - 16.896 9.978 28.881 19.347 

For a precise assessment of the algorithm’s performance, Figure 4(a),(b) displays the 24-hour 
glucose prediction trajectories for patient 596 within the prediction ranges of 30 and 60 minutes. In 
Figure 4, the red dashed line represents the reference values of actual glucose levels, while the blue 
solid line denotes the predicted glucose levels forecasted by the algorithm. It can be observed from the 
graphs that as the pH increases, the accuracy of the predictions gradually diminishes. 
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Figure 5 shows the Clarke Error Grid Analysis (EGA) [60] chart for patient 596 within the 
prediction ranges of 30 and 60 minutes. In the Figure the data points are distributed along the bisecting 
line of Zone A, indicating a higher level of accuracy for the proposed model. The predicted values 
show some dispersion with increased pH, yet they remain within Zones A and B. This observation 
indicates that predictive outcomes are of practical significance in clinical applications. 

 

Figure 4. Glucose trajectory of patient 596 over 12 hours. 

 

Figure 5. shows the Clark Error Grid Analysis (EGA) for patient #596 over the 30-minute 
(in (a) in the Figure) and 60-minute (in (b) in the Figure) PH. 

Tables 10–14 present the findings of the analysis of five classification models employing 
consensus error networks. Specifically, Table 10 conducts a comprehensive comparative examination 
of diverse blood glucose ranges, encompassing overall sensor readings and their distribution within 
specific intervals. In the 40–80 mg/dL range, a predominant proportion of readings achieved A and B 
classifications, attaining an accuracy rate of 97.16%. Similarly, the 81–120 mg/dL range exhibited a 
comparable trend, with 97.6% of readings falling into the A category and 78.95% in the B category. 
The prevalence of readings within the 121–240 mg/dL range was notable, demonstrating accuracy 
rates of 98.56% for A and 73.25% for B. In the 241–400 mg/dL range, the accuracy rate for the A 
category reached 99.47%. Overall, the average accuracy of 23,420 readings stood at 96.25%, with A 
and B categories representing 74.67% and 21.58%, respectively. This implies that the majority of 
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readings fall within the target range, showcasing high accuracy, particularly in the moderate blood 
glucose range. Nevertheless, certain readings within specific ranges may deviate from the target and 
necessitate closer scrutiny. 

Tables 11–14 consistently reveal a substantial proportion of readings in both A and B categories 
across diverse algorithms, indicating an overarching high level of accuracy. 

Table 10. Consensus error grid analysis of TG-DANet1. 

Comparative glucose 
(mg/dL) 

Total sensor 
readings 

Consensus error grid zones
A+B A B C D E

40–80 1929 (8.24%) 97.16% 85.24% 11.92% 2.42% 0.42% 0%
81–120 6694 (28.58%) 97.6% 78.95% 18.65% 2.12% 0.28% 0%
121–240 13,014 (55.57%) 98.56% 73.25% 25.31% 1.42% 0.02% 0%
241–400 1783 (7.61%) 99.47% 76.35% 23.12% 0.29% 0.24% 0%
Overall 23,420 (100%) 96.25% 74.67% 21.58% 2.64% 1.11% 0%

Table 11. Consensus error grid analysis of TG-DANet2. 

Comparative glucose 
(mg/dL) 

Total sensor 
readings 

Consensus error grid zones
A+B A B C D E

40–80 2276 (4.02%) 96.15% 82.10% 14.05% 2.60% 1.25% 0%
81–120 9861 (17.43%) 97.5% 79.20% 18.30% 1.80% 0.43% 0%
121–240 36,085 (63.78%) 97.7% 74.50% 23.20% 2.20% 0.10% 0 %
241–400 8353 (14.76%) 98.8% 77.80% 21.00% 0.80% 0.40% 0%
Overall 56,575 (100%) 95.7% 75.90% 19.80% 2.50% 1.80% 0%

Table 12. Consensus error grid analysis of TG-DANet3. 

Comparative glucose 
(mg/dL) 

Total sensor readings 
Consensus error grid zones 
A+B A B C D E

40–80 798 (5.86%) 97.7% 79.3% 18.4% 1.9% 0.4% 0%
81–120 3751 (27.54%) 98.0% 75.5% 22.5% 1.7% 0.3% 0%
121–240 8377 (61.51%) 98.7% 78.2% 20.5% 0.8% 0.5% 0%
241–400 694 (5.09%) 97.5% 76.8% 20.7% 1.3% 1.2% 0%
Overall 13,620 (100%) 95.6% 74.1% 21.5% 2.8% 1.6% 0%

Table 13. Consensus error grid analysis of TG-DANet4. 

Comparative glucose 
(mg/dL) 

Total sensor 
readings 

Consensus error grid zones
A+B A B C D E

40–80 1374 (8.86%) 96.15% 82.10% 14.05% 2.60% 1.25% 0.00%
81–120 2981 (22.50%) 96.8% 79.80% 17.00% 2.00% 1.20% 0.00%
121–240 7719 (58.27%) 98.5% 75.00% 23.50% 1.50% 0.00% 0.00%
241–400 1173 (8.85%) 97.3% 78.30% 19.00% 2.70% 0.00% 0.00%
Overall 13,247 (100%) 96.5% 76.50% 20.00% 2.50% 0.00% 0.00%
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Table 14. Consensus error grid analysis of TG-DANet5. 

Comparative glucose 
(mg/dL) 

Total sensor 
readings 

Consensus error grid zones 
A+B A B C D E

40–80 4333 (7.63%) 96.15% 82.10% 14.05% 2.60% 1.25% 0%
81–120 12,804 (22.54%) 97.5% 79.20% 18.30% 1.80% 0.43% 0%
121–240 34,327 (60.43%) 97.7% 74.50% 23.20% 2.20% 0.10% 0%
241–400 5340 (9.40%) 98.8% 77.80% 21.00% 0.80% 0.40% 0%
Overall 56,804 (100%) 95.7% 75.90% 19.80% 2.50% 1.80% 0%

5.2.2. Comparison of results of different forecasting methods 

In this study, we aimed to explore the application of deep learning in blood glucose level 
prediction and developed a personalized prediction framework named TG-DANet, validated on the 
OhioT1DM dataset. The proposed prediction framework exhibits high accuracy in blood glucose level 
prediction, and the reasons behind its effectiveness can be summarized as follows. First, we 
employed double exponential smoothing for pre-processing time series data to eliminate the 
influence of noise and outliers. Second, a decay factor is introduced in the GRU network model to 
control the retention of historical information, thereby mitigating the impact of long-term 
dependency issues. We propose using the pre-classification model approach for predicting patient-
specific blood glucose levels, enhancing the model’s ability to personalize predictions. Compared to 
other studies, the algorithm proposed in this research demonstrates superior accuracy and practicality 
in predicting blood glucose levels. 

Table 15 compares state-of-the-art methods for predicting blood glucose levels using the 
OhioT1DM clinical dataset. Although some studies have extended the prediction duration to 120 
minutes (equivalent to 24 data points), most related studies have focused on a range of 60 minutes. 
Therefore, this study primarily compared the prediction durations at 30 and 60 minutes using RMSE 
and MAE as evaluation metrics. Numerous methods have been proposed in the existing literature for 
predicting blood glucose levels. To validate the superiority of the proposed algorithm, it is essential to 
compare it with the existing literature. 

Some researchers have employed machine learning algorithms like XGBoost [61], as well as deep 
learning algorithms such as Convolutional Neural Networks (CNN) [35], Deep Recurrent Neural 
Networks (DRNN) [62], Neural Physiological Encoder (NPE) combined with Long Short-Term 
Memory (LSTM) [63], improved deep learning models like Auto-LSTM [36], RNN [33], Deep 
Multitask Stack Long Short-Term Memory (DM-StackLSTM) [36], Cutting-Edge Deep Neural 
Networks (CE-DNN) [64], Multitask Long Short-Term Memory (MTL-LSTM) [65], GluNet [66,67], 
ANN [27], Nested-DE [29], LSTM-TCN , Shallow-Net [68], RNN [69], CRNN [70] and Weighted 
LSTM model (W-DLSTM) [67] for blood glucose level prediction. However, these algorithms often 
predict the results for 12 patients and then calculate the average to evaluate the model’s performance. 
This approach fails to account for individual physiological variability. Thus, it is unable to achieve 
personalized predictions. To address this issue, we introduce a pre-classification prediction model and 
utilizes real-time parameter updates for improved prediction accuracy, thereby capturing individual 
differences more effectively. By categorizing data into five classes and generating separate predictions, 
we obtain five distinct prediction outcomes that more effectively capture the model’s personalized 
prediction capability. Across prediction durations of 30 and 60 minutes, both the proposed sub-models 
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and the averaged predictions outperform the models published in the literature. The average RMSE of 
our proposed personalized prediction model is 16.896 and 28.881 mg/dL, respectively. This indicates 
good predictive accuracy within the range of predictions in our study. 

Table 15. Comparison of experimental results of the proposed model with models in the 
published literature. 

Authors Methods 
30-min PH 60-min PH 

RMSE MAE RMSE MAE

Zhu et al. [34] CNN 21.72 - - - 

Midroni et al. [74] XGBoost 20.377 - - - 

Li et al. [66] GluNet 19.28 ± 2.76 - 31.83 ± 3.49 - 

Chen et al. [62] DRNN 19.04 - - - 

Sahin et al. [27] ANN 18.81 - 30.89 - 

Kang et al. [63] NPE+LSTM 17.8 - - - 

Yang et al. [75] Auto-LSTM 18.930 ± 2.155 - - - 

Martinsson et al. [20] RNN 18.867 - 31.403 - 

Shuvo et al. [76] DM-StackLSTM 17.36 ± 2.74 10.64 ± 4.10 30.89 ± 4.31 22.07 ± 2.96

Tena et al. [64] CE-DNN 19.57 ± 3.03 14.06 ± 2.15 34.93 ± 5.29 25.95 ± 3.61

Daniels et al. [65] MTL-LSTM 18.8 ± 2.3 31.8 ± 3.9  

Dudukcu et al. [71] W-DLSTM 21.90 - 35.10 - 

Khadem et al. [77] Nested-DE 23.74 ± 0.15 13.48 ± 0.02 34.35 ± 0.86 27.76 ± 0.38

Giacoma et al. [68] LSTM-TCN 18.99 - - - 

Pavan et al. [69] Shallow-Net 18.69 - 32.43 - 

Kim et al. [78] RNN 21.50 - - - 

Freiburghaus et al. [79] CRNN 17.45 11.22 33.67 23.25

- TG-DANet1 16.552 8.524 26.153 16.365 

- TG-DANet2 16.252 8.324 31.032 17.246 

- TG-DANet3 16.658 11.251 29.214 21.062 

- TG-DANet4 16.283 8.841 25.954 17.864 

- TG-DANet5 18.214 12.951 32.052 23.254 

- TG-DANetavg 16.896 9.978 28.881 19.347 

In summary, after comparing it with methods documented in published literature, the algorithm 
proposed in this study demonstrates superiority in predicting blood glucose levels. Within a 30-minute 
prediction range, the RMSE values for TG-DANet1, TG-DANet2, TG-DANet3, TG-DANet4, TG- 
DANet5 and TG-DANetavg are 16.552, 16.252, 16.685, 16.283, 18.214 and 16.896 mg/dL, respectively. 
The corresponding MAE values are 8.524, 8.324, 11.251, 8.841, 12.951 and 9.978 mg/dL. For a 60-
minute prediction range, the RMSE values for TG-DANet1, TG- DANet2, TG-DANet3, TG-DANet4, 
TG-DANet5 and TG-DANetavg are 26.153, 31.032, 29.214, 25.954, 32.052 and 28.881 mg/dL, 
respectively. The corresponding MAE values are 16.365, 17.246, 21.062, 17.864, 23.254 and 19.347 
mg/dL. Across all prediction ranges, the accuracy of the models decreases as the prediction interval 
increases. The algorithmic framework proposed in this study generally achieves remarkable predictive 
accuracy in personalized blood glucose level prediction. Across various prediction ranges, each model 
demonstrates corresponding levels of predictive accuracy. 

Therefore, the proposed prediction framework in this study demonstrates heightened accuracy 
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and robustness in managing and forecasting blood glucose levels for individuals with type 1 diabetes. 
Real-time parameter updates based on individual physiological data can be achieved through 
personalized prediction models, thereby enabling more accurate blood glucose predictions. 
Furthermore, integrating this model into relevant medical devices for real-time decision-making can 
effectively prevent adverse blood glucose events. Our findings have significant implications for 
managing the conditions of patients with type 1 diabetes, assisting physicians in making decisions and 
improving the quality of life for patients. By adopting personalized prediction approaches, patients can 
receive tailored medical services based on their specific circumstances, effectively controlling blood 
glucose levels, mitigating the risk of complications and enhancing the overall quality of daily life. The pre-
classification approach appears well structured and the results are certainly relevant. However, it should be 
noted that the data available could be affected by uncertainties that could affect performance [71,72]. In 
consideration of potential uncertainties, a fuzzy logic-based pre-classifier might be a valuable avenue 
for future exploration [73]. 

6. Conclusions 

A personalized and dynamic understanding of blood glucose concentration is crucial for effective 
diabetes management, disease control and assessing progression. This study presents a dynamic and 
personalized multitask blood glucose prediction model to address this challenge. Leveraging the 
concept of pre-classification, the physiological data of patients is categorized based on age and gender. 
An enhanced GRU network model is then used for prediction, improving personalized blood glucose 
forecasting accuracy. The experimental results are evaluated from both analytical and clinical 
perspectives. The outcomes demonstrate the effectiveness of the proposed personalized multitask 
prediction model within the 30-minute and 60-minute prediction intervals. Our approach is superior to 
the latest machine learning and deep learning methods in terms of prediction accuracy, and feature 
fusion. The application of this model to wearable devices can enable real-time patient predictions and 
extend to other essential types of forecasts, serving as a potential area for future research. While this 
study has made significant strides in advancing our understanding of personalized blood glucose 
prediction, it is crucial to address certain limitations. First, the dataset used is of limited scale, involving 
only 12 participants for both training and testing. Recognizing this constraint, further validation on an 
independent and more diverse dataset is essential to confirm the generalizability of our proposed 
models. Despite these limitations, our work lays the groundwork for timely monitoring, adjustments 
in treatment plans and informed clinical decision-making, all of which are critical aspects in enhancing 
patient care and quality of life. Future research should focus on expanding datasets for robust model 
validation and exploring potential applications in diverse healthcare settings. 
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