Research article Special Issues

Modeling income distribution: An econophysics approach


  • Received: 21 January 2023 Revised: 27 May 2023 Accepted: 29 May 2023 Published: 07 June 2023
  • This study aims to develop appropriate models for income distribution in Iran using the econophysics approach for the 2006–2018 period. For this purpose, the three improved distributions of the Pareto, Lognormal, and Gibbs-Boltzmann distributions are analyzed with the data extracted from the target household income expansion plan of the statistical centers in Iran. The research results indicate that the income distribution in Iran does not follow the Pareto and Lognormal distributions in most of the study years but follows the generalized Gibbs-Boltzmann distribution function in all study years. According to the results, the generalized Gibbs-Boltzmann distribution also properly fits the actual data distribution and could clearly explain the income distribution in Iran. The generalized Gibbs-Boltzmann distribution also fits the actual income data better than both Pareto and Lognormal distributions.

    Citation: Hossein Jabbari Khamnei, Sajad Nikannia, Masood Fathi, Shahryar Ghorbani. Modeling income distribution: An econophysics approach[J]. Mathematical Biosciences and Engineering, 2023, 20(7): 13171-13181. doi: 10.3934/mbe.2023587

    Related Papers:

  • This study aims to develop appropriate models for income distribution in Iran using the econophysics approach for the 2006–2018 period. For this purpose, the three improved distributions of the Pareto, Lognormal, and Gibbs-Boltzmann distributions are analyzed with the data extracted from the target household income expansion plan of the statistical centers in Iran. The research results indicate that the income distribution in Iran does not follow the Pareto and Lognormal distributions in most of the study years but follows the generalized Gibbs-Boltzmann distribution function in all study years. According to the results, the generalized Gibbs-Boltzmann distribution also properly fits the actual data distribution and could clearly explain the income distribution in Iran. The generalized Gibbs-Boltzmann distribution also fits the actual income data better than both Pareto and Lognormal distributions.



    加载中


    [1] M. C. Howard, Modern Theories of Income Distribution, 1st edition, Red Globe Press London, London, 1979. https://doi.org/10.1007/978-1-349-16194-2
    [2] M. S. Ahluwalia, Inequality, poverty and development, J. Dev. Econ., 3 (1976), 307–342. https://doi.org/10.1016/0304-3878(76)90027-4 doi: 10.1016/0304-3878(76)90027-4
    [3] A. Asimakopulos, Theories of Income Distribution, 1st edition, Springer Science & Business Media, Canada, 2012. https://doi.org/10.1007/978-94-009-2661-5
    [4] L. Cui, C. Lin, Kinetic modeling of economic markets with various saving propensities, preprint, arXiv: 2208.00263.
    [5] V. Pareto, Cours D'économie Politique: Professé à l'Universi̧té de Lausanne, 1st edition, The Annals of The American Academy of Political and Social Science, Switzerland, 1896. https://doi.org/10.1177/000271629700900314
    [6] B. C. Arnold, J. M. Sarabia, B.C. Arnold, J. M. Sarabia, Inequality Analysis in Families of Income Distributions, Majorization and the Lorenz Order with Applications in Applied Mathematics and Economics, 2nd edition, Statistics for Social and Behavioral Sciences, USA, 2018. https://doi.org/10.1007/978-3-319-93773-1
    [7] A. Drăgulescu, V. M. Yakovenko, Evidence for the exponential distribution of income in the USA, Eur. Phys. J. B Condens. Matter Complex Syst., 20 (2001) 585–589. https://doi.org/10.1007/PL00011112 doi: 10.1007/PL00011112
    [8] N. J. Moura, M. B. Ribeiro, Evidence for the Gompertz curve in the income distribution of Brazil 1978–2005, Eur. Phys. J. B, 67 (2009), 101–120. https://doi.org/10.1140/epjb/e2008-00469-1 doi: 10.1140/epjb/e2008-00469-1
    [9] V. M. Yakovenko, J. B. Rosser, Colloquium: Statistical mechanics of money, wealth, and income, Rev. Mod. Phys., 81 (2009), 1703. https://doi.org/10.1103/RevModPhys.81.1703 doi: 10.1103/RevModPhys.81.1703
    [10] M. Jagielski, R. Kutner, Modelling of income distribution in the European Union with the Fokker–Planck equation, Phys. A Stat. Mech. Appl., 392 (2013), 2130–2138. https://doi.org/10.1016/j.physa.2013.01.028 doi: 10.1016/j.physa.2013.01.028
    [11] T. Wada, A.M. Scarfone, On the Kaniadakis distributions applied in statistical physics and natural sciences, Entropy, 25 (2023), 292. https://doi.org/10.3390/e25020292 doi: 10.3390/e25020292
    [12] G. Grisolia, D. Fino, U. Lucia, The education index in the context of sustainability: Thermo-economic considerations, Front. Phys., 2022 (2022), 800. http://dx.doi.org/10.3389/fphy.2022.968033 doi: 10.3389/fphy.2022.968033
    [13] G. Grisolia, U. Lucia, M. F. Torchio, Sustainable development and workers ability: Considerations on the education index in the human development index, Sustainability, 14 (2022), 8372. https://doi.org/10.3390/su14148372 doi: 10.3390/su14148372
    [14] U. Lucia, D. Fino, G. Grisolia, A thermoeconomic indicator for the sustainable development with social considerations: A thermoeconomy for sustainable society, Environment, Dev. Sustainability, 2022 (2022), 1–15. https://doi.org/10.1007/s10668-021-01518-6 doi: 10.1007/s10668-021-01518-6
    [15] U. Lucia, G. Grisolia, Biofuels analysis based on the THDI indicator of sustainability, Front. Energy Res., 9 (2021), 794682. https://doi.org/10.3389/fenrg.2021.794682 doi: 10.3389/fenrg.2021.794682
    [16] U. Lucia, G. Grisolia, The Gouy-Stodola theorem—from irreversibility to sustainability—the thermodynamic human development index, Sustainability, 13 (2021), 3995. https://doi.org/10.3390/su13073995 doi: 10.3390/su13073995
    [17] U. Lucia, G. Grisolia, Irreversible thermodynamics and bioeconomy: Toward a human-oriented sustainability, Front. Phys., 9 (2021), 659342. http://dx.doi.org/10.3389/fphy.2021.659342 doi: 10.3389/fphy.2021.659342
    [18] B. Clark, R. York, Carbon metabolism: Global capitalism, climate change, and the biospheric rift, Theory Soc., 34 (2005), 391–428. https://doi.org/10.1007/s11186-005-1993-4 doi: 10.1007/s11186-005-1993-4
    [19] L. Qian, J. M. Grisolía, D. Soopramanien, The impact of service and government-policy attributes on consumer preferences for electric vehicles in China, Transp. Res. Part A, 122 (2019), 70–84. https://doi.org/10.1016/j.tra.2019.02.008 doi: 10.1016/j.tra.2019.02.008
    [20] A. Mood, F. A. Graybill, D. Boes, Introduction to the Theory of Statistics, Kogakusha Ltd, Tokyo, (1974). https://doi.org/10.2307/2286195
    [21] C. Kleiber, S. Kotz, Statistical Size Distributions in Economics and Actuarial Sciences, 1st edition, John Wiley & Sons, USA, 2003. https://doi.org/10.1002/0471457175
    [22] P. H. Dos Santos, I. D. Siciliani, M. Tragtenberg, Optimal income crossover for a two-class model using particle swarm optimization, Phys. Rev. E, 106 (2022) 034313. https://doi.org/10.1103/PhysRevE.106.034313 doi: 10.1103/PhysRevE.106.034313
    [23] L. D. Landau, E. M. Lifshitz, Statistical Physics, 3rd edition, Elsevier, United Kingdom, 2013. https://doi.org/10.1016/C2009-0-24487-4
    [24] W. G. Cochran, The χ2 test of goodness of fit, Ann. Math. Stat., 1952 (1952), 315–345. https://doi.org/10.1214/aoms/1177729380 doi: 10.1214/aoms/1177729380
    [25] M. Evans, N. Hastings, B. Peacock, C. Forbes, Statistical Distributions, 4th edition, John Wiley & Sons, USA, 2010. https://doi.org/10.1002/9780470627242
    [26] M. Matsui, A. Takemura, Empirical characteristic function approach to goodness-of-fit tests for the Cauchy distribution with parameters estimated by MLE or EISE, Ann. Inst. Stat. Math., 57 (2005), 183–199. https://doi.org/10.1007/BF02506887 doi: 10.1007/BF02506887
    [27] R. Bentzel, The social significance of income distribution statistics, Rev. Income Wealth, 16 (1970), 253–264. https://doi.org/10.1111/j.1475-4991.1970.tb00701.x doi: 10.1111/j.1475-4991.1970.tb00701.x
    [28] I. Miller, M. Miller, John E. Freund's Mathematical Statistics with Applications, 7th edition, Prentice Hall, United kingdom, 1999.
    [29] D. Wackerly, W. Mendenhall, R. L. Scheaffer, Mathematical Statistics with Applications, 7th edition, Cengage Learning, USA, 2014.
    [30] M. Bourguignon, H. Saulo, R. N. Fernandez, A new Pareto-type distribution with applications in reliability and income data, Phys. A Stat. Mech. Appl., 457 (2016), 166–175. https://dx.doi.org/10.1016/j.physa.2016.03.043 doi: 10.1016/j.physa.2016.03.043
    [31] P. Łukasiewicz, K. Karpio, A. Orłowski, Three-part model of distribution of household incomes, Acta Phys. Pol. A, 138 (2020), 96–100. https://dx.doi.org/10.12693/APhysPolA.138.96 doi: 10.12693/APhysPolA.138.96
    [32] P. Soriano-Hernández, M. del Castillo-Mussot, O. Córdoba-Rodríguez, R. Mansilla-Corona, Non-stationary individual and household income of poor, rich and middle classes in Mexico, Phys. A Stat. Mech. Appl., 465 (2017), 403–413. https://doi.org/10.1016/j.physa.2016.08.042 doi: 10.1016/j.physa.2016.08.042
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1442) PDF downloads(84) Cited by(1)

Article outline

Figures and Tables

Figures(2)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog