Research article Special Issues

A Data-Driven Intelligent Management Scheme for Digital Industrial Aquaculture based on Multi-object Deep Neural Network

  • Received: 02 February 2023 Revised: 20 March 2023 Accepted: 26 March 2023 Published: 06 April 2023
  • With the development of intelligent aquaculture, the aquaculture industry is gradually switching from traditional crude farming to an intelligent industrial model. Current aquaculture management mainly relies on manual observation, which cannot comprehensively perceive fish living conditions and water quality monitoring. Based on the current situation, this paper proposes a data-driven intelligent management scheme for digital industrial aquaculture based on multi-object deep neural network (Mo-DIA). Mo-IDA mainly includes two aspects of fish state management and environmental state management. In fish state management, the double hidden layer BP neural network is used to build a multi-objective prediction model, which can effectively predict the fish weight, oxygen consumption and feeding amount. In environmental state management, a multi-objective prediction model based on LSTM neural network was constructed using the temporal correlation of water quality data series collection to predict eight water quality attributes. Finally, extensive experiments were conducted on real datasets and the evaluation results well demonstrated the effectiveness and accuracy of the Mo-IDA proposed in this paper.

    Citation: Yueming Zhou, Junchao Yang, Amr Tolba, Fayez Alqahtani, Xin Qi, Yu Shen. A Data-Driven Intelligent Management Scheme for Digital Industrial Aquaculture based on Multi-object Deep Neural Network[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10428-10443. doi: 10.3934/mbe.2023458

    Related Papers:

  • With the development of intelligent aquaculture, the aquaculture industry is gradually switching from traditional crude farming to an intelligent industrial model. Current aquaculture management mainly relies on manual observation, which cannot comprehensively perceive fish living conditions and water quality monitoring. Based on the current situation, this paper proposes a data-driven intelligent management scheme for digital industrial aquaculture based on multi-object deep neural network (Mo-DIA). Mo-IDA mainly includes two aspects of fish state management and environmental state management. In fish state management, the double hidden layer BP neural network is used to build a multi-objective prediction model, which can effectively predict the fish weight, oxygen consumption and feeding amount. In environmental state management, a multi-objective prediction model based on LSTM neural network was constructed using the temporal correlation of water quality data series collection to predict eight water quality attributes. Finally, extensive experiments were conducted on real datasets and the evaluation results well demonstrated the effectiveness and accuracy of the Mo-IDA proposed in this paper.



    加载中


    [1] Z. Guo, K. Yu, N. Kumar, W. Wei, S. Mumtaz, M. Guizani, Deep distributed learning-based poi recommendation under mobile edge networks, IEEE Internet Things J., 10 (2023), 303–317. https://doi.org/10.1109/JIOT.2022.3202628 doi: 10.1109/JIOT.2022.3202628
    [2] D. Koh, G. S. Tan, E. Xie, L. H. Tiong, M. Khoo, C. N. Yap, Secured data management and infrastructures in smart aquaculture, in 2022 IEEE 38th International Conference on Data Engineering Workshops (ICDEW), (2022), 54–59. https://doi.org/10.1109/ICDEW55742.2022.00012
    [3] Y. Wu, Y. Duan, Y. Wei, D. An, J. Liu, Application of intelligent and unmanned equipment in aquaculture: A review, Comput. Electron. Agric., 199 (2022), 107201. https://doi.org/10.1016/j.compag.2022.107201 doi: 10.1016/j.compag.2022.107201
    [4] Q. Zhang, K. Yu, Z. Guo, S. Garg, J. J. P. C. Rodrigues, M. M. Hassan, et al., Graph neural network-driven traffic forecasting for the connected internet of vehicles, IEEE Transact. Network Sci. Eng., 9 (2022), 3015–3027. https://doi.org/10.1109/TNSE.2021.3126830 doi: 10.1109/TNSE.2021.3126830
    [5] S. Xia, Z. Yao, Y. Li, S. Mao, Online distributed offloading and computing resource management with energy harvesting for heterogeneous mec-enabled iot, IEEE Transact. Wireless Commun., 20 (2021), 6743–6757. https://doi.org/10.1109/TWC.2021.3076201 doi: 10.1109/TWC.2021.3076201
    [6] E. Ismagilova, D. L. Hughes, N. P. Rana, Y. K. Dwivedi, Security, privacy and risks within smart cities: Literature review and development of a smart city interaction framework, Inf. Syst. Frontiers, 24 (2022), 393–414. https://doi.org/10.1007/s10796-020-10044-1 doi: 10.1007/s10796-020-10044-1
    [7] Z. Guo, Y. Shen, S. Wan, W. Shang, K. Yu, Hybrid intelligence-driven medical image recognition for remote patient diagnosis in internet of medical things, IEEE J. Biomed. Health Inform., 26 (2021), 5817–5828. https://doi.org/10.1109/JBHI.2021.3139541 doi: 10.1109/JBHI.2021.3139541
    [8] Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized content caching and user association for edge computing in densely deployed heterogeneous networks, IEEE Transact. Mobile Comput., 21 (2022), 2130–2142. https://doi.org/10.1109/TMC.2020.3033563 doi: 10.1109/TMC.2020.3033563
    [9] L. Zhao, Z. Bi, A. Hawbani, K. Yu, Y. Zhang, M. Guizani, Elite: An intelligent digital twin-based hierarchical routing scheme for softwarized vehicular networks, IEEE Transact. Mobile Comput., (2022), 1–1. https://doi.org/10.1109/TMC.2022.3179254 doi: 10.1109/TMC.2022.3179254
    [10] F. Ding, B. Fan, Z. Shen, K. Yu, G. Srivastava, K. Dev, et al., Securing facial bioinformation by eliminating adversarial perturbations, IEEE Transact. Industr. Inform., (2022), 1–10. https://doi.org/10.1109/TII.2022.3201572 doi: 10.1109/TII.2022.3201572
    [11] R. W. Coutinho, A. Boukerche, Towards a novel architectural design for iot-based smart marine aquaculture, IEEE Internet Things Magaz., 5 (2022), 174–179. https://doi.org/10.1109/IOTM.001.2200065 doi: 10.1109/IOTM.001.2200065
    [12] J. Liu, C. Yu, Z. Hu, Y. Zhao, Y. Bai, M. Xie, et al., Accurate prediction scheme of water quality in smart mariculture with deep bi-s-sru learning network, IEEE Access, 8 (2020), 24784–24798. https://doi.org/10.1109/ACCESS.2020.2971253 doi: 10.1109/ACCESS.2020.2971253
    [13] X. Hu, Y. Liu, Z. Zhao, J. Liu, X. Yang, C. Sun, et al., Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network, Comput. Electron. Agric., 185 (2021), 106135. https://doi.org/10.1016/j.compag.2021.106135 doi: 10.1016/j.compag.2021.106135
    [14] Z. Hu, Y. Zhang, Y. Zhao, M. Xie, J. Zhong, Z. Tu, et al., A water quality prediction method based on the deep LSTM network considering correlation in smart mariculture, Sensors, 19 (2019), 1420. https://doi.org/10.3390/s19061420 doi: 10.3390/s19061420
    [15] K. P. R. A. Haq, V. P. Harigovindan, Water quality prediction for smart aquaculture using hybrid deep learning models, IEEE Access, 10 (2022), 60078–-60098. https://doi.org/10.1109/ACCESS.2022.3180482 doi: 10.1109/ACCESS.2022.3180482
    [16] X. Wang, J. Zhou, J. Fan, Idudl: Incremental double unsupervised deep learning model for marine aquaculture sar images segmentation, IEEE Transactions on Geoscience and Remote Sensing, 60 (2022), 1–12. https://doi.org/10.1109/TGRS.2022.3203071 doi: 10.1109/TGRS.2022.3203071
    [17] M. S. Ahmed, T. T. Aurpa, M. A. K. Azad, Fish disease detection using image based machine learning technique in aquaculture, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 5170–5182. https://doi.org/10.1016/j.jksuci.2021.05.003 doi: 10.1016/j.jksuci.2021.05.003
    [18] Z. Zhou, X. Dong, Z. Li, K. Yu, C. Ding, Y. Yang, Spatio-temporal feature encoding for traffic accident detection in vanet environment, IEEE Transact. Intell. Transport. Syst., 23 (2022), 19772–-19781. https://doi.org/10.1109/TITS.2022.3147826 doi: 10.1109/TITS.2022.3147826
    [19] Z. Guo, K. Yu, A. Jolfaei, F. Ding, N. Zhang, Fuz-spam: Label smoothing-based fuzzy detection of spammers in internet of things, IEEE Transact. Fuzzy Syst., 30 (2022), 4543–4554. https://doi.org/10.1109/TFUZZ.2021.3130311 doi: 10.1109/TFUZZ.2021.3130311
    [20] Z. Guo, K. Yu, A. K. Bashir, D. Zhang, Y. D. Al-Otaibi, M. Guizani, Deep information fusion-driven poi scheduling for mobile social networks, IEEE Network, 36 (2022), 210–-216. https://doi.org/10.1109/MNET.102.2100394 doi: 10.1109/MNET.102.2100394
    [21] Y. Yu, J. Cao, J. Zhu, An LSTM short-term solar irradiance forecasting under complicated weather conditions, IEEE Access, 7 (2019), 145651–145666. https://doi.org/10.1109/ACCESS.2019.2946057 doi: 10.1109/ACCESS.2019.2946057
    [22] Z. Guo, K. Yu, Z. Lv, K.-K. R. Choo, P. Shi, J. J. P. C. Rodrigues, Deep federated learning enhanced secure poi microservices for cyber-physical systems, IEEE Wireless Commun., 29 (2022), 22–29. https://doi.org/10.1109/MWC.002.2100272 doi: 10.1109/MWC.002.2100272
    [23] D. Peng, D. He, Y. Li, Z. Wang, Integrating terrestrial and satellite multibeam systems toward 6g: Techniques and challenges for interference mitigation, IEEE Wireless Commun., 29 (2022), 24–-31. https://doi.org/10.1109/MWC.002.00293 doi: 10.1109/MWC.002.00293
    [24] C. Chen, Z. Liao, Y. Ju, C. He, K. Yu, S. Wan, Hierarchical domain-based multi-controller deployment strategy in sdn-enabled space-air-ground integrated network, IEEE Transact. Aerospace Electr. Syst., (2022). https://doi.org/10.1109/TAES.2022.3199191 doi: 10.1109/TAES.2022.3199191
    [25] T. Zhang, F. Li, X. Zhao, W. Qi, T. Liu, A convolutional neural network-based surrogate model for multi-objective optimization evolutionary algorithm based on decomposition, Swarm Evol. Comput., 72 (2022), 101081. https://doi.org/10.1016/j.swevo.2022.101081 doi: 10.1016/j.swevo.2022.101081
    [26] Y. Shao, J. C.-W. Lin, G. Srivastava, D. Guo, H. Zhang, H. Yi, et al., Multi-objective neural evolutionary algorithm for combinatorial optimization problems, IEEE Transact. Neural Networks Learn. Syst., (2021).
    [27] Z. Ding, L. Chen, D. Sun, X. Zhang, A multi-stage knowledge-guided evolutionary algorithm for large-scale sparse multi-objective optimization problems, Swarm Evol. Comput., 73 (2022), 101119. https://doi.org/10.1016/j.swevo.2022.101119 doi: 10.1016/j.swevo.2022.101119
    [28] Y. Tian, X. Li, H. Ma, X. Zhang, K. C. Tan, Y. Jin, Deep reinforcement learning based adaptive operator selection for evolutionary multi-objective optimization, IEEE Transact. Emerging Topics Comput. Intell., (2022). https://doi.org/10.1109/TETCI.2022.3146882 doi: 10.1109/TETCI.2022.3146882
    [29] W. Yu, X. Xu, S. Jin, Y. Ma, B. Liu, W. Gong, BP neural network retrieval for remote sensing atmospheric profile of ground-based microwave radiometer, IEEE Geosci. Remote. Sens. Lett., 19 (2022), 1–5. https://doi.org/10.1109/LGRS.2021.3117882 doi: 10.1109/LGRS.2021.3117882
    [30] Y. Lin, K. Yu, L. Hao, J. Wang, J. Bu, An indoor wi-fi localization algorithm using ranging model constructed with transformed rssi and bp neural network, IEEE Transact. Commun., 70 (2022), 2163–2177. https://doi.org/10.1109/TCOMM.2022.3145408 doi: 10.1109/TCOMM.2022.3145408
    [31] Y. Chen, J. Sun, Y. Lin, G. Gui, H. Sari, Hybrid n-inception-lstm-based aircraft coordinate prediction method for secure air traffic, IEEE Transact. Intell. Transport. Syst., 23 (2022), 2773–2783. https://doi.org/10.1109/TITS.2021.3095129 doi: 10.1109/TITS.2021.3095129
    [32] E. Ahmadzadeh, H. Kim, O. Jeong, N. Kim, I. Moon, A deep bidirectional LSTM-GRU network model for automated ciphertext classification, IEEE Access, 10 (2022), 3228–3237. https://doi.org/10.1109/ACCESS.2022.3140342 doi: 10.1109/ACCESS.2022.3140342
    [33] F. Zhan, Y. Yu, R. Wu, J. Zhang, S. Lu, C. Zhang, Marginal contrastive correspondence for guided image generation, in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2022), 10653–10662. https://doi.org/10.1109/CVPR52688.2022.01040
    [34] W. S. Peebles, J. Zhu, R. Zhang, A. Torralba, A. A. Efros, E. Shechtman, Gan-supervised dense visual alignment, in IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, (2022), 13460–13471.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1830) PDF downloads(144) Cited by(4)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog