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Abstract: With the development of intelligent aquaculture, the aquaculture industry is gradually
switching from traditional crude farming to an intelligent industrial model. Current aquaculture man-
agement mainly relies on manual observation, which cannot comprehensively perceive fish living con-
ditions and water quality monitoring. Based on the current situation, this paper proposes a data-driven
intelligent management scheme for digital industrial aquaculture based on multi-object deep neural
network (Mo-DIA). Mo-IDA mainly includes two aspects of fish state management and environmental
state management. In fish state management, the double hidden layer BP neural network is used to
build a multi-objective prediction model, which can effectively predict the fish weight, oxygen con-
sumption and feeding amount. In environmental state management, a multi-objective prediction model
based on LSTM neural network was constructed using the temporal correlation of water quality data
series collection to predict eight water quality attributes. Finally, extensive experiments were con-
ducted on real datasets and the evaluation results well demonstrated the effectiveness and accuracy of
the Mo-IDA proposed in this paper.
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1. Introduction

In recent years, as the scale of fishery aquaculture in China continues to expand, the contradiction
between the development of related industries and environmental resources and the low productivity
of labour has become increasingly prominent [1]. Such a situation has made standardised, digital and
intelligent aquaculture technology a hot issue for current research [2, 3]. The traditional human labour
method of free-range aquaculture no longer meets the real needs of the current aquaculture market [4].
Therefore, efficient and accurate digital industrial aquaculture (DIA) is the direction of development
that meets the realistic needs of aquaculture [5]. The development of DIA is an important part of
building sustainable smart cities [6]. It is important to develop intelligent management solutions for
DIA with the help of artificial intelligence technology [7]. The sensor network in the DIA can provide
a large amount of scene monitoring data for this purpose [8]. This facilitates the implementation of
intelligent management [9]. This work therefore aims to explore data-driven intelligent management
solutions [10].

As artificial intelligence continues to advance, a number of scholars have begun to explore tech-
nological approaches to building assisted DIA using machine learning and deep learning in recent
years [11–14]. Haq et al. [15] proposed a hybrid CNN and LSTM depth learning model to effectively
predict the water quality of aquaculture. Wang et al. [16] proposed a dual neural network method
including feature extraction network and full convolution semantic segmentation network to solve the
problem of high cost of sample collection. Ahmed et al. [17] successfully identified the infected fish
in aquaculture by using image processing and machine learning [18]. The advantages of these tech-
nologies are that they can improve the utilisation of available resources, increase productivity and free
up labour while reducing costs [19]. In contrast to traditional techniques, the deep learning-based ap-
proach involves analysis and empirical learning of fish farming data and finally the development of
intelligent management solutions [20–22]. Intelligent management encompasses many elements and
has two main aspects: fish condition management and environmental condition management. The for-
mer in turn contains weight prediction, oxygen consumption prediction, feeding prediction, etc., while
the latter contains water quality prediction [23]. How to use limited computing resources to achieve
multiple business needs is a technical challenge for DIA [24].

To address the above issues, this paper extends the approach of single-objective prediction to a
multi-objective prediction structure. Multiple objectives are predicted concurrently while maintaining
the stability of the model [25–28]. To this end, this paper introduces a multi-objective neural network
structure and proposes a data-driven intelligent management scheme for digital industrial aquacul-
ture based on multi-object deep neural network (Mo-DIA). For fish condition management, a multi-
objective prediction model is constructed using a double-hidden layer BP neural network [29,30]. The
data on fish length, body width, temperature and feeding frequency are used to predict fish weight,
fish oxygen consumption and fish feeding effectively. In terms of environmental condition manage-
ment, the LSTM neural network-based multi-objective prediction model was constructed using the
temporal correlation of water quality data series collection [31, 32]. By training the analysis of wa-
ter quality data, the time series values of eight attributes regarding Nitrite nitrogen (NO−2 - N), Nitrate
nitrogen (NO−3 - N), Dissolved oxygen (DO), Temperature (T), Total nitrogen (TN), Potential of hy-
drogen (PH), Chemical oxygen demand (COD) and Ammonia nitrogen (NH +

4 - N) are predicted. The
main contributions of this paper can be summarised as:
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Figure 1. Scenarios of digital industrialized aquaculture.

• This work systematically analyses the main tasks and challenges of DIA intelligent management
and explores a comprehensive technology-assisted model.
• This paper introduces a multi-objective neural network structure and proposes a multi-objective

deep neural network-based approach to DIA intelligent management.
• The effectiveness of this paper’s multi-objective deep neural network approach is confirmed by

conducting extensive experiments on datasets collected in real scenarios.
• This work provides a comprehensive evaluation of the multi-objective concurrent prediction re-

sults, and the performance of the method is positive.

2. Problem statement

The goal of intelligent aquaculture is to move from data to decision making. In order to achieve
intelligent aquaculture, all aspects of the culture need to be finely controlled, including oxygen aeration,
feeding and feeding rates. As shown in Figure 1, it represents the complex scene of a digital industrial
aquaculture. Experience from artificial aquaculture shows that fish cannot grow without sufficient
oxygen, the right amount of bait and a good water quality environment. Therefore, the intelligent
management solution based on DIA proposed in this paper is to use artificial intelligence algorithm
technology combined with hardware equipment to deal with the state management of the fish and the
water quality state management of the aquaculture environment.

For fish condition management, the system collects images of fish behaviour and body size char-
acteristics in real time through computer vision technology and sends them to the computer [33, 34].
The computer analyses the fish length, width, temperature, feeding frequency and other data from the
images. The data is then fed into the BP neural network model (Mo-BP) to predict fish weight, fish
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(a) Fish state management based on multi-objective BP neural networks

(b) Environmental state management based on multi-objective recurrent neural networks

Figure 2. Technical illustration of the two sub-modules in the proposed Mo-DIA.

oxygen consumption and fish feeding status. The daily bait feeding rate is 2% of the fish body weight.
The predicted data is used to determine whether the fish are in a normal growth process and to make
decisions to ensure that the fish can grow normally. For the management of the environmental status
of aquaculture is to better control the water quality environment of aquaculture. This system deploys
sensors to monitor a wide range of water quality parameters in the water. These measured data are
then passed into a recurrent neural network model (Mo-LSTM) to predict time series values regarding
eight attributes: NO−2 - N, NO−3 - N, DO, T, TN, pH, COD and NH +

4 - N. Based on the predictions, the
water quality is automatically treated using the appropriate filtration equipment to monitor the farming
environment and warn of abnormalities in real time.

3. Methodology

3.1. Overview

The DIA management approach proposed in this paper includes two major aspects: fish state man-
agement and environmental state management. As shown in Figure 2, it represents technical illustration
of the two sub-modules in the proposed Mo-DIA. In terms of fish condition management, this paper
proposes a Mo-BP model to implement a multi-objective prediction model. The data on fish length,
body width, temperature and feeding frequency are used to predict fish weight, fish oxygen consump-
tion and fish feeding effectively. In terms of environmental state management, this paper proposes a
Mo-LSTM model to implement a multi-objective prediction model. Using the time correlation of wa-
ter quality data series collection, the time series values of eight attributes regarding NO−2 - N, NO−3 - N,
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DO, T, TN, pH, COD and NH +
4 - N are predicted.

3.2. Fish state management based on multi-objective BP neural networks

Back Propagation Neural Network, an extremely common artificial neural network model, is a
multi-layer feed-forward neural network trained according to an error back propagation algorithm.
The learning process of the Mo-BP algorithm consists of two processes: the forward propagation of
the signal and the backward propagation of the error. In this experiment, the number of hidden layers
is set to 2, and each hidden layer contains 4 neurons.

3.2.1. Forward propagation calculation

In the forward propagation process, the final output value and the loss between the output value and
the actual value are calculated based on the input samples, combined with the given initialized weight
value W and the value of the bias term b.

Step 1: Parameter initialisation. The sample input here is denoted as ~a = (x1, x2). The initialised
three-layer weight values and bias values are:

W (1) =


w(x1,1),w(x2,1)

w(x1,2),w(x2,2)

w(x1,3),w(x2,3)

w(x1,4),w(x2,4)

 (3.1)

W (2) =


w(1,5),w(2,5),w(3,5),w(4,5)

w(1,6),w(2,6),w(3,6),w(3,6)

w(1,7),w(2,7),w(3,7),w(4,7)

w(1,8),w(2,8),w(3,8),w(4,8)

 (3.2)

W (3) =
[

w(5,9),w(6,9),w(7,9),w(8,9)

]
(3.3)

where the corresponding bias values for each layer are: b(1) = [b1, b2, b3, b4], b(2) = [b5, b6, b7, b8],
b(3) = [b9].

Step 2: Calculation of hidden layers. The proposed Mo-BP model has two hidden layers, where
the input of the first hidden layer are z1, z2, z3, z4 according to Eq 3.4. The function g (x) is chosen as
the activation function, and the outputs of this layer are g1 (z1) , g2 (z2) , g3 (z3) , g4 (z4). The input to the
second layer are z5, z6, z7, z8 and the output are g5 (z5) , g6 (z6) , g7 (z7) , g8 (z8) according to Eq 3.5.

Z(1) = W (1) ∗ (~a)T +
(
b(1)

)T
(3.4)

Z(2) = W (2) ∗ [z1, z2, z3, z4]T +
(
b(2)

)T
(3.5)

Step 3: Calculation of the output layer. The output layer is set up with only one neuron, so the input
to this layer can be expressed as z9 and the output as g9 (z9) according to Eq 3.6.

Z(3) = W (3) ∗ [z5, z6, z7, z8]T +
(
b(3)

)T
(3.6)
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3.2.2. Backwards propagation calculation

The samples are fed into the Mo-BP neural network model, ŷ denotes the result obtained by forward
propagation and y denotes the true result. According to the chain rule and mathematical induction, the
k layer error value ζ(k) can be calculated from the k + 1 layer error value ζ(k+1) by the formula:

ζ(k) = gk
′
(
z(k)

)
�

[(
(W)(k+1)

)T
ζ(k+1)

]
(3.7)

where L(y, ŷ) denotes the loss function of the metric loss and � denotes the Hadamard product. The
parameters are learned according to gradient descent, and the expressions for the partial derivatives of
the weights W and bias b are:

∂L(y, ŷ)
∂W (k) = ζ(k)

(
n(k−1)

)T
(3.8)

∂L(y, ŷ)
∂b(k) = ζ(k) (3.9)

The back propagation algorithm updates the weights W and bias b based on the error between the
predicted and true values to minimise the error for the purpose of optimising the model.

3.3. Environmental state management based on multi-objective recurrent neural networks

Long Short Term Memory networks (LSTM), suitable for processing and predicting important
events with relatively long intervals and delays in time series. In this paper, the environmental state
management of aquaculture is to predict the water quality parameters at a future moment for the his-
torical water quality parameters with time series characteristics. Compared with the traditional RNN,
Mo-LSTM can improve the problem of gradient disappearance and gradient explosion.

The advantage of the Mo-LSTM is that it can store four states, the current and previous moment
values of the output, and the current and previous moment values of the memory state vector. An
LSTM cell consists of an input gate It, a forgetting gate Ft, an output gate Ot and a memory cell Ct. xt

denotes the input data at moment t and the formulas are expressed as follows:

It = σ (Dixt + WiHt−1 + bi) (3.10)

Ft = σ (Dfxt + WfHt−1 + bf) (3.11)

Ut = tanh (Duxt + WuHt−1 + bu) (3.12)

Ct = Ft ∗Ct−1 + It ∗ Ut (3.13)

Ot = σ (D0xt + W0Ht−1 + b0) (3.14)

Ht = Ot ∗ tanh (Ct) (3.15)

where σ denotes the sigmoid activation function and tanh is also the activation function. D and W
denote the weight matrices from the input layer and the hidden layer to each gate, respectively. Ht

denotes the parameter state of the hidden layer. Ut denotes the intermediate temporary memory unit
parameter state in the network transmission and Ct denotes the memory unit parameter state in the
network transmission. bi, bf, bu and b0 denote the bias vectors of the four states of the network.
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(a) Fish weight (b) Oxygen consumption rate

(c) Feeding amount

Figure 3. Prediction error analysis chart for fish weight, oxygen consumption rate and feed-
ing amount.

4. Experiments and analysis

4.1. Datasets and pre-processing

The experimental datasets in this case is from the fish farming laboratory of National Research Base
of Intelligent Manufacturing Service, Chongqing Technology and Business University.

For the dataset Fish status of fish condition management, after a 30-day video collection period,
the videos of feeding periods were copied. Due to the storage period of the video recorder was 1 hour,
the feeding videos were cropped using VSplayer to only retain the video segments from the beginning
of feeding to the end of the fish feeding period. Each feeding segment is approximately 10 minutes
long and about 200MB in size, with a total of 60 segments. The keyframe extraction algorithm was
used to extract 24,000 images from the 60 feeding segments. The image resolution is 25601440, and
the size of each image is approximately 700KB. 1000 images without any remaining feed on the water
surface were selected from the original dataset as the dataset for measuring body length. 1000 images
with remaining feed on the water surface and 1000 images without any remaining feed were manually
selected as the training set, while 500 images were randomly selected as the test set. This dataset
contains seven attributes of fish length, fish width, fish weight, water temperature, oxygen consumption
rate, fish feeding frequency and feeding amount. The fish weight is predicted from the fish length and
width data, the oxygen consumption rate is predicted from the fish weight and water temperature, and
the feeding amount is predicted from the fish feeding frequency.

For dataset Water quality status of environmental condition management, a total of 4561 con-
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secutive time-series real data were collected using sensors to detect water quality parameters. This
dataset contains eight columns of water quality parameters: NO−2 - N (mg/L), NO−3 - N (mg/L), DO
(mg/L), T, TN (mg/L), pH, COD (mg/L) and NH +

4 - N (mg/L). DO is an important factor in main-
taining the stability of aquatic ecosystems, and can affect the respiration and metabolism of aquatic
organisms. In industrial aquaculture systems, monitoring and regulating the level of DO can ensure the
normal growth and reproduction of aquatic organisms. Temperature is an important factor that affects
the growth and metabolism of aquatic organisms, and its changes can directly affect the physiology
and behavior of aquatic organisms. In industrial aquaculture systems, controlling water temperature
can promote the growth and immunity of organisms and improve the efficiency of aquaculture. PH is
an indicator of the acidity and alkalinity of water, which has a certain impact on the metabolism and
growth of aquatic organisms. In industrial aquaculture systems, maintaining a stable pH value of the
water can promote the normal metabolism and immunity of organisms. NH +

4 - N, NO−2 - N, NO−3 - N
and TN are common pollutants in water, and their content has a certain impact on the growth and
health of aquatic organisms. In industrial aquaculture systems, monitoring and regulating the level of
nitrogen can prevent the accumulation of pollutants in the water, ensuring the cleanliness of the water
and the stability of the ecosystem. COD is an indicator of the content of organic matter in water, which
can reflect the degree of water pollution. In industrial aquaculture systems, monitoring and controlling
the level of chemical oxygen demand can prevent the excessive accumulation of organic matter in the
water, ensuring the cleanliness of the water and the stability of the ecosystem.

Both Fish status and Water quality status are raw sampled data and contain some unrealistic
outliers. In order to improve the data quality, firstly, this experiment cleansed the data, removing
duplicate data and dealing with missing values and outliers. Secondly, data normalisation was carried
out to eliminate the effect of the difference in magnitude and range of values between different attributes
on the final prediction results.

4.2. Parameter settings

The fish state management based on multi-objective BP neural network, mainly using known data
to achieve multi-objective prediction of fish weight, oxygen consumption rate and feeding amount.
For the parameter settings of the Mo-BP model: the number of hidden layers is set to 2, each hidden
layer contains 4 neurons, the number of training rounds is 1000, the Tanh function is selected as the
activation function, and the division ratio of training set to test set is 80%. The learning rates were set
to 0.01, 0.05 and 0.08 respectively to explore the best prediction of the model. In order to fully test the
validity of the fish state management experiments, five commonly used evaluation metrics were used
in this experiment: MAE, MSE, RMSE, R2, Ad justed R2. Each group of experiments was performed
five times and the average result was taken as the final valid value.

Based on multi-objective recurrent neural network environmental state management, mainly using
Mo-LSTM model to process water quality parameters with historical time series characteristics to
achieve the prediction of NO−2 - N, NO−3 - N, DO, T, TN, pH, COD and NH +

4 - N of a total of eight
target water quality parameters. For the Mo-LSTM model settings: step size is set to 1, input size is
set to 7, hidden size is set to 2, training rounds are 400 times, and the division ratio of training set to
test set is 80%. The learning rate was set to 0.01, 0.05 and 0.08 for the three sets of experiments. In
order to verify the validity of the environmental state management experiments, GRU and Bi-LSTM
models were introduced for comparison and three typical and commonly used evaluation metrics were
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Table 1. Results of experiments on the prediction of fish weight, oxygen consumption rate
and feeding amount.

Metrics
Fish weight Oxygen consumption rate Feeding amount

lr=0.01 lr=0.05 lr=0.08 lr=0.01 lr=0.05 lr=0.08 lr=0.01 lr=0.05 lr=0.08
MAE 5.2866 5.6034 5.3497 0.9472 0.9482 0.9178 1.4090 1.5072 1.4937
MSE 48.1733 48.8271 49.5273 1.2781 1.4721 1.2068 2.4721 2.5025 2.5284
RMSE 6.9407 6.8276 7.0242 1.1305 1.2642 1.1972 1.5723 1.5798 1.6032

(a) R2 (b) Ad just R2

Figure 4. R2 and Ad just R2 results of fish state management under multi-objective predic-
tion.

used: MAE, MSE and RMSE. Each group of experiments was performed five times and the average
result was taken as the final valid value.

4.3. Results and analysis

4.3.1. Fish status management results and discussion

In terms of fish status management, this paper proposes a multi-objective prediction model. As
shown in Table 1, the assessed target values for fish weight, oxygen consumption rate and feeding
amount are indicated at learning rates of 0.01, 0.05 and 0.08 respectively. The analysis of the single
target prediction shows that better prediction can be shown when the learning rate is 0.01. In an overall
analysis, fish weight, oxygen consumption rate and feeding amount differed for different learning rates,
but all tended to be consistently similar, which can effectively demonstrate the validity of the method.

The prediction error analysis chart representing fish weight, oxygen consumption rate and feeding
rate, as shown in Figure 3, provide a clearer analysis of the error in the model predictions. The blue
curves in the chart indicate the true measured values and the orange curves indicate the results of the
model predictions. As can be seen from Figure 3(a), the prediction error for fish weight is around 6.9g.
The accuracy of the model prediction is relatively average. From Figure 3(b) it can be analysed that the
error in the oxygen consumption rate of the fish floats at 1.1mg/L in a pond with an average fish weight
of 15956.14g. That is, for every 10g of fish weight, the error in oxygen consumption rate fluctuates at
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Table 2. Results of multi-object water quality parameter predictions for environmental con-
dition management.

Object Model lr=0.01 lr=0.05 lr=0.08
MAE MSE MAE MSE MAE MSE

NO−2 - N
Mo-LSTM 0.0058 0.0008 0.0062 0.0011 0.0081 0.0013

GRU 0.0024 0.0006 0.0027 0.0007 0.0031 0.0012
Bi-LSTM 0.0061 0.00011 0.0068 0.0007 0.0089 0.0021

NO−3 - N
Mo-LSTM 0.4627 0.2349 0.4537 0.2174 0.4921 0.3845

GRU 0.4694 0.2287 0.4802 0.2088 0.5692 0.2901
Bi-LSTM 0.4657 0.2248 0.4731 0.2114 0.5233 0.3646

DO
Mo-LSTM 0.258 0.0873 0.2573 0.0892 0.2689 0.0952

GRU 0.2563 0.0934 0.2597 0.0945 0.3082 0.1029
Bi-LSTM 0.2572 0.0892 0.2581 0.0918 0.2894 0.1005

T
Mo-LSTM 0.1778 0.0414 0.1853 0.0492 0.1728 0.0479

GRU 0.3249 0.11 0.3381 0.1195 0.3317 0.1204
Bi-LSTM 0.2379 0.0817 0.2181 0.0837 0.2648 0.0953

TN
Mo-LSTM 0.2753 0.0809 0.2742 0.0800 0.2829 0.0926

GRU 0.4017 0.1673 0.3902 0.1559 0.4192 0.1857
Bi-LSTM 0.3974 0.1185 0.3147 0.1192 0.3712 0.1203

pH
Mo-LSTM 0.0402 0.0029 0.0481 0.0039 0.0401 0.0018

GRU 0.0471 0.0038 0.0512 0.0041 0.0425 0.0034
Bi-LSTM 0.0438 0.0037 0.0494 0.0052 0.0418 0.0027

COD
Mo-LSTM 1.9185 5.3993 1.9022 5.3210 1.8937 5.2877

GRU 3.3124 22.1170 3.3019 22.0911 3.3298 23.0374
Bi-LSTM 2.8371 17.2849 2.6290 16.8407 2.8928 15.3779

NH +
4 - N

Mo-LSTM 0.0152 0.0003 0.0159 0.0014 0.0184 0.0017
GRU 0.0165 0.0004 0.0169 0.0017 0.0216 0.0021

Bi-LSTM 0.0171 0.0003 0.0162 0.0019 0.0207 0.0019

0.0007 mg/L and the model prediction is extremely accurate. From the analysis in Figure 3(c), it can
be seen that 1.6g of the model fitted feeding error was introduced by the initial few feeding trials. This
is evident from Table 1, whereas when fish feeding behaviour is evident, the model fitting error is not
significant. Further analysis of the fitted curve in the chart shows that the curve approximates a primary
function, indicating a significant positive correlation between feeding frequency and the amount that
should be fed. This demonstrates that the method is a good predictor of feeding quantity to support
accurate feeding decisions.

As shown in Figure 4, the R2 and Ad justed R2 are introduced in this paper in order to better explore
the interpretation and relevance of the input features to the target of the fish state. R2 is used to de-
scribe the degree to which the input variables explain the output variables, and Ad justed R2 eliminates
the effects of sample size and number of features on basis of R2, which better reflects the quality of
the model assessment. Figure 4 shows the R2 for fish weight, oxygen consumption rate and feeding
amount; Ad justed R2 was applied to multiple linear regression, so Ad justed R2 metrics for fish weight
and oxygen consumption rate were tested. All data in Figure 4 are based on a learning rate of 0.01. As
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(a) Co-LSTM (b) GRU

Figure 5. Comparison of MAE values of water quality parameters.

(a) Co-LSTM (b) GRU

Figure 6. Comparison of MSE values of water quality parameters.

can be seen from the chart, the Ad justed R2 can reach 0.96 in predicting the weight of fish, which in-
dicates that both characteristics, fish length and fish width, are very explanatory for the weight and that
the model is effective in predicting the weight of fish. In terms of fish oxygen consumption rate, the
Ad justed R2 can reach 0.97, which indicates that both fish weight and water temperature have strong
explanations for fish oxygen consumption rate. In terms of feeding amount prediction analysis, it can
reach an R2 of 0.9930, which indicates that the feeding frequency of the fish can influence the feeding
amount by 99%.

4.3.2. Environmental status management results and discussion

In terms of environmental state management, an LSTM-based multi-object prediction model for
water quality parameters is proposed in this paper. As shown in Table 2, this experiment tested the
Co-LSTM proposed in this paper and the comparative models GRU and Bi-LSTM, yielding values
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(a) NO−2 - N (b) NO−3 - N (c) DO

(d) T (e) TN (f) PH

(g) COD (h) NH +
4 - N

Figure 7. RMSE results of environmental state management under multi objective predic-
tion.

for the eight prediction objects assessed at learning rates of 0.01, 0.05 and 0.08, respectively. In
general, the difference in prediction error between the three models for the recycled water quality
dataset is not significant, and the indicators of the model can reach a satisfactory stability at a learning
rate of 0.01. As shown in Figure 5 and Figure 6, in order to observe the prediction effect of the
model more comprehensively and directly, this paper visualizes the MAE and MSE indicators of water
quality parameters under Co-LSTM, GRU and Bi-LSTM models. In order to meet the carbon source
requirements for microbial growth and water purification, an external carbon source (glucose) is added
to the biofilter in industrial aquaculture system to maintain sufficient COD concentration. Because
the value of COD is adjusted manually and is very different from the other seven parameters, it is
not shown in the figure. Further analysis revealed that if the model uses MAE as the main evaluation
metric, Co-LSTM was found to be better than GRU and Bi-LSTM in predicting several water quality
parameters, including NO−3 - N, DO, T, TN, pH, COD and NH +

4 - N, while GRU was slightly better
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in predicting NO−2 - N. Experience from artificial culture shows that the parameters that have a greater
impact on water quality conditions are mainly DO, COD and NH +

4 - N. In the prediction of these
water quality parameters, Mo-LSTM is superior to GRU and Bi-LSTM. Therefore, it is concluded that
Mo-LSTM is superior to GRU and Bi-LSTM in the environmental state management prediction model.

As shown in Figure 7, this experiment also tested the RMSE values of the eight water quality
parameters at different learning rate settings, which were analysed visually to increase the validity of
the model evaluation. It is evident from the chart that the Mo-LSTM model represents a curve that lies
steadily below the GRU and Bi-LSTM curves. In summary, the validity of using Mo-LSTM neural
networks to construct models for the prediction of environmental water quality is verified.

4.3.3. Results and discussion

The intelligent digital industrial aquaculture in this paper analyses the results of the experiments
in terms of fish state management and environmental state management respectively. For the former,
the results in Table 1, Figure 3 and Figure 4 can well demonstrate the superiority of multi-object BP
neural network-based fish state management. For the latter, the results in Table 2, Figure 5, Figure 6
and Figure 7 can well demonstrate the superiority of multi-object recurrent neural network-based envi-
ronmental state management. The realisation of these results can be attributed to two possible aspects.

On the one hand, the experimental data in this paper were collected autonomously by the exper-
imental group, and the real reliability of the data can bring a great advantage to the training of the
model. On the other hand, the construction of a multi-object deep neural network-based model brings
more stability to the prediction results.

5. Conclusion

This paper successfully proposes a multi-object deep neural network-based intelligent management
method for digital industrial aquaculture for effectively improving multiple business requirements in
aquaculture. The method is divided into two parts: fish state management and environmental state
management. On the one hand, the BP neural network based on double hidden layers is used to build
a multi-objective prediction model to accurately predict the weight, oxygen consumption rate and
feeding amount of fish. On the other hand, the LSTM-based neural network is used to build a multi-
objective prediction model to realise the prediction of water quality parameters for the aquaculture
environment. Promote the intelligent management of aquaculture by combining intelligent algorithm
and data drive. The experiments on real datasets show that the Mo-DIA method proposed in this
paper has high performance and feasibility. In the future work, it is expected that more useful data
can be collected to increase the feature magnitude and adjust the scheme model framework, so as to
better improve the efficiency and accuracy of the intelligent management scheme of digital industrial
aquaculture.
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