Research article Special Issues

Restored texture segmentation using Markov random fields

  • Received: 16 November 2022 Revised: 27 February 2023 Accepted: 07 March 2023 Published: 29 March 2023
  • Texture segmentation plays a crucial role in the domain of image analysis and its recognition. Noise is inextricably linked to images, just like it is with every signal received by sensing, which has an impact on how well the segmentation process performs in general. Recent literature reveals that the research community has started recognizing the domain of noisy texture segmentation for its work towards solutions for the automated quality inspection of objects, decision support for biomedical images, facial expressions identification, retrieving image data from a huge dataset and many others. Motivated by the latest work on noisy textures, during our work being presented here, Brodatz and Prague texture images are contaminated with Gaussian and salt-n-pepper noise. A three-phase approach is developed for the segmentation of textures contaminated by noise. In the first phase, these contaminated images are restored using techniques with excellent performance as per the recent literature. In the remaining two phases, segmentation of the restored textures is carried out by a novel technique developed using Markov Random Fields (MRF) and objective customization of the Median Filter based on segmentation performance metrics. When the proposed approach is evaluated on Brodatz textures, an improvement of up to 16% segmentation accuracy for salt-n-pepper noise with 70% noise density and 15.1% accuracy for Gaussian noise (with a variance of 50) has been made in comparison with the benchmark approaches. On Prague textures, accuracy is improved by 4.08% for Gaussian noise (with variance 10) and by 2.47% for salt-n-pepper noise with 20% noise density. The approach in the present study can be applied to a diversified class of image analysis applications spanning a wide spectrum such as satellite images, medical images, industrial inspection, geo-informatics, etc.

    Citation: Sanjaykumar Kinge, B. Sheela Rani, Mukul Sutaone. Restored texture segmentation using Markov random fields[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10063-10089. doi: 10.3934/mbe.2023442

    Related Papers:

  • Texture segmentation plays a crucial role in the domain of image analysis and its recognition. Noise is inextricably linked to images, just like it is with every signal received by sensing, which has an impact on how well the segmentation process performs in general. Recent literature reveals that the research community has started recognizing the domain of noisy texture segmentation for its work towards solutions for the automated quality inspection of objects, decision support for biomedical images, facial expressions identification, retrieving image data from a huge dataset and many others. Motivated by the latest work on noisy textures, during our work being presented here, Brodatz and Prague texture images are contaminated with Gaussian and salt-n-pepper noise. A three-phase approach is developed for the segmentation of textures contaminated by noise. In the first phase, these contaminated images are restored using techniques with excellent performance as per the recent literature. In the remaining two phases, segmentation of the restored textures is carried out by a novel technique developed using Markov Random Fields (MRF) and objective customization of the Median Filter based on segmentation performance metrics. When the proposed approach is evaluated on Brodatz textures, an improvement of up to 16% segmentation accuracy for salt-n-pepper noise with 70% noise density and 15.1% accuracy for Gaussian noise (with a variance of 50) has been made in comparison with the benchmark approaches. On Prague textures, accuracy is improved by 4.08% for Gaussian noise (with variance 10) and by 2.47% for salt-n-pepper noise with 20% noise density. The approach in the present study can be applied to a diversified class of image analysis applications spanning a wide spectrum such as satellite images, medical images, industrial inspection, geo-informatics, etc.



    加载中


    [1] H. Liu, G. Huo, Q. Li, X. Guan, M. L. Tseng, Multiscale lightweight 3D segmentation algorithm with attention mechanism: Brain tumor image segmentation, Expert Syst. Appl., 214 (2023), 119166. https://doi.org/10.1016/j.eswa.2022.119166 doi: 10.1016/j.eswa.2022.119166
    [2] X. Li, S. Chen, J. Wu, J. Li, T. Wang, J. Tang, et al., Satellite cloud image segmentation based on lightweight convolutional neural network, Plos One, 18 (2023), e0280408. https://doi.org/10.1371/journal.pone.0280408 doi: 10.1371/journal.pone.0280408
    [3] L. Guo, P. Shi, L. Chen, C. Chen, W. Ding, Pixel and region level information fusion in membership regularized fuzzy clustering for image segmentation, Inf. Fusion, 92 (2023), 479–497. https://doi.org/10.1016/j.inffus.2022.12.008 doi: 10.1016/j.inffus.2022.12.008
    [4] R. M. Haralick, K. Shanmugan, I. Dinstein, Textural features for image classification, IEEE Trans. Syst. Man Cybern., 3 (1973), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 doi: 10.1109/TSMC.1973.4309314
    [5] J. Chaki, N. Dey, Texture Feature Extraction Techniques for Image Recognition, Springer, Singapore, (2020).
    [6] A. Distante, C. Distante, Handbook of Image Processing and Computer Vision: Volume 3: From Pattern to Object, Springer International Publishing, Basel, Switzerland, (2020).
    [7] C. C. Hung, E. Song, Y. Lan, Image Texture Analysis. Foundations, Models and Algorithms, Springer International Publishing, Basel, Switzerland, (2019).
    [8] Y. Chen, E. R. Dougherty, Gray-scale morphological granulometric texture classification, Opt. Eng., 33 (1994), 2713–2722. https://doi.org/10.1117/12.173552 doi: 10.1117/12.173552
    [9] B. B. Chaudhuri, N. Sarkar, Texture segmentation using fractal dimension, IEEE Trans. Pattern Anal. Mach. Intell., 17 (1995), 72–77. https://doi.org/10.1109/34.368149 doi: 10.1109/34.368149
    [10] J. M. Keller, S. Chen, R. M. Crownover, Texture description and segmentation through fractal geometry, Comput. Vis. Graph. Image Process., 45 (1989), 150–166. https://doi.org/10.1016/0734-189X(89)90130-8 doi: 10.1016/0734-189X(89)90130-8
    [11] R. Chellappa, S. Chatterjee, Classification of textures using Gaussian Markov random fields, IEEE Trans. Acoust. Speech Signal Process., 33 (1985), 959–963. https://doi.org/10.1109/TASSP.1985.1164641 doi: 10.1109/TASSP.1985.1164641
    [12] G. R.Cross, A. K. Jain, Markov random field texture models, IEEE Trans. Pattern Anal. Mach. Intell., (1983), 25–39. https://doi.org/10.1109/tpami.1983.4767341. doi: 10.1109/tpami.1983.4767341
    [13] L. Alparone, F. Argenti, G. Benelli, Fast calculation of co-occurrence matrix parameters for image segmentation, Electron. Lett., 26 (1990), 23–24.
    [14] R. Davarzani, S. Mozaffari, K. Yaghmaie, Scale-and rotation-invariant texture description with improved local binary pattern features, Signal Process., 111 (2015), 274–293. https://doi.org/10.1016/j.sigpro.2014.11.005. doi: 10.1016/j.sigpro.2014.11.005
    [15] C. C. Gotlieb, H. E. Kreyszig, Texture descriptors based on co-occurrence matrices, Comput. Vis. Graph. Image Process., 51 (1990), 70–86. https://doi.org/10.1016/S0734-189X(05)80063-5 doi: 10.1016/S0734-189X(05)80063-5
    [16] M. Topi, O. Timo, P. Matti, S. Maricor, Robust texture classification by subsets of local binary patterns, in Proceedings of the 15th International Conference on Pattern Recognition ICPR-2000, Barcelona, Spain, 3 (2000), 935–938. https://doi.org/10.1109/ICPR.2000.903698
    [17] V. Durgamahanthi, R. Rangaswami, C. Gomathy, A. C. J. Victor, Texture analysis using wavelet-based multiresolution autoregressive model: Application to brain cancer histopathology, J. Med. Imaging Health Inf., 7 (2017), 1188–1195.
    [18] L. D. Jacobson, H. Wechsler, Joint Spatial/Spatial frequency representations, Signal Process., 14 (1988), 37–68. https://doi.org/10.1016/0165-1684(88)90043-6 doi: 10.1016/0165-1684(88)90043-6
    [19] C. S. Lu, P. C. Chung, C. F. Chen, Unsupervised texture segmentation via wavelet transform, Pattern Recognit., 30 (1997), 729–742. https://doi.org/10.1016/S0031-3203(96)00116-1 doi: 10.1016/S0031-3203(96)00116-1
    [20] T. Randen, J. H. Husoy, Filtering for texture classification:A comparative study, IEEE Trans. Pattern Anal. Mach. Intell., 21 (1999), 291–310. https://doi.org/10.1109/34.761261 doi: 10.1109/34.761261
    [21] K. J. Laws, Textured image segmentation, in University of Southern California Los Angeles Image Processing INST, (1980).
    [22] D. A. Clausi, K-means Iterative Fisher (KIF) unsupervised clustering algorithm applied to image texture segmentation, Pattern Recognit., 35 (2002), 1959–1972. https://doi.org/10.1016/S0031-3203(01)00138-8 doi: 10.1016/S0031-3203(01)00138-8
    [23] A. K. Jain, F. Farrokhnia, Unsupervised texture segmentation using Gabor filters, Pattern Recognit., 24 (1991), 1167–1186. https://doi.org/10.1016/0031-3203(91)90143-S doi: 10.1016/0031-3203(91)90143-S
    [24] S. Kinge, B. S. Rani, Mukul Sutaone, A multi-class fisher linear discriminant approach for the improvement in the accuracy of complex texture discrimination, Helix, 9 (2019), 5108–5121. https://doi.org/10.29042/2019-5108-5121 doi: 10.29042/2019-5108-5121
    [25] N. Senin, R. K. Leach, S. Pini, L. A. Blunt, Texture-based segmentation with Gabor filters, wavelet and pyramid decompositions for extracting individual surface features from areal surface topography maps, Meas. Sci. Technol., 26 (2015), 095405. https://doi.org/10.1088/0957-0233/26/9/095405 doi: 10.1088/0957-0233/26/9/095405
    [26] M. Tuceryan, A. K. Jain, Texture Segmentation using voronoi polygons, IEEE Trans. Pattern Anal. Mach. Intell., 12 (1990), 211–216. https://doi.org/10.1109/34.44407 doi: 10.1109/34.44407
    [27] G. Matheron, Random Sets and Integral Geometry, Wiley Publications, New York, (1975).
    [28] H. Deng, D. A. Clausi, Unsupervised image segmentation using a simple MRF model with a new implementation scheme, Pattern Recognit., 37 (2004), 2323–2335. https://doi.org/10.1016/j.patcog.2004.04.015 doi: 10.1016/j.patcog.2004.04.015
    [29] A. K. Qin, D. A. Clausi, Multivariate image segmentation using semantic region growing with adaptive edge penalty, IEEE Trans. Image Process., 19 (2010), 2157–2170. https://doi.org/10.1109/TIP.2010.2045708 doi: 10.1109/TIP.2010.2045708
    [30] Z. Kato, H. T. C. Pong, A Markov random field image segmentation model for color textured images, Image Vision Comput., 24 (2006), 1103–1114. https://doi.org/10.1016/j.imavis.2006.03.005 doi: 10.1016/j.imavis.2006.03.005
    [31] M. Kiechle, M. Storath, A. Weinmann, M. Kleinsteuber, Model-based learning of local image features for unsupervised texture segmentation, IEEE Trans. Image Process., 27 (2018), 1994–2007. https://doi.org/10.1109/TIP.2018.2792904 doi: 10.1109/TIP.2018.2792904
    [32] M. Pereyra, S. McLaughlin, Fast unsupervised Bayesian image segmentation with adaptive spatial regularisation, IEEE Trans. Image Process., 26 (2017), 2577–2587. https://doi.org/10.1109/TIP.2017.2675165 doi: 10.1109/TIP.2017.2675165
    [33] L. Gatys, A. S. Ecker, M. Bethge, Texture synthesis using convolutional neural networks, Adv. Neural Inf. Process. Syst., (2015), 262–270.
    [34] X. Snelgrove, High-resolution multi-scale neural texture synthesis, in SIGGRAPH Asia Technical Briefs, (2017), 1–4. https://doi.org/10.1145/3145749.3149449
    [35] Y. Zhou, Z. Zhu, X. Bai, D. Lischinski, D. Cohen-Or, H. Huang, Non-stationary texture synthesis by adversarial expansion, preprint, arXiv: 1805.04487.
    [36] V. Andrearczyk, P. F. Whelan, Using filter banks in convolutional neural networks for texture classification, Pattern Recognit. Lett., 84 (2016), 63–69. https://doi.org/10.1016/j.patrec.2016.08.016 doi: 10.1016/j.patrec.2016.08.016
    [37] X. Bu, Y. Wu, Z. Gao, Y. Jia, Deep convolutional network with locality and sparsity constraints for texture classification, Pattern Recognit., 91 (2019), 34–46. https://doi.org/10.1016/j.patcog.2019.02.003 doi: 10.1016/j.patcog.2019.02.003
    [38] M. Cimpoi, S. Maji, I. Kokkinos, A. Vedaldi, Deep filter banks for texture recognition, description, and segmentation, Int. J. Comput. Vis., 118 (2016), 65–94. https://doi.org/10.1007/s11263-015-0872-3 doi: 10.1007/s11263-015-0872-3
    [39] U. Dixit, A. Mishra, A. Shukla, R. Tiwari, Texture classification using convolutional neural network optimized with whale optimization algorithm, SN Appl. Sci., 1 (2019). https://doi.org/10.1007/s42452-019-0678-y doi: 10.1007/s42452-019-0678-y
    [40] T. Y. Lin, S. Maji, Visualizing and understanding deep texture representations, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, LasVegas, USA, (2016), 2791–2799.
    [41] L. Liu, J. Chen, G. Zhao, P. Fieguth, X. Chen, M. Pietikä inen, Texture classification in extreme scale variations using GANet, IEEE Trans. Image Process., 28 (2019), 3910–3922. https://doi.org/10.1109/TIP.2019.2903300 doi: 10.1109/TIP.2019.2903300
    [42] A. Shahriari, Parametric learning of texture filters by stacked fisher autoencoders, in Proceedings of the 2016 International Conference on Digital Image Computing: Technique and Applications (DICTA), Gold Coast, Australia, (2016), 1–8.
    [43] Y. Song, F. Zhang, Q. Li, H. Huang, L. J. O'Donnell, W. Cai, Locally-transferred fisher vectors for texture classification, in Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, (2017), 4912–4920.
    [44] H. Zhang, J. Xue, K. Dana, Deep ten: Texture encoding network, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, (2017), 708–717.
    [45] V. Andrearczyk, P. F. Whelan, Texture segmentation with fully convolutional networks, preprint, arXiv: 1703.05230.
    [46] C. Karabag, J. Verhoeven, N. Miller, C. Reyes-Aldasoro, Texture segmentation: an objective comparison between five traditional algorithms and a deep-learning U-Net architecture, Appl. Sci., 9 (2019), 3900. https://doi.org/10.3390/app9183900 doi: 10.3390/app9183900
    [47] Y. Huang, F. Zhou, J. Gilles, Empirical curvelet based fully convolutional network for supervised texture image segmentation, Neurocomputing, 349 (2019), 31–43. https://doi.org/10.1016/j.neucom.2019.04.021 doi: 10.1016/j.neucom.2019.04.021
    [48] R. Yamada, H. Ide, N. Yudistira, T. Kurita, Texture segmentation using Siamese network and hierarchical region merging, in Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, (2018), 2735–2740. https://doi.org/10.1109/ICPR.2018.8545348
    [49] S. Mikes, M. Haindl, Texture segmentation benchmark, IEEE Trans. Pattern Anal. Mach. Intell., 41 (2021), 1–16. https://doi.org/10.1109/TPAMI.2021.3075916 doi: 10.1109/TPAMI.2021.3075916
    [50] A. Awad, Denoising images corrupted with impulse, Gaussian, or a mixture of impulse and Gaussian noise, Eng. Sci. Technol. Int. J., 22 (2019), 746–753. https://doi.org/10.1016/j.jestch.2019.01.012 doi: 10.1016/j.jestch.2019.01.012
    [51] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Third Edition Pearson Education, 2009.
    [52] S. Walid, B. Xi, A neighborhood regression approach for removing multiple types of noises, EURASIP J. Image Video Process., 2018 (2018). https://doi.org/10.1186/s13640-018-0259-9
    [53] M. Alkhatib, A. Hafiane, Robust adaptive median binary pattern for noisy texture classification and retrieval, IEEE Trans. Image Process., 28 (2019), 5407–5418. https://doi.org/10.1109/TIP.2019.2916742 doi: 10.1109/TIP.2019.2916742
    [54] S. Dash, M. R. Senapati, Noise robust Law's filters based on fuzzy filters for texture classification, Egypt. Inf. J., 21 (2020), 37–49. https://doi.org/10.1016/j.eij.2019.10.003 doi: 10.1016/j.eij.2019.10.003
    [55] C. Vacar, J. Giovannelli, Unsupervised joint deconvolution and segmentation method for textured images:a Bayesian approach and an advanced sampling algorithm, EURASIP J. Image Video Process., 2019 (2019), 1–17. https://doi.org/10.1186/s13634-018-0597-x doi: 10.1186/s13634-018-0597-x
    [56] H. A. Nugroho, E. L. Frannita, I. Ardiyanto, L. Choridah, Computer aided diagnosis for thyroid cancer system based on internal and external characteristics, J. King Saud Univ. Comput. Inf. Sci., 33 (2021), 329–339. https://doi.org/10.1016/j.jksuci.2019.01.007 doi: 10.1016/j.jksuci.2019.01.007
    [57] A. Bhargava, A. Bansal, Fruits and vegetables quality evaluation using computer vision: A review, J. King Saud Univ. Comput. Inf. Sci., 33 (2021), 243–257. https://doi.org/10.1016/j.jksuci.2018.06.002 doi: 10.1016/j.jksuci.2018.06.002
    [58] S. Hossain, S. Serikawa, Texture databases—A comprehensive survey, Pattern Recognit. Lett., 34 (2013), 2007–2022. https://doi.org/10.1016/j.patrec.2013.02.009 doi: 10.1016/j.patrec.2013.02.009
    [59] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Color image denoising via sparse 3D collaborative filtering with grouping constraint in luminance-chrominance space, in Proceeding of IEEE International Conference on Image Processing, (2007), 313–316. https://doi.org/10.1109/ICIP.2007.4378954
    [60] K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, Image denoising by sparse 3D transform-domain collaborative filtering, IEEE Trans. Image process., 16 (2007), 2080–2095. https://doi.org/10.1109/TIP.2007.901238 doi: 10.1109/TIP.2007.901238
    [61] L. Fan, Z. Fan, H. Fan, C. Zhang, Brief review of image denoising techniques, Visual Comput. Ind., Biomed., Art, 2 (2019), 1–12. https://doi.org/10.1186/s42492-019-0016-7 doi: 10.1186/s42492-019-0016-7
    [62] S. Kinge, B. S. Rani, Mukul sutaone, quantitative restoration of noisy colour texture segmentation benchmark images using state-of-the-art algorithm, in 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS), IEEE, (2020), 37–42. https://doi.org/10.1109/ICICCS48265.2020.9120927
    [63] R. R. Nair, E. David, S. Rajagopal, A robust anisotropic diffusion filter with low arithmetic complexity for images, EURASIP J. Image Video Process., 2019 (2019), 1–14. https://doi.org/10.1186/s13640-019-0444-5 doi: 10.1186/s13640-019-0444-5
    [64] D. Tourtounis, N. Mitianoudis, G. C. Sirakoulis, Salt-n-pepper noise filtering using cellular automata, preprint, arXiv: 1708.05019.
    [65] Z. Haliche, K. Hammouche, O. Losson, L. Macaire, Fuzzy color aura matrices for texture image segmentation, J. Imaging, 8 (2022), 1–20. https://doi.org/10.3390/jimaging8090244 doi: 10.3390/jimaging8090244
    [66] C. Bontozoglou, P. Xiao, Applications of capacitive imaging in human skin texture and hair analysis, Appl. Sci., 10 (2020), 256. https://doi.org/10.3390/app10010256 doi: 10.3390/app10010256
    [67] Y. Liu, K. Xu, J. Xu, An improved MB-LBP defect recognition approach for the surface of steel plates, Appl. Sci., 9 (2020), 4222. https://doi.org/10.3390/app9204222 doi: 10.3390/app9204222
    [68] Z. Jeelani, F. Qadir, Cellular automata-based approach for salt-and-pepper noise filtration, J. King Saud Univ. Comput. Inf. Sci., 2018 (2018). https://doi.org/10.1016/j.jksuci.2018.12.006
    [69] S. Z. Li, Markov Random Field Modeling in Image Analysis, 2nd edition, Springer-Verlag, New York, 2009.
    [70] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. https://doi.org/10.1109/TIP.2003.819861 doi: 10.1109/TIP.2003.819861
    [71] A. Hoover, G. J. Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof, et al., An experimental comparison of range image segmentation algorithms, IEEE Trans. Pattern Anal. Mach. Intell., 18 (1996), 673–689. https://doi.org/10.1109/34.506791 doi: 10.1109/34.506791
    [72] Z. Hu, Z. Wu, Q. Zhang, Q. Fan, J. Xu, A spatially-constrained color-texture model for hierarchical VHR image segmentation, IEEE Geosci. Remote Sens. Lett., 10 (2013), 120–124. https://doi.org/10.1109/LGRS.2012.2194693 doi: 10.1109/LGRS.2012.2194693
    [73] S. Sangwine, R. Horne, The Colour Image Processing Handbook, Chapman and Hall, 1998.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1423) PDF downloads(118) Cited by(1)

Article outline

Figures and Tables

Figures(14)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog