Cardiovascular disease is currently one of the diseases with high morbidity and mortality worldwide. One of the main types is coronary artery disease (CAD), which occurs when one or more of the three main arteries, the left anterior descending (LAD) artery, the left circumflex (LCX) artery, and the right coronary artery (RCA), are narrowed. In this paper, we introduce a computer-aided diagnosis model, which uses the k-nearest neighbor (KNN)-based whale optimization algorithm (WOA) for feature selection and combines stacking model for CAD diagnosis and prediction. In WOA, the values in the solution vectors are all continuous, and a threshold is set for binary-conversion to obtain the optimal feature subsets of each main coronary artery. Then we develop a two-layer stacking model based on the selected feature subsets to diagnosis LAD, LCX and RCA. By the proposed method, we select 17 features for each main artery diagnosis, and the classification accuracy on LAD, LCX, and RCA test sets is 89.68, 88.71 and 85.81%, respectively. On the Z-Alizadeh Sani dataset, we compare the proposed feature selection method with other metaheuristics and compare the performance of WOA based on different wrappers. The experimental results show that, the KNN-based WOA method selects the optimal feature subsets, and the classification performance of the stacking model is better than other machine learning algorithms.
Citation: Ziyu Jin, Ning Li. Diagnosis of each main coronary artery stenosis based on whale optimization algorithm and stacking model[J]. Mathematical Biosciences and Engineering, 2022, 19(5): 4568-4591. doi: 10.3934/mbe.2022211
Cardiovascular disease is currently one of the diseases with high morbidity and mortality worldwide. One of the main types is coronary artery disease (CAD), which occurs when one or more of the three main arteries, the left anterior descending (LAD) artery, the left circumflex (LCX) artery, and the right coronary artery (RCA), are narrowed. In this paper, we introduce a computer-aided diagnosis model, which uses the k-nearest neighbor (KNN)-based whale optimization algorithm (WOA) for feature selection and combines stacking model for CAD diagnosis and prediction. In WOA, the values in the solution vectors are all continuous, and a threshold is set for binary-conversion to obtain the optimal feature subsets of each main coronary artery. Then we develop a two-layer stacking model based on the selected feature subsets to diagnosis LAD, LCX and RCA. By the proposed method, we select 17 features for each main artery diagnosis, and the classification accuracy on LAD, LCX, and RCA test sets is 89.68, 88.71 and 85.81%, respectively. On the Z-Alizadeh Sani dataset, we compare the proposed feature selection method with other metaheuristics and compare the performance of WOA based on different wrappers. The experimental results show that, the KNN-based WOA method selects the optimal feature subsets, and the classification performance of the stacking model is better than other machine learning algorithms.
[1] | E. J. Benjamin, P. Muntner, A. Alonso, M. S. Bittencourt, C. W. Callaway, A. Carson, et al., Heart disease and stroke statistics-2019 update: a report from the American heart association, Circulation, 139 (2019), 56-528. https://doi.org/10.1161/CIR.0000000000000659 doi: 10.1161/CIR.0000000000000659 |
[2] | G. A. Roth, G. A. Mensah, C. O. Johnson, G. Addolorato, E. Ammirati, L. M. Baddour, et al., Global burden of cardiovascular diseases and risk factors, 1990-2019: Update from the GBD 2019 study, J. Am. Coll. Cardiol., 76 (2020), 2982-3021. https://doi.org/10.1016/j.jacc.2020.11.010 doi: 10.1016/j.jacc.2020.11.010 |
[3] | Cardiovascular diseases, 2021. Available from: https://www.who.int/health-topics/cardiovascular-diseases. |
[4] | S. S. Virani, A. Alonso, E. J. Benjamin, M. S. Bittencourt, C. W. Callaway, A. Carson, et al., Heart disease and stroke statistics-2020 update: a report from the American heart association, Circulation, 141 (2020), 139-596. https://doi.org/10.1161/CIR.0000000000000757 doi: 10.1161/CIR.0000000000000757 |
[5] | B. A. Tama, S. Im, S. Lee, Improving an intelligent detection system for coronary heart disease using a two-tier classifier ensemble, BioMed. Res. Int., 2020 (2020), 9816142. https://doi.org/10.1155/2020/9816142 doi: 10.1155/2020/9816142 |
[6] | Y. Yang, Comparison of the diagnostic value of coronary CTA imaging technology and coronary angiography for coronary heart disease, Heilongjiang Med. Pharm., 44 (2021), 113-114. https://doi.org/10.3969/j.issn.1008-0104.2021.02.049 doi: 10.3969/j.issn.1008-0104.2021.02.049 |
[7] | Y. Khan, U. Qamar, N. Yousaf, Machine learning techniques for heart disease datasets: a survey, in ICMLC '19: Proceedings of the 2019 11th International Conference on Machine Learning and Computing, 2019. https://doi.org/10.1145/3318299.3318343 |
[8] | R. Alizadehsani, Extention of Z-Alizadeh sani dataset, Mendeley Data, V1 (2017). https://doi.org/10.17632/bgf5czvpg2.1 |
[9] | Y. Zheng, Y. Li, G. Wang, Y. Chen, Q. Xu, J. Fan, et al., A novel hybrid algorithm for feature selection based on whale optimization algorithm, IEEE Access, 7 (2019), 14908-14923. https://doi.org/10.1109/ACCESS.2018.2879848 doi: 10.1109/ACCESS.2018.2879848 |
[10] | M. Sharawi, H. M. Zawbaa, E. Emary, H. M. Zawbaa, E. Emary, Feature selection approach based on whale optimization algorithm, in 2017 Ninth International Conference on Advanced Computational Intelligence (ICACI), (2017), 163-168. https://doi.org/10.1109/ICACI.2017.7974502 |
[11] | J. Wang, C. Liu, L. Li, W. Li, L. Yao, H. Li, et al., A stacking-based model for non-invasive detection of coronary heart disease, IEEE Access, 8 (2020), 37124-37133. https://doi.org/10.1109/ACCESS.2020.2975377 doi: 10.1109/ACCESS.2020.2975377 |
[12] | R. Alizadehsani, M. J. Hosseini, R. Boghrati, A. Ghandeharioun, F. Khozeimeh, Z. A. Sani, Exerting cost-sensitive and feature creation algorithms for coronary artery disease diagnosis, Int. J. Knowl. Disc. Bioinfo., 3 (2012), 59-79. https://doi.org/10.4018/jkdb.2012010104 doi: 10.4018/jkdb.2012010104 |
[13] | R. Alizadehsani, M. J. Hosseini, Z. A. Sani, A. Ghandeharioun, R. Boghrati, Diagnosis of coronary artery disease using cost-sensitive algorithms, in 2012 IEEE 12th International Conference on Data Mining Workshops, (2012), 9-16. https://doi.org/10.1109/ICDMW.2012.29 |
[14] | R. Alizadehsani, J. Habibi, Z. A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., Diagnosis of coronary artery disease using data mining based on lab data and echo features, J. Med. Bioeng., 1 (2012), 26-29. https://doi.org/10.12720/jomb.1.1.26-29 doi: 10.12720/jomb.1.1.26-29 |
[15] | R. Alizadehsani, J. Habibi, M. J. Hosseini, R. Boghrati, A. Ghandeharioun, B. Bahadorian, et al., Diagnosis of coronary artery disease using data mining techniques based on symptoms and ECG features, Eur. J. Sci. Res., 82 (2012), 542-553. |
[16] | R. Alizadehsani, J. Habibi, Z. A. Sani, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., Diagnosing coronary artery disease via data mining algorithms by considering lab-oratory and Echocardiography Features, Res. Cardiovasc. Med., 2 (2013), 133-139. https://doi.org/10.5812/cardiovascmed.10888 doi: 10.5812/cardiovascmed.10888 |
[17] | R. Alizadehsani, J. Habibi, M. J. Hosseini, H. Mashayekhi, R. Boghrati, A. Ghandeharioun, et al., A data mining approach for diagnosis of coronary artery disease, Comput. Methods Programs Biomed., 111 (2013), 52-61, https://doi.org/10.1016/j.cmpb.2013.03.004 doi: 10.1016/j.cmpb.2013.03.004 |
[18] | R. Alizadehsani, M. H. Zangooei, M. J. Hosseini, J. Habibi, A. Khosravi, M. Roshanzamir, et al., Coronary artery disease detection using computational intelligence methods, Knowl. Based Syst., 109 (2016), 187-197. https://doi.org/10.1016/j.knosys.2016.07.004 doi: 10.1016/j.knosys.2016.07.004 |
[19] | Z. Arabasadi, R. Alizadehsani, M. Roshanzamir, H. Moosaei, A. A. Yarifard, Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm, Comput. Methods Programs Biomed., 141 (2017), 19-26. https://doi.org/10.1016/j.cmpb.2017.01.004 doi: 10.1016/j.cmpb.2017.01.004 |
[20] | R. Alizadehsani, M. J. Hosseini, A. Khosravi, F. Khozeimeh, M. Roshanzamir, N. Sarrafzadegan, et al., Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries, Comput. Methods Programs Biomed., 162 (2018), 119-127. https://doi.org/10.1016/j.cmpb.2018.05.009 doi: 10.1016/j.cmpb.2018.05.009 |
[21] | R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, A. Khosravi, S. Nahavandi, et al., Hybrid genetic-discretized algorithm to handle data uncertainty in diagnosing stenosis of coronary arteries, Expert Syst., (2020), 1-17. https://doi.org/10.1111/exsy.12573 |
[22] | R. Alizadehsani, M. Roshanzamir, M. Abdar, A. Beykikhoshk, M. H. Zangooei, A. Khosravi, et al., Model uncertainty quantification for diagnosis of each main coronary artery stenosis, Soft Comput., 24 (2020), 10149-10160. https://doi.org/10.1007/s00500-019-04531-0 doi: 10.1007/s00500-019-04531-0 |
[23] | M. H. Nadimi-Shahraki, M. Banaie-Dezfouli, H. Zamani, S. Taghian, S. Mirjalili, B-MFO: a binary moth-flame optimization for feature selection from medical datasets, Computer, 10 (2021), 136. https://doi.org/10.3390/computers10110136 doi: 10.3390/computers10110136 |
[24] | D. E. Goldberg, J. H. Holland, Genetic algorithms and machine learning, Mach. Learn., 3 (1988), 95-99. https://doi.org/10.1023/A:1022602019183 doi: 10.1023/A:1022602019183 |
[25] | R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, (1995), 39-43. https://doi.org/10.1109/MHS.1995.494215 |
[26] | S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems, Knowl. Based Syst., 96 (2016), 120-133. https://doi.org/10.1016/j.knosys.2015.12.022 doi: 10.1016/j.knosys.2015.12.022 |
[27] | S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl. Based Syst., 89 (2015), 228-249. https://doi.org/10.1016/j.knosys.2015.07.006 doi: 10.1016/j.knosys.2015.07.006 |
[28] | S. Mirjalili, A. Lewis, The whale optimization algorithm, Adv. Eng. Softw., 95 (2016), 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008 doi: 10.1016/j.advengsoft.2016.01.008 |
[29] | S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw., 69 (2014), 46-60. https://doi.org/10.1016/j.advengsoft.2013.12.007 doi: 10.1016/j.advengsoft.2013.12.007 |
[30] | M. Abdar, W. Książek, U R. Acharya, R. Tan, V. Makarenkov, P. Plawiak, A new machine learning technique for an accurate diagnosis of coronary artery disease, Comput. Methods Programs Biomed., 179 (2019), 104992. https://doi.org/10.1016/j.cmpb.2019.104992 doi: 10.1016/j.cmpb.2019.104992 |
[31] | S. Abbas, Z. Jalil, A. R. Javed, I. Batool, M. Z. Khan, A. Noorwali, et al., BCD-WERT: a novel approach for breast cancer detection using whale optimization based efficient features and extremely randomized tree algorithm, PeerJ. Comput. Sci., 7 (2021), 390. https://doi.org/10.7717/peerj-cs.390 doi: 10.7717/peerj-cs.390 |
[32] | H. Zamani, M. H. Nadimi-Shahraki, Feature selection based on whale optimization algorithm for diseases diagnosis, Intl. J. Comput. Sci. Info. Sec., 14 (2016), 1243-1247. https://doi.org/10.13140/RG.2.2.29065.88161 doi: 10.13140/RG.2.2.29065.88161 |
[33] | S. Taghian, M. H. Nadimi-Shahraki, H. Zamani, Comparative analysis of transfer function-based binary metaheuristic algorithms for feature selection, in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP), (2018), 1-6. https://doi.org/10.1109/IDAP.2018.8620828 |
[34] | E. Emary, H. M. Zawbaa, A. E. Hassanien, Binary grey wolf optimization approaches for feature selection, Neurocomputing, 172 (2016), 371-381. https://doi.org/10.1016/j.neucom.2015.06.083 doi: 10.1016/j.neucom.2015.06.083 |
[35] | S. Taghian, M. H. Nadimi-Shahraki, Binary sine cosine algorithms for feature selection from medical data, Adv. Comput.: An Intl. J., 10 (2019), 1-10. https://doi.org/10.5121/acij.2019.10501 doi: 10.5121/acij.2019.10501 |
[36] | M. M. Ali, B. K. Paul, K. Ahmed, F. M. Bui, J. M.W. Quinn, M. A. Moni, Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison, Comput. Biol. Med., 136 (2021), 104672. https://doi.org/10.1016/j.compbiomed.2021.104672 doi: 10.1016/j.compbiomed.2021.104672 |
[37] | M. W. Nadeem, H. G. Goh, M. A. Khan, M. Hussain, M. F. Mushtaq, P. Vasaki, Fusion-based machine learning architecture for heart disease prediction, Comput. Mater. Contin., 67 (2021), 2481-2496. https://doi.org/10.32604/cmc.2021.014649 doi: 10.32604/cmc.2021.014649 |
[38] | A. H. Shahid, M. P. Singh, A novel approach for coronary artery disease diagnosis using hybrid particle swarm optimization based emotional neural network, Biocybern. Biomed. Eng., 40 (2020), 1568-1585. https://doi.org/10.1016/j.bbe.2020.09.005 doi: 10.1016/j.bbe.2020.09.005 |
[39] | M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper feature selection, Appl. Soft Comput., 62 (2018), 441-453. https://doi.org/10.1016/j.asoc.2017.11.006 doi: 10.1016/j.asoc.2017.11.006 |
[40] | O. Terrada, B. Cherradi, A. Raihani, O. Bouattane, Classification and prediction of atherosclerosis diseases using machine learning algorithms, in 2019 5th International Conference on Optimization and Applications (ICOA), (2019), 1-5. https://doi.org/10.1109/ICOA.2019.8727688 |
[41] | V. K. Chauhan, K. Dahiya, A. Sharma, Problem formulations and solvers in linear SVM: a review, Artif. Intell. Rev., 52 (2019), 803-855. https://doi.org/10.1007/s10462-018-9614-6 doi: 10.1007/s10462-018-9614-6 |
[42] | M. M. Ghiasi, S. Zendehboudi, A. A. Mohsenipour, Decision tree-based diagnosis of coronary artery disease: CART model, Comput. Methods Programs Biomed., 192 (2020) 105400. https://doi.org/10.1016/j.cmpb.2020.105400 doi: 10.1016/j.cmpb.2020.105400 |
[43] | L. Breiman, Random Forests, Mach. Learn., 45 (2001), 5-32. https://doi.org/10.1023/A:1010933404324 doi: 10.1023/A:1010933404324 |
[44] | J. H. Friedman, Greedy function approximation: a gradient boosting machine, Ann. Statist., 29 (2000). https://doi.org/10.1214/aos/1013203451 doi: 10.1214/aos/1013203451 |
[45] | T. Chen, C. Guestrin, XGBoost: a scalable tree boosting system, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD '16), Assoc. Comput. Mach., New York, NY, USA, (2016), 785-794. https://doi.org/10.1145/2939672.2939785 |
[46] | K. Li, G. Zhou, J. Zhai, F. Li, M. Shao, Improved PSO_AdaBoost ensemble algorithm for imbalanced data, Sensors, 19 (2019), 1476. https://doi.org/10.3390/s19061476 doi: 10.3390/s19061476 |
[47] | D. H. Wolpert, Stacked generalization, Neural Networks, 5 (1992), 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1 doi: 10.1016/S0893-6080(05)80023-1 |
[48] | O. B. Robert, L. M. Douglas, P. Z. Douglas, L. Peter, Braunwald's heart disease: a textbook of cardiovascular medicine, Adolf WK. Infective Endocarditis. Int. Ed., (2012), 1540-1556. |
[49] | Z. Zhang, Z. P. Liu, Robust biomarker discovery for hepatocellular carcinoma from high-throughput data by multiple feature selection methods, BMC Med. Genomics, 14 (2021), 112. https://doi.org/10.1186/s12920-021-00957-4 doi: 10.1186/s12920-021-00957-4 |
[50] | R. Alizadehsani, J. Habibi, B. Bahadorian, H. Mashayekhi, A. Ghandeharioun, R. Boghrati, et al., Diagnosis of coronary arteries stenosis using data mining, J. Med. Signals Sens., 2 (2012), 153-159. https://doi.org/10.4103/2228-7477.112099 doi: 10.4103/2228-7477.112099 |
[51] | R. Detrano, V. A. Medical Center, Long beach and cleveland clinic foundation, 2022. Available from: https://archive.ics.uci.edu/ml/datasets/Heart+Disease. |
[52] | R. Detrano, A. Janosi, W. Steinbrunn, M. Pfisterer, JJ. Schmid, S. Sandhu, et al., International application of a new probability algorithm for the diagnosis of coronary artery disease, Am. J. Cardiol., 64 (1989), 304-310. https://doi.org/10.1016/0002-9149(89)90524-9 doi: 10.1016/0002-9149(89)90524-9 |
[53] | S. Mohan, C. Thirumalai, G. Srivastava, Effective heart disease prediction using hybrid machine learning techniques, IEEE Access, 7 (2019), 81542-81554. https://doi.org/10.1109/ACCESS.2019.2923707 doi: 10.1109/ACCESS.2019.2923707 |
[54] | M. Elhoseny, M. A. Mohammed, S. A. Mostafa, K. H. Abdulkareem, M. S. Maashi, B. Garcia-Zapirain, et al., A new multi-agent feature wrapper machine learning approach for heart disease diagnosis, Comput. Mater. Contin., 67 (2021), 51-71. https://doi.org/10.32604/cmc.2021.012632 doi: 10.32604/cmc.2021.012632 |
[55] | K. V. V. Reddy, I. Elamvazuthi, A. A. Aziz, S. Paramasivam, H. N. Chua, S. Pranavanand, Heart disease risk prediction using machine learning classifiers with attribute evaluators, Appl. Sci., 11 (2021), 8352. https://doi.org/10.3390/app11188352 doi: 10.3390/app11188352 |