Research article

Simulations and fractional modeling of dengue transmission in Bangladesh


  • Received: 15 January 2023 Revised: 17 February 2023 Accepted: 06 March 2023 Published: 27 March 2023
  • Dengue is one of the most infectious diseases in the world. In Bangladesh, dengue occurs nationally and has been endemic for more than a decade. Therefore, it is crucial that we model dengue transmission in order to better understand how the illness behaves. This paper presents and analyzes a novel fractional model for the dengue transmission utilizing the non-integer Caputo derivative (CD) and are analysed using q-homotopy analysis transform method (q-HATM). By using the next generation method, we derive the fundamental reproduction number $ R_0 $ and show the findings based on it. The global stability of the endemic equilibrium (EE) and the disease-free equilibrium (DFE) is calculated using the Lyapunov function. For the proposed fractional model, numerical simulations and dynamical attitude are seen. Moreover, A sensitivity analysis of the model is performed to determine the relative importance of the model parameters to the transmission.

    Citation: Saima Akter, Zhen Jin. Simulations and fractional modeling of dengue transmission in Bangladesh[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 9891-9922. doi: 10.3934/mbe.2023434

    Related Papers:

  • Dengue is one of the most infectious diseases in the world. In Bangladesh, dengue occurs nationally and has been endemic for more than a decade. Therefore, it is crucial that we model dengue transmission in order to better understand how the illness behaves. This paper presents and analyzes a novel fractional model for the dengue transmission utilizing the non-integer Caputo derivative (CD) and are analysed using q-homotopy analysis transform method (q-HATM). By using the next generation method, we derive the fundamental reproduction number $ R_0 $ and show the findings based on it. The global stability of the endemic equilibrium (EE) and the disease-free equilibrium (DFE) is calculated using the Lyapunov function. For the proposed fractional model, numerical simulations and dynamical attitude are seen. Moreover, A sensitivity analysis of the model is performed to determine the relative importance of the model parameters to the transmission.



    加载中


    [1] T. Koizumi, K. Yamaguchi, K. Tonomura, An epidemiological study of dengue fever, Taiwan J. Med. Assoc. Formosa., 176 (1917), 369–392.
    [2] S. Bhatt, P. W. Gething, O. J. Brady, J. P. Messina, A. W. Farlow, C. L. Moyes, et al., The global distribution and burden of dengue, Nature, 496 (2013), 504–507. https://doi.org/10.1038/nature12060 doi: 10.1038/nature12060
    [3] WHO, Dengue fact sheet, 2019. Available from: http://www.searo.who.int/entity/vector-borne-tropical-diseases/data/data-factsheet/en/
    [4] S. Sharmin, E. Viennet, K. Glass, D. Harley, The emergence of dengue in Bangladesh: epidemiology, challenges and future disease risk, Trans. R. Soc. Trop. Med. Hyg., 109 (2015), 619–627. https://doi.org/10.1093/trstmh/trv067 doi: 10.1093/trstmh/trv067
    [5] Z. Feng, J. X. Velasco-Hernandez, Competitive exclusion in a vector-host model for the dengue fever, J. Math. Biol., 35 (1997), 523–544. https://doi.org/10.1007/s002850050064 doi: 10.1007/s002850050064
    [6] S. A. Carvalho, S. O. da Silva, I. C. Charret, Mathematical modeling of dengue epidemic: control methods and vaccination strategies, Theory Biosci., 138 (2019), 223–239. https://doi.org/10.1007/s12064-019-00273-7 doi: 10.1007/s12064-019-00273-7
    [7] T. Shirin, A. K. M. Muraduzzaman, A. N. Alam, S. Sultana, M. Siddiqua, M. H. Khan, et al. Largest dengue outbreak of the decade with high fatality may be due to reemergence of DEN-3 serotype in Dhaka Bangladesh, necessitating immediate public health attention, New Microbes New Infect., 29 (2019), 100511. https://doi.org/10.1016/j.nmni.2019.01.007 doi: 10.1016/j.nmni.2019.01.007
    [8] Prothom Alo, The number of dengue victims has increased by three and a half million, 2019. Available from: https://www.prothomalo.com/bangladesh/article/1605652/
    [9] M. S. Hossain, R. Amin, A. A. Mosabbir, COVID-19 onslaught is masking the 2021 dengue outbreak in Dhaka, Bangladesh, PLoS Negl. Trop. Dis., 16 (2022), e0010130. https://doi.org/10.1371/journal.pntd.0010130 doi: 10.1371/journal.pntd.0010130
    [10] Mahbuba Chowdhury, Dengue is not under control at all, 2022. Available from: https://mzamin.com/news.php?news = 25147
    [11] The Daily Star, Dengue fever: Cases cross 14,000 mark, 321 hospitalised in a day, 2021. Available from: https://www.thedailystar.net/health/disease/news/dengue-fever-cases-cross-14000-mark-321-hospitalised-day-2174981
    [12] W. Y. Shen, Y. M. Chu, M. U. Rahman, I. Mahariq, A. Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, Results Phys., 28 (2021), 104582. https://doi.org/10.1016/j.rinp.2021.104582 doi: 10.1016/j.rinp.2021.104582
    [13] M. Rahman, S. Ahmad, M. Arfan, A. Akgül, F. Jarad, Fractional order mathematical model of serial killing with different choices of control strategy, Fractal Fractional, 6 (2022), 162. https://doi.org/10.3390/fractalfract6030162 doi: 10.3390/fractalfract6030162
    [14] C. Xu, M. U. Rahman, D. Baleanu, On fractional-order symmetric oscillator with offset-boosting control, Nonlinear Anal.: Modell. Control, 27 (2022), 994–1008. https://doi.org/10.15388/namc.2022.27.28279 doi: 10.15388/namc.2022.27.28279
    [15] H. Qu, X. Liu, X. Lu, M. ur Rahman, Z. She, Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order, Chaos, Solitons Fractals, 156 (2022), 111856. https://doi.org/10.1016/j.chaos.2022.111856 doi: 10.1016/j.chaos.2022.111856
    [16] Q. Haidong, M. Rahman, M. Arfan, Fractional model of smoking with relapse and harmonic mean type incidence rate under Caputo operator, J. Appl. Math. Comput., 69 (2023), 403–420. https://doi.org/10.1007/s12190-022-01747-6 doi: 10.1007/s12190-022-01747-6
    [17] T. Sardar, S. Rana, J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 511–525. https://doi.org/10.1016/j.cnsns.2014.08.009 doi: 10.1016/j.cnsns.2014.08.009
    [18] H. Al-Sulami, M. El-Shahed, J. J. Nieto, W. Shammakh, On fractional order dengue epidemic model, Math. Probl. Eng., 2014 (2014), 1–6. https://doi.org/10.1155/2014/456537 doi: 10.1155/2014/456537
    [19] M. Derouich, A. Boutayeb, Dengue fever: Mathematical modelling and computer simulation, Appl. Math. Comput., 177 (2006), 528–544 https://doi.org/10.1016/j.amc.2005.11.031 doi: 10.1016/j.amc.2005.11.031
    [20] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 71 (2013), 613–619. https://doi.org/10.1007/s11071-012-0475-2 doi: 10.1007/s11071-012-0475-2
    [21] I. Polubny, Fractional Differential Equations, Academic press, New York, 1999.
    [22] D. Qian, C. Li, R. P. Agarwal, P. J. Y. Wong, Stabilty analysis of fractional differential system with Riemann-Liouville derivative, Math. Comput. Modell., 52 (2010), 862–874. https://doi.org/10.1016/j.mcm.2010.05.016 doi: 10.1016/j.mcm.2010.05.016
    [23] A. A. Kilbas, J. J. Trujillo, Differential equation of fractional order: Methods, results and problems, Appl. Anal., 81 (2002), 435–493. https://doi.org/10.1080/0003681021000022032 doi: 10.1080/0003681021000022032
    [24] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to methods of their Solution and some of their Applications, Elsevier, Amsterdam, 1999.
    [25] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006. https://doi.org/10.1016/S0304-0208(06)80001-0
    [26] F. A. McRae, Monotone method for periodic boundary value problems of caputo fractional differential equations, Commun. Appl. Anal., 14 (2010), 73–79.
    [27] C. F. Lorenzo, T. T. Hartley, J. L. Adams, Time-varying initialization and corrected laplace transform of the caputo derivative, IFAC Proc. Vol., 46 (2013), 161–166. https://doi.org/10.3182/20130204-3-FR-4032.00189 doi: 10.3182/20130204-3-FR-4032.00189
    [28] Y. Li, Y. Q. Chen, Igor Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
    [29] H. Delvary, D. Baleanu, J. Sadati, Stability analysis of Caputo fractonal-order non-linear systems revisited, Nonlinear Dyn., 67 (2012), 2433–2439. https://doi.org/10.1007/s11071-011-0157-5 doi: 10.1007/s11071-011-0157-5
    [30] Y. Li, Y. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003
    [31] C. Vargas-De-Le'on, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul., 24 (2015), 75–85. https://doi.org/10.1016/j.cnsns.2014.12.013 doi: 10.1016/j.cnsns.2014.12.013
    [32] F. B. Agusto, M. A. Khan, Optimal control strategies for dengue transmission in Pakistan, Math. Biosci., 305 (2018), 102–121. https://doi.org/10.1016/j.mbs.2018.09.007 doi: 10.1016/j.mbs.2018.09.007
    [33] C. A. Manore, K. S. Hickmann, S. Xu, H. J. Wearing, J. M. Hyman, Comparing Dengue and Chikongunya emergence and endemic transmission in A.aegypti and A.albopictus, J. Theor. Biol., 356 (2014), 174–191. https://doi.org/10.1016/j.jtbi.2014.04.033 doi: 10.1016/j.jtbi.2014.04.033
    [34] M. A. Khan, C. Alfiniyah, E. Alzahrani, Analysis of dengue model with fractal-fractional Caputo-Fabrizio operator, Adv. Differ. Equations, 42 (2020), 1–23. https://doi.org/10.1186/s13662-020-02881-w doi: 10.1186/s13662-020-02881-w
    [35] J. Singh, D. Kumar, R. Swroop, Numerical solution of time and space-fractional coupled Burgers equations via homotopy algorithm, Alexandria Eng. J., 55 (2016), 1753–1763. https://doi.org/10.1016/j.aej.2016.03.028 doi: 10.1016/j.aej.2016.03.028
    [36] P. Veeresha, D. G. Prakasha, Z. Hammouch, An efficient approach for the model of thrombin receptor activation mechanism with Mittag-Leffler function, in The International Congress of the Moroccan Society of Applied Mathematics, 168 (2020), 44–60. https://doi.org/10.1007/978-3-030-62299-2_4
    [37] P. Veeresha, D. G. Prakasha, D. Baleanu, An efficient technique for fractional coupled system arisen in magneto thermoelasticity with rotation using Mittag-Leffler kernel, J. Comput. Nonlinear Dynam., 16 (2021), 011002. https://doi.org/10.1115/1.4048577 doi: 10.1115/1.4048577
    [38] P. V. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [39] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Science Publishers, Philadelphia, 1993.
    [40] H. S. Rodrigues, M. T. T. Monteiro, D. F. M. Torres, Sensitivity analysis in a dengue epidemiological model, in Conference Papers in Science, (2013), 721406. https://doi.org/10.1155/2013/721406
    [41] S. Akter, Z. Jin, A fractional order model of the COVID-19 outbreak in Bangladesh, Math. Biosci. Eng., 20 (2023), 2544–2565. http://doi.org./10.3934/mbe.2023119 doi: 10.3934/mbe.2023119
    [42] Reliefweb, Dengue Case Reporting, Updated on 04.11.2022, 2022. Available from: https://reliefweb.int/report/bangladesh/dengue-case-reporting-updated-04112022
    [43] Statista, Bangladesh: Total population from 2017 to 2027, 2022. Available from: https://www.statista.com/statistics/438167/total-population-of-bangladesh/
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1658) PDF downloads(143) Cited by(2)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog