Research article Special Issues

Stability analysis of chaotic generalized Lotka-Volterra system via active compound difference anti-synchronization method


  • Received: 23 November 2022 Revised: 18 February 2023 Accepted: 13 March 2023 Published: 17 March 2023
  • This work deals with a systematic approach for the investigation of compound difference anti-synchronization (CDAS) scheme among chaotic generalized Lotka-Volterra biological systems (GLVBSs). First, an active control strategy (ACS) of nonlinear type is described which is specifically based on Lyapunov's stability analysis (LSA) and master-slave framework. In addition, the biological control law having nonlinear expression is constructed for attaining asymptotic stability pattern for the error dynamics of the discussed GLVBSs. Also, simulation results through MATLAB environment are executed for illustrating the efficacy and correctness of considered CDAS approach. Remarkably, our attained analytical outcomes have been in outstanding conformity with the numerical outcomes. The investigated CDAS strategy has numerous significant applications to the fields of encryption and secure communication.

    Citation: Harindri Chaudhary, Mohammad Sajid, Santosh Kaushik, Ali Allahem. Stability analysis of chaotic generalized Lotka-Volterra system via active compound difference anti-synchronization method[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 9410-9422. doi: 10.3934/mbe.2023413

    Related Papers:

  • This work deals with a systematic approach for the investigation of compound difference anti-synchronization (CDAS) scheme among chaotic generalized Lotka-Volterra biological systems (GLVBSs). First, an active control strategy (ACS) of nonlinear type is described which is specifically based on Lyapunov's stability analysis (LSA) and master-slave framework. In addition, the biological control law having nonlinear expression is constructed for attaining asymptotic stability pattern for the error dynamics of the discussed GLVBSs. Also, simulation results through MATLAB environment are executed for illustrating the efficacy and correctness of considered CDAS approach. Remarkably, our attained analytical outcomes have been in outstanding conformity with the numerical outcomes. The investigated CDAS strategy has numerous significant applications to the fields of encryption and secure communication.



    加载中


    [1] A. J. Lotka, Elements of physical biology, Sci. Prog., 21 (1926), 341–343.
    [2] F. M. Scudo, Vito Volterra and theoretical ecology, Theor. Popul. Biol., 2 (1971), 1–23. https://doi.org/10.1016/0040-5809(71)90002-5 doi: 10.1016/0040-5809(71)90002-5
    [3] A. Arneodo, P. Coullet, C. Tresser, Occurence of strange attractors in three-dimensional Volterra equations, Phys. Lett. A, 79 (1980), 259–263. https://doi.org/10.1016/0375-9601(80)90342-4 doi: 10.1016/0375-9601(80)90342-4
    [4] N. Samardzija, L. D. Greller, Explosive route to chaos through a fractal torus in a generalized Lotka-Volterra model, Bull. Math. Biol., 50 (1988), 465–491. https://doi.org/10.1007/BF02458847 doi: 10.1007/BF02458847
    [5] P. Gatabazi, J. Mba, E. Pindza, C. Labuschagne, Grey Lotka-Volterra models with application to cryptocurrencies adoption, Chaos Solitons Fractals, 122 (2019), 47–57. https://doi.org/10.1016/j.chaos.2019.03.006 doi: 10.1016/j.chaos.2019.03.006
    [6] A. Hening, D. H. Nguyen, Stochastic Lotka-Volterra food chains, J. Math. Biol., 77 (2018), 135–163. https://doi.org/10.1007/s00285-017-1192-8 doi: 10.1007/s00285-017-1192-8
    [7] B. H. Tsai, C. J. Chang, C. H. Chang, Elucidating the consumption and Co2 emissions of fossil fuels and low-carbon energy in the united states using Lotka-Volterra models, Energy, 100 (2016), 416–424. ttps://doi.org/10.1016/j.energy.2015.12.045 doi: 10.1016/j.energy.2015.12.045
    [8] J. Xiong, X. Li, H. Wang, The survival analysis of a stochastic Lotka-Volterra competition model with a coexistence equilibrium, Math. Biosci., 16 (2019), 2717–2737. https://doi.org/10.3934/mbe.2019135 doi: 10.3934/mbe.2019135
    [9] A. Khan, U. Nigar, H. Chaudhary, Secure communication and synchronization dynamics in chaotic Chua's system via adaptive sliding mode control technique, Int. J. Appl. Comput. Math., 8 (2022), 1–20. https://doi.org/10.1007/s40819-022-01378-2 doi: 10.1007/s40819-022-01378-2
    [10] P. Muthukumar, Secure audio signal encryption based on triple compound-combination synchronization of fractional-order dynamical systems, Int. J. Dyn. Control, 10 (2022), 2053–2071. https://doi.org/10.1007/s40435-022-00942-4 doi: 10.1007/s40435-022-00942-4
    [11] X. J. Tong, M. Zhang, Z. Wang, Y. Liu, J. Ma, An image encryption scheme based on a new hyperchaotic finance system, Optik, 126 (2015), 2445–2452. https://doi.org/10.1016/j.ijleo.2015.06.018 doi: 10.1016/j.ijleo.2015.06.018
    [12] B. Sahoo, S. Poria, The chaos and control of a food chain model supplying additional food to top-predator, Chaos Solitons Fractals, 58 (2014), 52–64. https://doi.org/10.1016/j.chaos.2013.11.008 doi: 10.1016/j.chaos.2013.11.008
    [13] B. Patle, D. Parhi, A. Jagadeesh, S. K. Kashyap, Matrix-binary codes based genetic algorithm for path planning of mobile robot, Comput. Electr. Eng., 67 (2018), 708–728. https://doi.org/10.1016/j.compeleceng.2017.12.011 doi: 10.1016/j.compeleceng.2017.12.011
    [14] K. Bouallegue, A new class of neural networks and its applications, Neurocomputing, 249 (2017), 28–47. https://doi.org/10.1016/j.neucom.2017.03.006 doi: 10.1016/j.neucom.2017.03.006
    [15] K. Fallahi, H. Leung, A chaos secure communication scheme based on multiplication modulation, Commun. Nonlinear Sci. Numer. Simul., 15 (2010), 368–383. https://doi.org/10.1016/j.cnsns.2009.03.022 doi: 10.1016/j.cnsns.2009.03.022
    [16] J. He, J. Cai, J. Lin, Synchronization of hyperchaotic systems with multiple unknown parameters and its application in secure communication, Optik, 127 (2016), 2502–2508. https://doi.org/10.1016/j.ijleo.2015.11.055 doi: 10.1016/j.ijleo.2015.11.055
    [17] A. Khan, U. Nigar, Combination projective synchronization in fractional-order chaotic system with disturbance and uncertainty, Int. J. Appl. Comput. Math., 6 (2020), 1–22. https://doi.org/10.1007/s40819-019-0748-2 doi: 10.1007/s40819-019-0748-2
    [18] X. Wu, Z. Fu, J. Kurths, A secure communication scheme based generalized function projective synchronization of a new 5d hyperchaotic system, Phys. Scr., 90 (2015), 045210. https://doi.org/10.1088/0031-8949/90/4/045210 doi: 10.1088/0031-8949/90/4/045210
    [19] J. S. Lin, C. F. Huang, T. L. Liao, J. J. Yan, Design and implementation of digital secure communication based on synchronized chaotic systems, Digital Signal Process., 20 (2010), 229–237. https://doi.org/10.1016/j.dsp.2009.04.006 doi: 10.1016/j.dsp.2009.04.006
    [20] B. Naderi, H. Kheiri, Exponential synchronization of chaotic system and application in secure communication, Optik, 127 (2016), 2407–2412. https://doi.org/10.1016/j.ijleo.2015.11.175 doi: 10.1016/j.ijleo.2015.11.175
    [21] E. M. Ngouonkadi, H. Fotsin, P. L. Fotso, Implementing a memristive Van der pol oscillator coupled to a linear oscillator: synchronization and application to secure communication, Phys. Scr., 89 (2014), 035201. https://doi.org/10.1088/0031-8949/89/03/035201 doi: 10.1088/0031-8949/89/03/035201
    [22] H. Dedieu, M. P. Kennedy, M. Hasler, Chaos shift keying: modulation and demodulation of a chaotic carrier using self-synchronizing Chua's circuits, IEEE Trans. Circuits Syst. II, 40 (1993), 634–642. https://doi.org/10.1109/81.222795 doi: 10.1109/81.222795
    [23] Y. Y. Hou, H. C. Chen, J. F. Chang, J. J. Yan, T. L. Liao, Design and implementation of the sprott chaotic secure digital communication systems, Appl. Math. Comput., 218 (2012), 11799–11805. https://doi.org/10.1016/j.amc.2012.04.076 doi: 10.1016/j.amc.2012.04.076
    [24] X. Wu, H. Wang and H. Lu, Modified generalized projective synchronization of a new fractional-order hyperchaotic system and its application to secure communication, Nonlinear Anal. Real World Appl., 13 (2012), 1441–1450. https://doi.org/10.1016/j.nonrwa.2011.11.008 doi: 10.1016/j.nonrwa.2011.11.008
    [25] L. M. Pecora, T. L. Carroll, Synchronization in chaotic systems, Phys. Rev. Lett., 64 (1990), 821. https://doi.org/10.1103/PhysRevLett.64.821 doi: 10.1103/PhysRevLett.64.821
    [26] A. Khan, N. Khan, H. Chaudhary, U. Nigar, Analysis and control of complex variable hyper-chaotic robinovich system with fractional derivative, Int. J. Appl. Comput. Math., 8 (2022), 1–23. https://doi.org/10.1007/s40819-022-01463-6 doi: 10.1007/s40819-022-01463-6
    [27] J. Ma, L. Mi, P. Zhou, Y. Xu, T. Hayat, Phase synchronization between two neurons induced by coupling of electromagnetic field, Appl. Math. Comput., 307 (2017), 321–328. https://doi.org/10.1016/j.amc.2017.03.002 doi: 10.1016/j.amc.2017.03.002
    [28] D. Li, X. Zhang, Impulsive synchronization of fractional order chaotic systems with time-delay, Neurocomputing, 216 (2016), 39–44. https://doi.org/10.1016/j.neucom.2016.07.013 doi: 10.1016/j.neucom.2016.07.013
    [29] H. Qiu, X. Xu, Z. Jiang, K. Sun, C. Cao, Dynamical behaviors, circuit design, and synchronization of a novel symmetric chaotic system with coexisting attractors, Sci. Rep., 13 (2023), 1893. https://doi.org/10.1038/s41598-023-28509-z doi: 10.1038/s41598-023-28509-z
    [30] S. Vaidyanathan, S. Sampath, Anti-synchronization of four-wing chaotic systems via sliding mode control, Int. J. Autom. Comput., 9 (2012), 274–279. https://doi.org/10.1007/s11633-012-0644-2 doi: 10.1007/s11633-012-0644-2
    [31] Y. Wang, C. Sun, Z. Wang, J. Sun, Projection synchronization of three-dimensional chaotic systems with active control based on dna strand displacement, IEEE Trans. NanoBioscience, 2023 (2023). https://doi.org/10.1109/TNB.2023.3241652
    [32] V. K. Yadav, G. Prasad, M. Srivastava, S. Das, Triple compound synchronization among eight chaotic systems with external disturbances via nonlinear approach, Differ. Equations Dyn. Syst., 2019 (2019), 1–24. https://doi.org/10.1080/2058802X.2019.1674539 doi: 10.1080/2058802X.2019.1674539
    [33] S. H. Yuningsih, E. Rusyaman, S. Vaidyanathan, A. Sambas, Investigation of chaos behavior and integral sliding mode control on financial risk model, AIMS Math., 7 (2022), 18377–18392. https://doi.org/10.3934/math.20221012 doi: 10.3934/math.20221012
    [34] R. Zhang, X. Xi, H. Tian, Z. Wang, Dynamical analysis and finite-time synchronization for a chaotic system with hidden attractor and surface equilibrium, Axioms, 11 (2022), 579. https://doi.org/10.3390/axioms11110579 doi: 10.3390/axioms11110579
    [35] H. Chaudhary, A. Khan, U. Nigar, S. Kaushik, M. Sajid, An effective synchronization approach to stability analysis for chaotic generalized Lotka-Volterra biological models using active and parameter identification methods, Entropy, 24 (2022), 529. https://doi.org/10.3390/e24040529 doi: 10.3390/e24040529
    [36] H. Chaudhary, A. Khan, M. Sajid, An investigation on microscopic chaos controlling of identical chemical reactor system via adaptive controlled hybrid projective synchronization, Eur. Phys. J. Spec. Top., 231 (2022), 453–463. https://doi.org/10.1140/epjs/s11734-021-00404-6 doi: 10.1140/epjs/s11734-021-00404-6
    [37] A. El-Gohary, M. Yassen, Optimal control and synchronization of Lotka-Volterra model, Chaos Solitons Fractals, 12 (2001), 2087–2093. https://doi.org/10.1016/S0960-0779(00)00023-0 doi: 10.1016/S0960-0779(00)00023-0
    [38] S. Vaidyanathan, Hybrid synchronization of the generalized Lotka-Volterra three-species biological systems via adaptive control, Int. J. PharmTech Res., 9 (2016), 179–192.
    [39] S. Vaidyanathan, Adaptive biological control of generalized Lotka-Volterra three-species biological system, Int. J. PharmTech Res., 8 (2015), 622–631.
    [40] T. Khan, H. Chaudhary, Estimation and identifiability of parameters for generalized Lotka-Volterra biological systems using adaptive controlled combination difference anti-synchronization, Differ. Equations Dyn. Syst., 28 (2020), 515–526. https://doi.org/10.1007/s12591-020-00534-8 doi: 10.1007/s12591-020-00534-8
    [41] T. Khan, H. Chaudhary, Controlling and synchronizing combined effect of chaos generated in generalized Lotka-Volterra three species biological model using active control design, Appl. Appl. Math., 15 (2020), 25. https://doi.org/10.12968/nuwa.2020.15.25 doi: 10.12968/nuwa.2020.15.25
    [42] E. W. Bai, K. E. Lonngren, Synchronization of two Lorenz systems using active control, Chaos Solitons Fractals, 8 (1997), 51–58. https://doi.org/10.1016/S0960-0779(96)00060-4 doi: 10.1016/S0960-0779(96)00060-4
    [43] J. Sun, Y. Shen, Q. Yin, C. Xu, Compound synchronization of four memristor chaotic oscillator systems and secure communication, Chaos Interdiscip. J. Nonlinear Sci., 23 (2013), 013140. https://doi.org/10.1063/1.4794794 doi: 10.1063/1.4794794
    [44] A. Khan, P. Trikha, Compound difference anti-synchronization between chaotic systems of integer and fractional order, SN Appl. Sci., 757 (2019), 1–13. https://doi.org/10.1007/s42452-019-0776-x doi: 10.1007/s42452-019-0776-x
    [45] K. Ojo, A. Njah, O. Olusola, Compound-combination synchronization of chaos in identical and different orders chaotic systems, Arch. Control Sci., 25 (2015), 463–490. https://doi.org/10.1515/acsc-2015-0030 doi: 10.1515/acsc-2015-0030
    [46] J. Sun, Y. Wang, Y. Wang, G. Cui, Y. Shen, Compound-combination synchronization of five chaotic systems via nonlinear control, Optik, 127 (2016), 4136–4143. https://doi.org/10.1016/j.ijleo.2016.01.018 doi: 10.1016/j.ijleo.2016.01.018
    [47] L. Perko, Differential Equations and Dynamical Systems, Springer Science & Business Media, 2013.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1465) PDF downloads(61) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog