Research article

Classification of Alzheimer's disease using robust TabNet neural networks on genetic data


  • Received: 28 December 2022 Revised: 13 February 2023 Accepted: 16 February 2023 Published: 02 March 2023
  • Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and its onset is significantly associated with genetic factors. Being the capabilities of high specificity and accuracy, genetic testing has been considered as an important technique for AD diagnosis. In this paper, we presented an improved deep learning (DL) algorithm, namely differential genes screening TabNet (DGS-TabNet) for AD binary and multi-class classifications. For performance evaluation, our proposed approach was compared with three novel DLs of multi-layer perceptron (MLP), neural oblivious decision ensembles (NODE), TabNet as well as five classical machine learnings (MLs) including decision tree (DT), random forests (RF), gradient boosting decision tree (GBDT), light gradient boosting machine (LGBM) and support vector machine (SVM) on the public data set of gene expression omnibus (GEO). Moreover, the biological interpretability of global important genetic features implemented for AD classification was revealed by the Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO). The results demonstrated that our proposed DGS-TabNet achieved the best performance with an accuracy of 93.80% for binary classification, and with an accuracy of 88.27% for multi-class classification. Meanwhile, the gene pathway analyses demonstrated that there existed two most important global genetic features of AVIL and NDUFS4 and those obtained 22 feature genes were partially correlated with AD pathogenesis. It was concluded that the proposed DGS-TabNet could be used to detect AD-susceptible genes and the biological interpretability of susceptible genes also revealed the potential possibility of being AD biomarkers.

    Citation: Yu Jin, Zhe Ren, Wenjie Wang, Yulei Zhang, Liang Zhou, Xufeng Yao, Tao Wu. Classification of Alzheimer's disease using robust TabNet neural networks on genetic data[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8358-8374. doi: 10.3934/mbe.2023366

    Related Papers:

  • Alzheimer's disease (AD) is one of the most common neurodegenerative diseases and its onset is significantly associated with genetic factors. Being the capabilities of high specificity and accuracy, genetic testing has been considered as an important technique for AD diagnosis. In this paper, we presented an improved deep learning (DL) algorithm, namely differential genes screening TabNet (DGS-TabNet) for AD binary and multi-class classifications. For performance evaluation, our proposed approach was compared with three novel DLs of multi-layer perceptron (MLP), neural oblivious decision ensembles (NODE), TabNet as well as five classical machine learnings (MLs) including decision tree (DT), random forests (RF), gradient boosting decision tree (GBDT), light gradient boosting machine (LGBM) and support vector machine (SVM) on the public data set of gene expression omnibus (GEO). Moreover, the biological interpretability of global important genetic features implemented for AD classification was revealed by the Kyoto encyclopedia of genes and genomes (KEGG) and gene ontology (GO). The results demonstrated that our proposed DGS-TabNet achieved the best performance with an accuracy of 93.80% for binary classification, and with an accuracy of 88.27% for multi-class classification. Meanwhile, the gene pathway analyses demonstrated that there existed two most important global genetic features of AVIL and NDUFS4 and those obtained 22 feature genes were partially correlated with AD pathogenesis. It was concluded that the proposed DGS-TabNet could be used to detect AD-susceptible genes and the biological interpretability of susceptible genes also revealed the potential possibility of being AD biomarkers.



    加载中


    [1] X. Liu, D. Hou, F. Lin, J. Luo, J. Xie, Y. Wang, et al., The role of neurovascular unit damage in the occurrence and development of Alzheimer's disease, Rev. Neurosci., 30 (2019), 477–484. https://doi.org/10.1515/revneuro-2018-0056 doi: 10.1515/revneuro-2018-0056
    [2] F. Falahati, E. Westman, A. Simmons, Multivariate data analysis and machine learning in Alzheimer's disease with a focus on structural magnetic resonance imaging, J. Alzheimers Dis., 41 (2014), 685–708. https://doi.org/10.3233/JAD-131928 doi: 10.3233/JAD-131928
    [3] A. B. Sallim, A. A. Sayampanathan, A. Cuttilan, R. Chun-Man Ho, Prevalence of mental health disorders among caregivers of patients with Alzheimer disease, J. Am. Med. Dir. Assoc., 16 (2015), 1034–1041. https://doi.org/10.1016/j.jamda.2015.09.007 doi: 10.1016/j.jamda.2015.09.007
    [4] E. L. G. E. Koedam, V. Lauffer, A. E. van der Vlies, W. M. van der Flier, P. Scheltens, Y. A. L. Pijnenburg, Early-versus late-onset Alzheimer's disease: More than age alone, J. Alzheimers Dis., 19 (2010), 1401–1408. https://doi.org/10.3233/JAD-2010-1337 doi: 10.3233/JAD-2010-1337
    [5] Y. Freudenberg-Hua, W. Li, P. Davies, The role of genetics in advancing precision medicine for Alzheimer's disease—a narrative review, Front. Med., 5 (2018), 108. https://doi.org/10.3389/fmed.2018.00108 doi: 10.3389/fmed.2018.00108
    [6] E. Giacobini, G. Gold, Alzheimer disease therapy—moving from amyloid-β to tau, Nat. Rev. Neurol., 9 (2013), 677–686. https://doi.org/10.1038/nrneurol.2013.223 doi: 10.1038/nrneurol.2013.223
    [7] R. J. Jutten, S. A. M. Sikkes, R. E. Amariglio, R. F. Buckley, M. J. Properzi, G. A. Marshall, et al., Identifying sensitive measures of cognitive decline at different clinical stages of Alzheimer's disease, J. Int. Neuropsychol. Soc., 27 (2021), 426–438. https://doi.org/10.1017/S1355617720000934 doi: 10.1017/S1355617720000934
    [8] D. A. McGrowder, F. Miller, K. Vaz, C. Nwokocha, C. Wilson-Clarke, M. Anderson-Cross, et al., Cerebrospinal fluid biomarkers of Alzheimer's disease: Current evidence and future perspectives, Brain Sci., 11 (2021), 215. https://doi.org/10.3390/brainsci11020215 doi: 10.3390/brainsci11020215
    [9] R. L. Cazzato, J. Garnon, B. Shaygi, G. Koch, G. Tsoumakidou, J. Caudrelier, et al., PET/CT-guided interventions: Indications, advantages, disadvantages and the state of the art, Minimally Invasive Ther. Allied Technol., 27 (2018), 27–32. https://doi.org/10.1080/13645706.2017.1399280 doi: 10.1080/13645706.2017.1399280
    [10] M. Amini, M. M. Pedram, A. Moradi, M. Jamshidi, M. Ouchani, Single and combined neuroimaging techniques for Alzheimer's disease detection, Comput. Intell. Neurosci., 2021 (2021), 9523039. https://doi.org/10.1155/2021/9523039 doi: 10.1155/2021/9523039
    [11] C. E. Wierenga, M. W. Bondi, Use of functional magnetic resonance imaging in the early identification of Alzheimer's disease, Neuropsychol. Rev., 17 (2007), 127–143. https://doi.org/10.1007/s11065-007-9025-y doi: 10.1007/s11065-007-9025-y
    [12] N. J. Gong, C. C. Chan, L. M. Leung, C. S. Wong, R. Dibb, C. Liu, Differential microstructural and morphological abnormalities in mild cognitive impairment and Alzheimer's disease: Evidence from cortical and deep gray matter, Hum. Brain Mapp., 38 (2017), 2495–2508. https://doi.org/10.1002/hbm.23535 doi: 10.1002/hbm.23535
    [13] C. Van Cauwenberghe, C. Van Broeckhoven, K. Sleegers, The genetic landscape of Alzheimer disease: Clinical implications and perspectives, Genet. Med., 18 (2016), 421–430. https://doi.org/10.1038/gim.2015.117 doi: 10.1038/gim.2015.117
    [14] B. L. Romero-Rosales, J. G. Tamez-Pena, H. Nicolini, M. G. Moreno-Treviño, V. Trevino, Improving predictive models for Alzheimer's disease using GWAS data by incorporating misclassified samples modeling, PLoS One, 15 (2020). https://doi.org/10.1371/journal.pone.0232103 doi: 10.1371/journal.pone.0232103
    [15] T. Jo, K. Nho, A. J. Saykin, Deep learning in Alzheimer's disease: diagnostic classification and prognostic prediction using neuroimaging data, Front. Aging Neurosci., 11 (2019). https://doi.org/10.3389/fnagi.2019.00220 doi: 10.3389/fnagi.2019.00220
    [16] J. Ha, MDMF: predicting miRNA-disease association based on matrix factorization with disease similarity constraint, J. Pers. Med., 12 (2022). https://doi.org/10.3390/jpm12060885 doi: 10.3390/jpm12060885
    [17] J. Ha, SMAP: Similarity-based matrix factorization framework for inferring miRNA-disease association, Knowl-Based Syst., 263 (2023). https://doi.org/10.1016/j.knosys.2023.110295 doi: 10.1016/j.knosys.2023.110295
    [18] J. De. Velasco Oriol, E. E. Vallejo, K. Estrada, Benchmarking machine learning models for late-onset Alzheimer's disease prediction from genomic data, BMC Bioinf., 20 (2019), 1–17. https://doi.org/10.1186/s12859-019-3158-x doi: 10.1186/s12859-018-2565-8
    [19] L. Xu, G. Liang, C. Liao, G. D. Chen, C. C. Chang, An efficient classifier for Alzheimer's disease genes identification, Molecules, 23 (2018), 3140. https://doi.org/10.3390/molecules23123140 doi: 10.3390/molecules23123140
    [20] D. Castillo-Barnes, L. Su, J. Ramírez, D. Salas-Gonzalez, F. J. Martinez-Murcia, I. A. Illan, et al., Autosomal dominantly inherited Alzheimer disease: Analysis of genetic subgroups by machine learning, Inf. Fusion, 58 (2020), 153–167. https://doi.org/10.1016/j.inffus.2020.01.001 doi: 10.1016/j.inffus.2020.01.001
    [21] N. Voyle, A. Keohane, S. Newhouse, K. Lunnon, C. Johnston, H. Soininen, et al., A pathway based classification method for analyzing gene expression for Alzheimer's disease diagnosis, J. Alzheimers Dis., 49 (2016), 659–669. https://doi.org/10.3233/JAD-150440 doi: 10.3233/JAD-150440
    [22] E. Moradi, M. Marttinen, T. Häkkinen, M. Hiltunen, M. Nykter, Supervised pathway analysis of blood gene expression profiles in Alzheimer's disease, Neurobiol. Aging, 84 (2019), 98–108. https://doi.org/10.1016/j.neurobiolaging.2019.07.004 doi: 10.1016/j.neurobiolaging.2019.07.004
    [23] D. Cheng, M. Liu, Classification of Alzheimer's disease by cascaded convolutional neural networks using PET images, in Machine Leaening in Medical Imaging, Springer, (2017), 106–113. https://doi.org/10.1007/978-3-319-67389-9_13
    [24] M. Grassi, G. Perna, D. Caldirola, K. Schruers, R. Duara, D. A. Loewenstein, A clinically-translatable machine learning algorithm for the prediction of Alzheimer's disease conversion in individuals with mild and premild cognitive impairment, J. Alzheimers Dis., 61 (2018), 1555–1573. https://doi.org/10.3233/JAD-170547 doi: 10.3233/JAD-170547
    [25] S. M. Plis, D. R. Hjelm, R. Salakhutdinov, E. A. Allen, H. J. Bockholt, J. D. Long, et al., Deep learning for neuroimaging: a validation study, Front. Neurosci., 8 (2014). https://doi.org/10.3389/fnins.2014.00229 doi: 10.3389/fnins.2014.00229
    [26] S. Wang, H. Wang, Y. Shen, X. Wang, Automatic recognition of mild cognitive impairment and Alzheimers disease using ensemble based 3D densely connected convolutional networks, in 17th IEEE International Conference on Machine Learning and Applications (ICMLA), (2018), 517–523. https://doi.org/10.1109/icmla.2018.00083
    [27] W. Yu, B. Lei, M. K. Ng, A. C. Cheung, Y. Shen, S. Wang, Tensorizing GAN with high-order pooling for Alzheimer's disease assessment, IEEE Trans. Neural Networks Learn. Syst., 33 (2022), 4945–4959. https://doi.org/10.1109/TNNLS.2021.3063516 doi: 10.1109/TNNLS.2021.3063516
    [28] W. Yu, B. Lei, S. Wang, Y. Liu, Z. Feng, Y. Hu, et al., Morphological feature visualization of Alzheimer's disease via multidirectional perception GAN, IEEE Trans. Neural Networks Learn. Syst., 2022 (2022), 1–15. https://doi.org/10.1109/TNNLS.2021.3118369 doi: 10.1109/TNNLS.2021.3118369
    [29] T. Lee, H. Lee, Prediction of Alzheimer's disease using blood gene expression data, Sci. Rep., 10 (2020), 3485. https://doi.org/10.1038/s41598-020-60595-1 doi: 10.1038/s41598-020-60595-1
    [30] N. Mahendran, P. Durai Raj Vincent, A deep learning framework with an embedded-based feature selection approach for the early detection of the Alzheimer's disease, Comput. Biol. Med., 141 (2022), 105056. https://doi.org/10.1016/j.compbiomed.2021.105056 doi: 10.1016/j.compbiomed.2021.105056
    [31] C. Park, J. Ha, S. Park, Prediction of Alzheimer's disease based on deep neural network by integrating gene expression and DNA methylation dataset, Expert Syst. Appl., 140 (2020). https://doi.org/10.1016/j.eswa.2019.112873 doi: 10.1016/j.eswa.2019.112873
    [32] Y. Liu, Z. Li, Q. Ge, N. Lin, M. Xiong, Deep feature selection and causal analysis of Alzheimer's disease, Front. Neurosci., 13 (2019). https://doi.org/10.3389/fnins.2019.01198 doi: 10.3389/fnins.2019.01198
    [33] S. Spasov, L. Passamonti, A. Duggento, P. Liò, N. Toschi, A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease, NeuroImage, 189 (2019), 276–287. https://doi.org/10.1016/j.neuroimage.2019.01.031 doi: 10.1016/j.neuroimage.2019.01.031
    [34] S. Gauthier, B. Reisberg, M. Zaudig, R. C. Petersen, K. Ritchie, K. Broich, et al., Mild cognitive impairment, Lancet, 367 (2006), 1262–1270. https://doi.org/10.1016/S0140-6736(06)68542-5 doi: 10.1016/S0140-6736(06)68542-5
    [35] M. Grundman, R. C. Petersen, S. H. Ferris, R. G. Thomas, P. S. Aisen, D. A. Bennett, et al., Mild cognitive impairment can be distinguished from Alzheimer disease and normal aging for clinical trials, Arch. Neurol., 61 (2004), 59–66. https://doi.org/10.1001/archneur.61.1.59 doi: 10.1001/archneur.61.1.59
    [36] A. Kadra, M. Lindauer, F. Hutter, J. Grabocka, Well-tuned simple nets excel on tabular datasets, 2021.
    [37] S. Popov, S. Morozov, A. Babenko, Neural oblivious decision ensembles for deep learning on tabular data, arXiv preprint, 2019, arXiv: 1909.06312. https://doi.org/10.48550/arXiv.1909.06312
    [38] C. Shah, Q. Du, Y. Xu, Enhanced TabNet: attentive interpretable tabular learning for hyperspectral image classification, Remote Sens., 14 (2022), 716. https://doi.org/10.3390/rs14030716 doi: 10.3390/rs14030716
    [39] Y. Y. Song, Y. Lu, Decision tree methods: applications for classification and prediction, Shanghai Arch Psychiatry, 27 (2015), 130–135.
    [40] G. Biau, E. Scornet, A random forest guided tour, TEST, 25 (2016), 197–227. https://doi.org/10.1007/s11749-016-0481-7 doi: 10.1007/s11749-016-0481-7
    [41] C. Zhang, C. Liu, X. Zhang, G. Almpanidis, An up-to-date comparison of state-of-the-art classification algorithms, Expert Syst. Appl., 82 (2017), 128–150. https://doi.org/10.1016/j.eswa.2017.04.003 doi: 10.1016/j.eswa.2017.04.003
    [42] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, et al., Lightgbm: A highly efficient gradient boosting decision tree, 2017.
    [43] M. Pirooznia, J. Y. Yang, M. Q. Yang, Y. Deng, A comparative study of different machine learning methods on microarray gene expression data, BMC Genomics, 9 (2008). https://doi.org/10.1186/1471-2164-9-S1-S13 doi: 10.1186/1471-2164-9-S1-S13
    [44] Q. S. Zhang, S. C. Zhu, Visual interpretability for deep learning: a survey, Front. Inf. Technol. Electron. Eng., 19 (2018), 27–39. https://doi.org/10.1631/FITEE.1700808 doi: 10.1631/FITEE.1700808
    [45] S. Lovestone, P. Francis, I. Kloszewska, P. Mecocci, A. Simmons, H. Soininen, et al., AddNeuroMed-the european collaboration for the discovery of novel biomarkers for Alzheimer's disease, Ann. N. Y. Acad. Sci., 1180 (2009), 36–46. https://doi.org/10.1111/j.1749-6632.2009.05064.x doi: 10.1111/j.1749-6632.2009.05064.x
    [46] S. Sood, I. J. Gallagher, K. Lunnon, E. Rullman, A. Keohane, H. Crossland, et al., A novel multi-tissue RNA diagnostic of healthy ageing relates to cognitive health status, Genome Biol., 16 (2015), 185. https://doi.org/10.1186/s13059-015-0750-x doi: 10.1186/s13059-015-0750-x
    [47] S. Davis, P. S. Meltzer, GEOquery: a bridge between the Gene Expression Omnibus (GEO) and BioConductor, Bioinformatics, 23 (2007), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254 doi: 10.1093/bioinformatics/btm254
    [48] X. Li, H. Wang, J. Long, G. Pan, T. He, O. Anichtchik, et al., Systematic analysis and biomarker study for Alzheimer's disease, Sci. Rep., 8 (2018), 17394. https://doi.org/10.1038/s41598-018-35789-3 doi: 10.1038/s41598-018-35789-3
    [49] A. Antonell, A. Llado, J. Altirriba, T. Botta-Orfila, M. Balasa, M. Fernandez, et al., A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer's disease, Neurobiol. Aging, 34 (2013), 1772–1778. https://doi.org/10.1016/j.neurobiolaging.2012.12.026 doi: 10.1016/j.neurobiolaging.2012.12.026
    [50] S. Arık, T. Pfister, TabNet: Attentive interpretable tabular learning, in Proceedings of the AAAI Conference on Artificial Intelligence, 35 (2021), 6679–6687. https://doi.org/10.1609/aaai.v35i8.16826
    [51] N. N. Parikshak, M. J. Gandal, D. H. Geschwind, Systems biology and gene networks in neurodevelopmental and neurodegenerative disorders, Nat. Rev. Genet., 16 (2015), 441–458. https://doi.org/10.1038/nrg3934 doi: 10.1038/nrg3934
    [52] G. K. Smyth, limma: Linear models for microarray data, in Bioinformatics and Computational Biology Solutions Using R and Bioconductor, Springer, (2005), 397–420. https://doi.org/10.1007/0-387-29362-0_23
    [53] C. Garbin, X. Zhu, O. Marques, Dropout vs. batch normalization: an empirical study of their impact to deep learning, Multimedia Tools Appl., 79 (2020), 12777–12815. https://doi.org/10.1007/s11042-019-08453-9 doi: 10.1007/s11042-019-08453-9
    [54] Y. N. Dauphin, A. Fan, M. Auli, D. Grangier, Language modeling with gated convolutional networks, in Conference on Machine Learning, (2017), 933–941.
    [55] J. Gehring, M. Auli, D. Grangier, D. Yarats, Y. N. Dauphin, Convolutional sequence to sequence learning, in Proceedings of the 34th International Conference on Machine Learning, 70 (2017), 1243–1252.
    [56] A. Martins, R. Astudillo, From softmax to sparsemax: a sparse model of attention and multi-label classification, in Proceedings of the 33rd International Conference on Machine Learning, 48 (2016), 1614–1623.
    [57] N. Deepa, S. P. Chokkalingam, Optimization of VGG16 utilizing the Arithmetic Optimization Algorithm for early detection of Alzheimer's disease, Biomed. Signal Process. Control, 74 (2022), 103455. https://doi.org/10.1016/j.bspc.2021.103455 doi: 10.1016/j.bspc.2021.103455
    [58] M. B. Kursa, W. R. Rudnicki, Feature selection with the Boruta package, J. Stat. Software, 36 (2010), 1–13. https://doi.org/10.18637/jss.v036.i11 doi: 10.18637/jss.v036.i11
    [59] A. Kulshrestha, O. Farooq, Seizure prediction using fybrid features, in IEEE 7th Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON), (2020), 1–6. https://doi.org/10.1109/upcon50219.2020.9376552
    [60] R. Martinez-Cantin, Bayesian optimization with adaptive kernels for robot control, in IEEE International Conference on Robotics and Automation (ICRA), (2017), 3350–3356. https://doi.org/10.1109/ICRA.2017.7989380
    [61] T. Wu, E. Hu, S. Xu, M. Chen, P. Guo, Z. Dai, et al., ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data, Innovation, 2 (2021), 100141. https://doi.org/10.1016/j.xinn.2021.100141 doi: 10.1016/j.xinn.2021.100141
    [62] The Gene Ontology Consortium, The gene ontology resource: 20 years and still GOing strong, Nucleic Acids Res., 47 (2019), 330–338. https://doi.org/10.1093/nar/gky1055 doi: 10.1093/nar/gky1055
    [63] J. Krawczuk, T. Łukaszuk, The feature selection bias problem in relation to high-dimensional gene data, Artif. Intell. Med., 66 (2016), 63–71. https://doi.org/10.1016/j.artmed.2015.11.001 doi: 10.1016/j.artmed.2015.11.001
    [64] S. S. Mehta, N. S. Lingayat, Development of SVM based classification techniques for the delineation of wave components in 12-lead electrocardiogram, Biomed. Signal Process. Control, 3 (2008), 341–349. https://doi.org/10.1016/j.bspc.2008.04.002 doi: 10.1016/j.bspc.2008.04.002
    [65] Z. Tümer, P. J. P. Croucher, L. R. Jensen, J. Hampe, C. Hansen, V. Kalscheuer, et al., Genomic structure, chromosome mapping and expression analysis of the human AVIL gene, and its exclusion as a candidate for locus for inflammatory bowel disease at 12q13–14 (IBD2), Gene, 288 (2002), 179–185. https://doi.org/10.1016/S0378-1119(02)00478-X doi: 10.1016/S0378-1119(02)00478-X
    [66] S. Hong, V. F. Beja-Glasser, B. M. Nfonoyim, A. Frouin, S. Li, S. Ramakrishnan, et al., Complement and microglia mediate early synapse loss in Alzheimer mouse models, Science, 352 (2016), 712–716. https://doi.org/10.1126/science.aad8373 doi: 10.1126/science.aad8373
    [67] A. Quintana, S. E. Kruse, R. P. Kapur, E. Sanz, R. D. Palmiter, Complex I deficiency due to loss of Ndufs4 in the brain results in progressive encephalopathy resembling Leigh syndrome, Proc. Natl. Acad. Sci., 107 (2010), 10996–11001. https://doi.org/10.1073/pnas.1006214107 doi: 10.1073/pnas.1006214107
    [68] D. F. F. Silva, A. R. Esteves, C. R. Oliveira, S. M. Cardoso, Mitochondria: the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease, Curr. Alzheimer Res., 8 (2011), 563–572. https://doi.org/10.2174/156720511796391872 doi: 10.2174/156720511796391872
    [69] M. Calabrò, C. Rinaldi, G. Santoro, C. Crisafulli, The biological pathways of Alzheimer disease: a review, AIMS Neurosci., 8 (2021), 86–132. https://doi.org/10.3934/Neuroscience.2021005 doi: 10.3934/Neuroscience.2021005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2578) PDF downloads(260) Cited by(6)

Article outline

Figures and Tables

Figures(7)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog