Research article Special Issues

Total controllability of non-autonomous second-order measure evolution systems with state-dependent delay and non-instantaneous impulses

  • Received: 19 September 2022 Revised: 06 November 2022 Accepted: 09 November 2022 Published: 14 November 2022
  • This paper investigates a new class of non-autonomous second-order measure evolution systems involving state-dependent delay and non-instantaneous impulses. We introduce a stronger concept of exact controllability called total controllability. The existence of mild solutions and controllability for the considered system are obtained by applying strongly continuous cosine family and the Mönch fixed point theorem. Finally, an example is used to verify the practical application of the conclusion.

    Citation: Yang Wang, Yongyang Liu, Yansheng Liu. Total controllability of non-autonomous second-order measure evolution systems with state-dependent delay and non-instantaneous impulses[J]. Mathematical Biosciences and Engineering, 2023, 20(2): 2061-2080. doi: 10.3934/mbe.2023095

    Related Papers:

  • This paper investigates a new class of non-autonomous second-order measure evolution systems involving state-dependent delay and non-instantaneous impulses. We introduce a stronger concept of exact controllability called total controllability. The existence of mild solutions and controllability for the considered system are obtained by applying strongly continuous cosine family and the Mönch fixed point theorem. Finally, an example is used to verify the practical application of the conclusion.



    加载中


    [1] S. Kumar, S. M. Abdal, Approximate controllability of non-instantaneous impulsive semilinear measure driven control system with infinite delay via fundamental solution, IMA J. Math. Control. Inf., 38 (2021), 552–575. https://doi.org/10.1093/imamci/dnaa026 doi: 10.1093/imamci/dnaa026
    [2] Y. Liu, Bifurcation techniques for a class of boundary value problems of fractional impulsive differential equations, J. Nonlinear Sci. Appl., 8 (2015), 340–353. https://doi.org/10.22436/jnsa.008.04.07 doi: 10.22436/jnsa.008.04.07
    [3] X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: Impulsive control method, Appl. Math. Comput., 342 (2019), 130–146. https://doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003
    [4] X. Li, T. Caraballo, R. Rakkiyappan, X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Method. Appl. Sci., 38 (2015), 3130–3140. https://doi.org/10.1002/mma.3303 doi: 10.1002/mma.3303
    [5] D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal. Hybri., 32 (2019), 294–305. https://doi.org/10.1016/j.nahs.2019.01.006 doi: 10.1016/j.nahs.2019.01.006
    [6] E. Hernández, D. O'regan, On a new class of abstract impulsive differential equations, Proc. Am. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
    [7] J. Wang, M. Fečkan, Y. Zhou, A general class of impulsive evolution equations, Topol. Methods Nonlinear Anal., 46 (2015), 915–933. https://doi.org/10.12775/TMNA.2015.072 doi: 10.12775/TMNA.2015.072
    [8] M. Malik, A. Kumar, M. Feckan, Existence, uniqueness, and stability of solutions to second order nonlinear differential equations with non-instantaneous impulses, J. King Saud Univ. Sci., 30 (2018), 204–213. https://doi.org/10.1016/j.jksus.2016.11.005 doi: 10.1016/j.jksus.2016.11.005
    [9] G. Arthi, K. Balachandran, Controllability of second-order impulsive evolution systems with infinite delay, Nonlinear Anal. Hybri., 11 (2014), 139–153. https://doi.org/10.1016/j.nahs.2013.08.001 doi: 10.1016/j.nahs.2013.08.001
    [10] D. Chalishajar, A. Kumar, Total controllability of the second order semi-linear differential equation with infinite delay and non-instantaneous impulses, Math. Comput. Appl., 23 (2018), 32. https://doi.org/10.3390/mca23030032 doi: 10.3390/mca23030032
    [11] Y. Li, Y. Liu, Multiple solutions for a class of boundary value problems of fractional differential equations with generalized Caputo derivatives, AIMS Math., 6 (2021), 13119–13142. https://doi.org/10.3934/math.2021758 doi: 10.3934/math.2021758
    [12] Y. Liu, Y. Liu, Multiple positive solutions for a class of boundary value problem of fractional $(p, q)$-difference equations under $(p, q)$-integral boundary conditions, J. Math., 2021 (2021). https://doi.org/10.1155/2021/2969717 doi: 10.1155/2021/2969717
    [13] Y. Liu, M. Song, H. Li, W. Hou, Containment problem of finite-field networks with fixed and switching topology, Appl. Math. Comput., 411 (2021), 126519. https://doi.org/10.1016/j.amc.2021.126519 doi: 10.1016/j.amc.2021.126519
    [14] X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14–22. https://doi.org/10.1016/j.amc.2018.01.036 doi: 10.1016/j.amc.2018.01.036
    [15] X. Li, J. Shen, H. Akca, R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798–804. https://doi.org/10.1016/j.amc.2014.10.113 doi: 10.1016/j.amc.2014.10.113
    [16] X. Li, D. O'Regan, H. Akca, Global exponential stabilization of impulsive neural networks with unbounded continuously distributed delays, IMA J. Appl. Math., 80 (2015), 85–99. https://doi.org/10.1093/imamat/hxt027 doi: 10.1093/imamat/hxt027
    [17] J. Lygeros, C. Tomlin, Hybrid Systems: Modeling, Analysis and Control, 2008.
    [18] S. Pandit, S. Deo, Differential Systems Involving Impulses, Springer, Berlin, 1982.
    [19] P. P, R. Sharma, Existence and stability of measure differential equations, Czech. Math. J., 22 (1972), 145–158. https://doi.org/10.21136/CMJ.1972.101082 doi: 10.21136/CMJ.1972.101082
    [20] B. Satco, Regulated solutions for nonlinear measure driven equations, Nonlinear Anal., 13 (2014), 22–31. https://doi.org/10.1016/j.nahs.2014.02.001 doi: 10.1016/j.nahs.2014.02.001
    [21] M. Federson, J. Mesquita, Lyapunov stability for measure differential equations and dynamic equations on time scales, J. Differ. Equations, 267 (2019), 4192–5443. https://doi.org/10.1016/j.jde.2019.04.035 doi: 10.1016/j.jde.2019.04.035
    [22] S. Dashkovskiy, P. Feketa, Asymptotic properties of Zeno solutions, Nonlinear Anal. Hybri., 30 (2018), 256–265. https://doi.org/10.1016/j.nahs.2018.06.005 doi: 10.1016/j.nahs.2018.06.005
    [23] P. Feketa, V. Klinshov, L. Lücken, A survey on the modeling of hybrid behaviors: How to account for impulsive jumps properly, Commun. Nonlinear Sci., 103 (2021), 105955. https://doi.org/10.1016/j.cnsns.2021.105955 doi: 10.1016/j.cnsns.2021.105955
    [24] R. Goebel, R. G. Sanfelice, Pointwise asymptotic stability in a hybrid system and well-posed behavior beyond Zeno, J. Control. Optim., 56 (2018), 1358–1385. https://doi.org/10.1137/16M1082202 doi: 10.1137/16M1082202
    [25] R. Goebel, R. G. Sanfelice, A. R. Teel, Hybrid Dynamical Systems: Modeling, Stability, and Robustness, 2012. https://doi.org/10.23943/princeton/9780691153896.001.0001
    [26] Y. Wang, Y. Liu, Y. Liu, Total controllability of non-autonomous measure evolution systems with non-instantaneous impulses and state-dependent delay, Mathematics, 10 (2022), 2557. https://doi.org/10.3390/math10152557 doi: 10.3390/math10152557
    [27] M. Cichoń, B. R. Satco, Measure differential inclusions-between continuous and discrete, Adv. Differ. Equations, 2014 (2014), 1–18. https://doi.org/10.1186/1687-1847-2014-56 doi: 10.1186/1687-1847-2014-56
    [28] T. Qi, Y. Liu, Y. Cui, Existence of solutions for a class of coupled fractional differential systems with nonlocal boundary conditions, J. Funct. Spaces, 2017 (2017), 6703860. https://doi.org/10.1155/2017/6703860 doi: 10.1155/2017/6703860
    [29] T. Qi, Y. Liu, Y. Zou, Existence result for a class of coupled fractional differential systems with integral boundary value conditions, J. Nonlinear Sci. Appl., 10 (2017), 4034–4045. https://doi.org/10.22436/jnsa.010.07.52 doi: 10.22436/jnsa.010.07.52
    [30] D. Zhao, Y. Liu, X. Li, Controllability for a class of semilinear fractional evolution systems via resolvent operators, Commun. Pur. Appl. Anal., 18 (2019), 455–473. https://doi.org/10.3934/cpaa.2019023 doi: 10.3934/cpaa.2019023
    [31] K. Ankit, K. Ramesh, K. Avadhesh, Approximate controllability of second-order non-autonomous system with finite delay, Dyn. Control Syst., 4 (2020), 611–627. https://doi.org/10.1007/s10883-019-09475-0 doi: 10.1007/s10883-019-09475-0
    [32] D. Zhao, Y. Liu, New discussion on approximate controllability for semilinear fractional evolution systems with finite delay effects in Banach spaces via differentiable resolvent operators, Fractal. Fract., 6 (2022), 424. https://doi.org/10.3390/fractalfract6080424 doi: 10.3390/fractalfract6080424
    [33] Y. Cao, J. Sun, Approximate controllability of semilinear measure driven systems, Math. Nachr., 291 (2018), 1979–1988. https://doi.org/10.1002/mana.201600200 doi: 10.1002/mana.201600200
    [34] Y. Liu, Y. Liu, Controllability of fractional measure evolution systems with state-dependent delay and nonlocal condition, Evol. Equation Control Theor., 1 (2022), 1–17. https://doi.org/doi:10.3934/eect.2022040 doi: 10.3934/eect.2022040
    [35] J. Wang, A. Ibrahim, M. Fečkan, Y. Zhou, Controllability of fractional non-instantaneous impulsive differential inclusions without compactness, IMA J. Math. Control. Inf., 36 (2019), 443–460. https://doi.org/10.1093/imamci/dnx055. doi: 10.1093/imamci/dnx055
    [36] S. Kumar, S. M. Abdal, Approximate controllability of non-autonomous second-order nonlocal measure driven systems with state-dependent delay, IInt. J. Control, 2022 (2022), 1–12. https://doi.org/10.1080/00207179.2021.2023763 doi: 10.1080/00207179.2021.2023763
    [37] G. Leonov, H. Nijmeijer, Dynamics and Control of Hybrid Mechanical Systems, World Scientific, 2010.
    [38] C. S. Honig, Volterra-Stieltjes Integral Equations, Elsevier, 1975.
    [39] Y. Cao, J. Sun, Controllability of measure driven evolution systems with nonlocal conditions, Appl. Math. Comput., 299 (2017), 119–126. https://doi.org/10.1016/j.amc.2016.11.037 doi: 10.1016/j.amc.2016.11.037
    [40] D. Chalishajar, Controllability of second order impulsive neutral functional differential inclusions with infinite delay, J. Optim. Theory. Appl., 154 (2012), 672–684. https://doi.org/10.1007/s10957-012-0025-6 doi: 10.1007/s10957-012-0025-6
    [41] P. Hans, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546X(83)90006-8 doi: 10.1016/0362-546X(83)90006-8
    [42] H. Serizawa, M. Watanabe, Time-dependent perturbation for cosine families in Banach spaces, Houston J. Math., 12 (1986), 579–586.
    [43] J. Kisyński, On cosine operator functions and one-parameter groups of operators, Stud. Math., 44 (1972), 93–105. https://doi.org/10.4064/sm-44-1-93-105 doi: 10.4064/sm-44-1-93-105
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1510) PDF downloads(101) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog