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Abstract: This paper investigates a new class of non-autonomous second-order measure evolution
systems involving state-dependent delay and non-instantaneous impulses. We introduce a stronger
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1. Introduction

Impulsive differential equations (IDEs) are often used to simulate some evolutionary processes in
the real world, such as shocks, population dynamics, harvesting. These evolutionary processes tend
to have some sudden changes that are negligible compared to the whole duration of the process. The
theory of IDEs has been widely used in mathematical modeling and has become an important research
field in recent years. However, some dynamical behaviors of physical phenomena cannot be modeled
by instantaneous IDEs, see [1–5].

Thus, Hernández and O’Regan [6] introduces a non-instantaneous impulses, a special and novel
type of impulses, in the form of

ξ′(δ) = Aξ(δ) + g(δ, ξ(δ)), δ ∈ (δk, ηk+1], k = 0, 1, 2...l;
ξ(δ) = hk(δ, ξ(δ)), δ ∈ (ηk, δk], k = 1, 2, ...l;
ξ(0) = ξ0,

where A : D(A) ⊂ X → X is the generator of a C0-semigroup of bounded linear operators {T (δ)}δ≥0
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defined on a Banach space (X, ∥ · ∥), ξ0 ∈ X, 0 = η0 = δ0 < η1 ≤ δ1 < η2 < · · · < ηl ≤ δl ≤ ηl+1 = a
are pre-fixed numbers, hk ∈ C((ηk, δk] × X;X) for all k = 1, ..., l and g : [0, a] × X → X is a suitable
function.

Wang and Fěckan [7] investigates the existence of mild solutions to nonlinear operator equations
with non-instantaneous impulses. Malik and Kumar [8] consider a control system represented by a
second-order IDEs and obtained the existence, uniqueness and stability of mild solution. Since non-
instantaneous IDEs can model some physical phenomena that remain active in fixed time intervals, this
has attracted extensive attention of many researchers. For detailed results, see [9–16].

Furthermore, the complex case with infinitely many perturbation points in a finite interval, called
Zeno behavior [17], cannot be modeled by IDEs. Consequently, Pandit et al. [18] and Sharma et al. [19]
established an important class of differential equations, called measure differential equations (MDEs),
to deal with this complex phenomenon. Thenceforth, in [20], the existence of regulated solutions
for MDEs is obtained by utilizing fixed point theorem. Federson and Mesquita [21] investigated the
Lyapunov stability for abstract MDEs on time scales. For detailed results, see [18, 22–26].

As we know, since controllability can be described as a qualitative property of a control system, it
is of great interest to researchers [1, 27–30]. A common way to study controllability problems is to
transform it into fixed point problems for continuous operators in Banach spaces. For instance, Ankit
and Rames [31] considered the approximate controllability results in the infinite dimensional space
for non-autonomous evolution system with time delay from fixed point theorem. Zhao and Liu [32]
investigated the existence and controllability of solutions for semilinear fractional control systems with
finite delay via differentiable resolvent operators and Banach’s fixed point theorem. In [1], by utilizing
the fixed point theorem and fundamental solution, the approximate controllable result for nonlinear
measure evolution system with time delay and non-instantaneous impulses was obtained.

More generally, by fixed point theorem, Cao and Sun [33] studies that the control system is exactly
controllable, and its system form is{

du(ξ) = A(ξ)u(ξ) + F(ξ, u(ξ))dµ(ξ) + Bv(ξ), ξ ∈ [0, l];
u(0) + g(u) = u0.

Subsequently, Liu et al. [34] considered fractional evolution equations with state-dependent delay as
follows { cDαv(ι) = Av(ι) + [Bu(ι) + f (ι, vρ(ι,vι)

)]dµ(ι), ι ∈ [0, a];
v(ι) + p(vι1 , vι2 , · · · , vιm)(ι) = ϕ(ι), ι ∈ (−∞, 0],

where cDα is Caputo derivative. By utilizing the Kuratowski measure of noncompactness and Mönch
fixed point theorem, the exact controllability was investigated.

Wang et al. [35] studied the following non-instantaneous impulsive evolution system.
cDαω(ξ) ∈ F(ξ, ω(ξ)) + B(v(ξ)), ξ ∈ (σi, τi+1] , i = 0, 1, · · · , k;
ω

(
τ+i

)
= gi

(
τi, ω

(
τ−i

))
, i = 1, · · · , k;

ω(ξ) = gi

(
ξ, ω

(
τ−i

))
, ξ ∈ (τi, σi] , i = 1, · · · , k;

ω(0) = ω0.

Using the Banach fixed point theorem, exact controllability was obtained.
But, Wang et al. achieved controllability by using control only at the last time subinterval rather than

at each impulses point. In many engineering applications, it is necessary to control the system within
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each impulse time interval. So, we introduce a stronger concept of exact controllability, namely total
controllability. This control will be applied to each subinterval. Moveover, many physical phenomena,
such as the lateral motion of stretchable beams and the vibration of hinged rods, can be modeled with
partial differential equations (PDEs). These PDEs can be formulated as abstract second-order IDEs
in the infinite dimensional spaces. So, it is necessary to study such systems. For detailed results,
see [8–10, 31, 36].

Inspired by the above discussion, this manuscript will focus on the controllability of second-
order non-instantaneous impulsive measure evolution systems with state-dependent delay and non-
autonomous conditions in a Banach space (X, ∥ · ∥), which is of form

dv′(η) = A(η)v(η) + [Bz(η) + F(η, vρ(η,vη),Gvρ(η,vη))]dµ(η), η ∈
k⋃

i=0

(θi, ηi+1];

v(η) = Hi(η, v(τ−i )), η ∈
k⋃

i=1

(ηi, θi];

v′(η) = H ′i (η, v(η−i )), η ∈
k⋃

i=1

(ηi, θi];

v(η) = ϕ(η), v′(0) = ω ∈ X, η ∈ (−∞, 0],

(1.1)

where J = [0, b], ϕ ∈ Bh, Bh is a phase space, which will be introduced in Section 2. 0 = θ0 <

η1 < η2 < · · · < ηk < ηk+1 = b, θi ∈ (ηi, ηi+1) and v+i , v−i exist for i = 1, 2, . . . , k with v(η−i ) = v(ηi).
F : J × Bh × Bh → X. The family of linear operators {A(η) : η ∈ J} is closed and domain is dense in
X. The function vη : (−∞, 0] → X defined by vη(ν) = v(η + ν), ν ∈ (−∞, 0] which belongs to Bh. The
distributional derivative of the solution v and the function µ are denoted by dv and dµ, respectively,
where function µ : J → R is left continuous nondecreasing. The control function z(·) ∈ HS L2

µ(J;U),
where HLS 2

µ(J;U) will be introduced in the next Section. ρ: J × Bh → (−∞, b] is a continuous
function. The linear operator B : U → X is bounded. The function Hi : (ηi, θi] × X → X and
their derivatives H ′i : (ηi, θi] × X → X represent the non-instantaneous impulses for i = 1, 2 . . . k.

Gvρ(η,vη) :=
∫ η

0
H(η, θ)vρ(θ,vθ)dθ is a Volterra integral operator with an integral kernel H ∈ C(Ω,R+),

Ω = {(η, θ) : 0 ≤ η ≤ θ ≤ b}.
The main contributions, significance and novelties of this article are as follows:

• The existence and total controllability of solution for (1.1) are obtained by employing the Mönch
fixed point theorem and the theory of strongly continuous cosine family.

• It is well known that systems with Zeno trajectories often appear in game theory, non-smooth
mechanics, etc (see [17, 37]). MDEs are often used to model such systems. It may exhibit an
infinite number of discontinuities within a finite interval, µ is a function of bounded variation.

• We point out that if µ is the sum of an absolutely continuous and a step function, then system (1.1)
implies a complex situation that exhibits both non-instantaneous and instantaneous impulses. Few
existing article have investigated such cases, which is an approach for solving hybrid systems
separately.

• It is important to note that the obtained controllability results reach the desired state not only at
the end of the time interval but also at each impulse point ηi+1.
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• As [1, 36] said, MDEs are more extensive than ODEs. In fact, when a system described by

dx
dt
= f (t, x)

is acted upon by perturbation, the perturbed system is generally given by

dx
dt
= f (t, x) +G(t, x)

where the perturbation term G(t, x) is assumed to be continuous or integrable and as such the state
of the system changes continuously with respect to time.
But in physical systems one cannot expect the perturbations to be well-behaved and it is there-
fore important to consider the case when the perturbations are impulsive. This will give rise to
equations of the form

dx = f (t, x) +G(t, x)dµ (1.2)

where dx and dµ denote the distributional derivatives of the solution x and the function µ, respec-
tively. If µ is a function of bounded variation, dµ can be identified with a Stieltjes measure and
will have the effect of suddenly changing the state of the system at the points of discontinuity of
µ. Equations (1.2) is so called measure differential equations.

• The derived results are involving non-instantaneous impulse and state-dependent delay; therefore,
they improved and generalized the results of the paper of Cao and Sun [33]. Our findings are also
generalizing the results of Liu et al. [34] for the case of control system with state-dependent delay.

• Finally, an example is used to verify the practical application of the conclusion.

The structure of this paper is as follows. In Section 2, the fundamental concepts, lemma, and prelim-
inary knowledge are given which will be required for the later sections. We obtain the controllability
results for system (1.1) by using the theory of cosine families and fixed point theorem in Section 3.
Finally, in Section 4, an example to verify the usefulness of our abstract results.

2. Preliminaries

In present section, we review some of the basic concepts, definitions and lemmas required.

Definition 2.1. [20] A function F : [ξ, ζ]→ X is called regulated on [ξ, ζ], if the limits

lim
θ→λ−

F(θ) = F
(
λ−

)
, lim

θ→λ+
F(θ) = F

(
λ+

)
exist and are finite for λ ∈ [ξ, ζ].

The space G([ξ, ζ];X) = {F : [ξ, ζ] → X | F is regulated} is a Banach space with respect to the
norm ∥F∥∞ = sup

η∈[ξ,ζ]
{∥F(η)∥} (see [38]).

Lemma 2.2. [39] Let the functions µ : [ξ, ζ] → R and F : [ξ, ζ] → X such that
∫ ζ

ξ
Fdµ exists and µ

is regulated. Then, for η0 ∈ [ξ, ζ], the function

L(η) =
∫ η

η0

F(θ)dµ(θ), η ∈ [ξ, ζ]

is regulated.
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Definition 2.3. [39] For any ε > 0, η0 ∈ [ξ, ζ], a set A ∈ G([ξ, ζ];X) is said to be equiregulated, if
there exists a δ > 0 such that
(i) if v ∈ A, η ∈ [ξ, ζ], and η0 − δ < η < η0, then ∥v(η−0 ) − v(η)∥ < ε,
(ii) if v ∈ A, η ∈ [ξ, ζ], and η0 < η < η0 + δ, then ∥v(η) − v(η+0 )∥ < ε.

Lemma 2.4. [39] If a sequence {vn}
∞
n=1 is equiregulated and converges pointwise inX, then it converges

uniformly in G([ξ, ζ];X).

Definition 2.5. [20] A function F : [ξ, ζ] → X is said to be Henstock-Lebesgue-Stieltjes integrable
on [ξ, ζ) if there exists a map denoted by

∫ ·
0

: [ξ, ζ] → X such that for every ε > 0, there is a gauge δ
on [ξ, ζ) with

n∑
i=1

∥∥∥∥∥∥F (λi) (µ (ηi) − µ (ηi−1)) −
(∫ ηi

0
F(θ)dµ(θ) −

∫ ηi−1

0
F(θ)dµ(θ)

)∥∥∥∥∥∥ < ε
for every δ-fine partition

{([
ηi−1, ηi) , λi

)
: i = 1, 2, . . . , n

}
of [ξ, ζ).

Let HLS p
µ([ξ, ζ];X) be a p-order Henstock-Lebesgue-Stieltjes integrable regulated function space

with respect to µ, with norm defined as

∥F∥HLS p
µ
=

(∫ ζ

ξ

∥F(θ)∥pdµ(θ)
) 1

p

.

Next, we define

Bh = {ϕ : (−∞, 0]→ X such that ∀c > 0, ϕ(θ) is a measurable bounded function on [−c, 0] with∫ 0

−∞

h(θ) sup
θ≤τ≤0
|ϕ(τ)|dθ < ∞

}
,

where the function h : (−∞, 0]→ (0,∞) is continuous with
∫ 0

−∞
h(θ)dθ < ∞.

By [40], we know that Bh is a Banach space with norm

∥ϕ∥Bh =

∫ 0

−∞

h(θ) sup
θ≤τ≤0
|ϕ(τ)|dθ, ∀ϕ ∈ Bh.

Lemma 2.6. [40] Let v ∈ Bh; then, vη ∈ Bh for each η ∈ J. In addition,

l|v(η)| ≤ ∥vη∥Bh ≤ l sup
θ∈[0,η]

(v(θ) + ∥v0∥Bh),

where l =
∫ 0

−∞

h(θ)dθ < ∞.

The Kuratowski measure of noncompactness α(·) on bounded subset S of X is defined as

α(S ) = inf{ε > 0 : S =
n⋃

i=1

S i with diameter(S i) ≤ ε , i = 1, 2...n, n ∈ N}.

The Kuratowski measure of noncompactness of a bounded set in G(J;X) and X are denoted by αG(·),
and α(·), respectively.

Mathematical Biosciences and Engineering Volume 20, Issue 2, 2061–2080.



2066

Lemma 2.7. [41] Let S ⊂ HLS 1
µ(J;X) be a countable set and function ν ∈ HLS 1

µ(J;R+) such that
∥r(η)∥ ≤ ν(η) holds for all r ∈ S and η ∈ J. Then,

α

(∫
J
S(η)dµ(η)

)
≤ 2

∫
J
α(S(η))dµ(η),

where S(η) = {y(η) : y ∈ S, η ∈ J}.

Lemma 2.8. [34] LetA ⊂ G(J;X) be equiregulated and bounded on J. Then,

α(A) = sup
η∈J
{α(A(η))}.

Theorem 2.9. [34] (Mönch fixed point theorem) Let E ⊂ X be a closed convex set where X is a
Banach space. Assume that T : E → E is a continuous operator and satisfies the following properties:

D ⊂ E countable, D ⊂ co({ϖ} ∪ T (D)) implies D is relatively compact.

Therefore, T has a fixed point in E.

Now let us consider a second-order non-autonomous control system:{
v′′(η) = A(η)v(η) + g(η), 0 ≤ θ ≤ η ≤ b;
v(θ) = x, v′(θ) = y,

(2.1)

where A(η): D(A(η)) ⊂ X → X, η ∈ [0, b] is a closed dense operator and g : [0, b] → X is an
appropriate function. It can be known from [31,42] that before considering the existence of the solution
of (2.1), we first discuss the existence of the evolution operator of the following homogeneous equation

v′′(η) = A(η)v(η), 0 ≤ θ ≤ η ≤ b.
v(θ) = x, v′(θ) = y.

(2.2)

Suppose the domain of A(η) is a dense subspace D in X and independent of η. η → A(η)v is a
continuous function for each v ∈ D.

For further study, we first review the definition of evolution operator.

Definition 2.10. The bounded linear operatorΦ(η, θ) : J×J → L(X) is said to be the evolution operator
of (2.2) if the following properties are satisfied:
(B1) For each v ∈ X, the operator (η, θ)→ Φ(η, θ)v is continuously differentiable and
(i)

∂

∂η
Φ(η, θ)v|η=θ = v,

∂

∂θ
Φ(η, θ)v|η=θ = −v, for each v ∈ X, η, θ ∈ J.

(ii) Φ(θ, θ) = 0, for every θ ∈ [0, b].
(B2) If v ∈ D(A), then Φ(η, θ)v ∈ D(A) for θ, η ∈ [0, b], the mapping (η, θ) ∈ [0, b]× [0, b]→ Φ(η, θ)v ∈
X is of class C2 and

(i)
∂2

∂θ∂η
Φ(η, θ)v

∣∣∣∣∣∣
η=θ

= 0,

(ii)
∂2

∂η2Φ(η, θ)v = A(η)Φ(η, θ)v,
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(iii)
∂2

∂θ2Φ(η, θ)v = Φ(η, θ)A(θ)v,

(B3) For all η, θ ∈ [0, b], if v ∈ D(A), then
∂

∂θ
Φ(η, θ)v ∈ D(A). Further, there exist

∂2

∂η2

∂

∂θ
Φ(η, θ)v,

∂2

∂θ2

∂

∂η
Φ(η, θ)v and

(i)
∂

∂θ
Φ(η, θ)v ∈ D(A), then

∂2

∂η2

∂

∂θ
Φ(η, θ)v = A(η)

∂

∂θ
Φ(η, θ)v,

(ii)
∂

∂θ
Φ(η, θ)v ∈ D(A), then

∂2

∂θ2

∂

∂η
Φ(η, θ)v =

∂

∂η
Φ(η, θ)A(θ)v, and the function (η, θ) ∈ [0, b] ×

[0, b]→ A(η)
∂

∂θ
Φ(η, θ)v is continuous.

Let the evolution operator Φ(η, θ) be associated with the operator {A(η) : η ∈ J}. For simplicity, one
can also consider that

Ψ(η, θ) = −
∂

∂θ
Φ(η, θ).

There exist constants M and N such that

sup
0≤η,θ≤b

∥Φ(η, θ)∥L(X) ≤ M, sup
0≤η,θ≤b

∥Ψ(η, θ)∥L(X) ≤ N.

If function g : J → X is integrable, then the solution v of the system (2.1) is given by

v(η) = Ψ(η, θ)x + Φ(η, θ)y +
∫ η

θ

Φ(η, τ)g(τ)dτ. (2.3)

Definition 2.11. The bounded linear operator parameter family {Ψ(η)}η∈R that maps from Banach space
X to itself is called the strongly continuous cosine family, if and only if
(i) for all θ, η ∈ R, Ψ(θ + η) + Ψ(θ − η) = 2Ψ(θ)Ψ(η),
(ii) Ψ(0) = I (identity operator),
(iii) for each fixed point v ∈ X, Ψ(η)v is continuous in η on R.

Let A : D(A) ⊂ X → X be the infinitesimal generator of strongly continuous cosine family
{Ψ(η)}η∈R, where domain D(A) is defined as

D(A) = {v ∈ X : Ψ(η)v ∈ C2(R;X)}.

Obviously, for v ∈ D(A), it is a Banach space endowed with the norm ∥v∥A = ∥v∥ + ∥Av∥.
In addition, the family of sine operators {Φ(η)}η∈R corresponding to {Ψ(η)}η∈R is defined as

Φ(η)v =
∫ η

0
Ψ(θ)vdθ, v ∈ X, η ∈ R.

Let
D = {v ∈ X : Φ(η)v ∈ C1(R;X)},

which is a Banach space endowed with norm ∥v∥D = ∥v∥ + sup0≤η≤1 ∥AΦ(η)v∥, v ∈ D (see [43]).
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Based on the works in [36], we consider the following system{
v′′(η) = (A + Ã(η))v(η), η ∈ R;
v(0) = x0, v′(0) = y0,

(2.4)

where Ã(·): R→ L(D,X) such that for each v ∈ D, the map η→ Ã(η)v is a continuously differentiable
function in X. Similar to Eq (2.3), we can also obtain that the mild solution of system (2.4) defined as

v(η, θ) = Ψ(η, θ)x0 + Φ(η, θ)y0 +

∫ η

θ

Φ(η, τ)Ã(τ)v(τ, θ)dτ.

For more theoretical results on second-order differential equations, see [31, 36, 42, 43] and its cited
references.

Now, we are ready to introduce the concept of a mild solution of the system (1.1) as follows.

Definition 2.12. A function v ∈ G(J,X) is said to be a mild solution of the system (1.1) if v(0) = ϕ(0),
and it satisfies the following equation

v(t) =



Ψ(η, 0)ϕ(0) + Φ(η, 0)ω +
∫ η

0
Φ(η, θ)[Bz(θ) + F(θ, vρ(θ,vθ),Gvρ(θ,vθ))]dµ(θ), η ∈ [0, η1];

Hi(η, v(η−i )), η ∈
k⋃

i=1

(ηi, θi];

Ψ(η, θi)Hi(θi, v(η−i )) + Φ(η, θi)H ′i (θi, v(η−i ))

+

∫ η

θi

Φ(η, θ)[Bz(θ) + F(θ, vρ(θ,vθ),Gvρ(θ,vθ))]dµ(θ), η ∈
k⋃

i=1

(θi, ηi+1].

(2.5)

3. Main results

This section mainly studies the controllability of (1.1).

Definition 3.1. System (1.1) is said to be exactly controllable on J if for the initial state v(0) ∈ Bh

and any final state vb ∈ X, there is a control z ∈ HLS 2
µ(J;U) such that the mild solution v(η) of (1.1)

satisfies v(b) = vb.

Definition 3.2. System (1.1) is said to be totally controllable on J if for the initial state v(0) ∈ Bh

and any final state vηi+1 ∈ X of each sub-interval [θi, ηi+1] for i = 0, 1, 2, ..., k, there is a control z ∈
HLS 2

µ(J;U) such that the mild solution v(η) of (1.1) satisfies v(ηi+1) = vηi+1 .

Remark 3.3. If the total controllability of (1.1) is established, obviously it is exactly controllable. On
the contrary, it does not hold.

The following assumptions are introduced to demonstrate the main results of this paper.
(H1) A(η) is the infinitesimal generator of a strongly continuous cosine family Ψ(η, θ).
(H2) The function F : J × Bh × Bh → X satisfies that:
(i) For each η ∈ J, F(η, ·, ·) : Bh × Bh → X is a continuous function.
(ii) For η ∈ J, the map η → F(η, vρ(t,vη),Gvρ(η,vη)) and η 7→ F(θ, vη) are measurable and continuous on
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J, respectively.
(iii) There exists a function ψr ∈ HLS 2

µ (J;R+), r > 0 such that

sup{∥F(η, ξ1, ξ2)∥ : ∥ξ1∥Bh ≤ r, ∥ξ2∥Bh ≤ H∗r} ≤ ψr(η), a.e. η ∈ J,

and

γ := lim sup
r→+∞

1
r

∫ b

0
ψr(η)dµ(η) < +∞,

where H∗ := sup
η∈J

∫ η

0
H(η, θ)dθ.

(iv) There exists l0 ∈ HLS 1
µ(J,R+) such that for any bounded subsets S1,S2 ⊂ Bh,

α(F(η,S1,S2)) < l0(η)(α(S1) + α(S2)), η ∈ J.

(H3) For each i = 0, 1, ..., k, the linear operator Li+1 : HLS 2
µ([θi, ηi+1];X)→ X defined by

Li+1z =
∫ ηi+1

θi

Φ(ηi+1, θ)Bz(θ)dµ(θ)

is such that
(i) Li+1 has an invertible operator L−1

i+1, which take values in HLS 2
µ([θi, ηi+1];X) \ kerLi+1 and there

exists Mi+1 such that ∥L−1
i+1∥ ≤ Mi+1.

(ii) There exists li+1 ∈ HLS 1
µ(J,R+) such that

α(L−1
i+1(S)(η)) ≤ li+1(η)α(S), η ∈ J,

for any countable subset S ⊂ X.

(H4) The operator Hi : [ηi, θi] × X → X(i = 1, 2, 3..., k) is continuous and there exist constants
ai, bi such that

∥Hi(v)∥ ≤ ai, α(Hi(S)) ≤ biα(S),

for any countable subset S ⊂ X.

(H5) The operator H ′i : [ηi, θi] × X → X(i = 1, 2, 3..., k) is continuous and there exist constants ci, di

such that
∥H ′i (v)∥ ≤ ci, α(H ′i (S)) ≤ diα(S),

for any countable subset S ⊂ X.

Remark 3.4. It can be seen from the discussion in Section 2 that A produces a strongly continuous
cosine family and corresponding strongly continuous sine family. This can represent a mild solution
of system (1.1). Then, we can define an operator T . (H2) requires F to be continuously measurable,
ensuring that the operator T is continuous. Assumptions (H3), we defined an invertible linear operator
Li+1, which will be used to define the control function zv(η). Assumptions (H4),(H5) ensures that the
operator T is continuously bounded, which helps us to discuss the controllability of the system (1.1) in
a closed convex set.
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For simplicity, for r > 0, one can define Er = {v ∈ G(J;X) : ∥v∥∞ ≤ r}. Moreover, let

M̃ = max
i=0,1,2,...,k

Mi+1, ã = max
i=1,2,...,k

ai, b̃ = max
i=1,2,...,k

bi, c̃ = max
i=1,2,...,k

ci, d̃ = max
i=1,2,...,k

di.

Lemma 3.5. Under assumptions (H1)–(H5), the control function has estimates ∥z∥ ≤ Q, namely,

Q =: M̃
[
∥vηi+1∥ + N (̃a + ∥ϕ(0)∥Bh) + M(̃c + ∥ω∥) + M

∫ b

0
∥ψr∗(θ)∥dµ(θ)

]
,

where r∗ = l(∥ϕ(0)∥Bh + r).

Proof. For any vηi+1 ∈ X, one can define the control function

zv(η) = L−1
i+1

[
vηi+1 − Ψ(ηi+1, θi)Hi(θi, v(η−i )) − Φ(ηi+1, θi)H ′i (θi, v(η−i ))

−

∫ ηi+1

θi

Φ(ηi+1, θ)F(θ, vρ(θ,vθ),Gvρ(θ,vθ))dµ(θ)
]
(η), v ∈ Er, η ∈ [θi, ηi+1], i = 0, 1, 2, ..., k,

(3.1)

whereH0((0, v(0)) = ϕ(0), H ′0((0, v(0)) = ω.
From Lemma 2.6, for every v ∈ Er, one can obtain that

∥vθ∥ ≤ l sup
θ∈[0,b]

(v(θ) + ∥v0∥Bh) ≤ l(∥ϕ(0)∥Bh + r).

Then, from (3.1), we have

∥zv(η)∥ ≤M̃
[
∥vηi+1∥ + N∥Hi(θi, v(η−i ))∥ + M∥H ′i (θi, v(η−i ))∥ + M

∫ b

0
∥F(θ, vρ(θ,vθ),Gvρ(θ,vη))∥dµ(θ)

]
≤M̃

[
∥vηi+1∥ + N (̃a + ∥ϕ(0)∥Bh) + M(̃c + ∥ω∥) + M

∫ b

0
∥ψr∗(θ)∥dµ(θ)

]
.

(3.2)

Thus, proof is done. □

Theorem 3.6. Suppose that (H1)–(H5) are satisfied. Then, system (1.1) is totally controllable on J
provided that

Mγ[1 + M̃M∥B∥(µ(b) − µ(0))] < 1, (3.3)

and

∆ :=2M∥B∥[Nb̃ + Md̃ + 2(1 + H∗)
∫ b

0
l0(θ)dµ(θ)]

∫ b

0
li+1(θ)dµ(θ)

+ 2M(1 + H∗)
∫ b

0
l0(θ)dµ(θ) + (Nb̃ + Md̃) < 1.

(3.4)
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Proof. From (3.1), the operator T is defined as follows:

(Tv)(η) =



Ψ(η, 0)ϕ(0) + Φ(η, 0)ξ +
∫ η

0
Φ(η, θ)[Bzv(θ) + F(θ, vρ(θ,vθ),Gvρ(θ,vθ))]dµ(θ), η ∈ [0, η1];

Hi(η, v(η−i )), η ∈
k⋃

i=1

(ηi, θi];

Ψ(η, θi)Hi(θi, v(η−i )) + Φ(η, θi)H ′i (θi, v(η−i ))

+

∫ η

θi

Φ(η, θ)[Bzv(θ) + F(θ, vρ(θ,vθ),Gvρ(θ,vθ))]dµ(θ), η ∈
k⋃

i=1

(θi, ηi+1].

(3.5)
Next, we divide the proof into four steps.

Step 1. We show that there is a constant r > 0 such that T (Er) ⊂ Er.
If it is not true, for any r > 0, there exists vr ∈ Er such that ∥Tvr∥∞ > r.
For η ∈ [0, η1], we get

∥Tvr∥∞ = sup
η∈[0,b]

∥(Tvr)(η)∥

≤

∥∥∥∥∥Ψ(η, 0)ϕ(0) + Φ(η, 0)ω +
∫ η

0
Φ(η, θ)[Bzvr (θ) + F(θ, vr

ρ(θ,vr
θ)
,Gvr

ρ(θ,vr
θ)

)]dµ(θ)
∥∥∥∥∥

≤ N∥ϕ(0)∥ + M∥ω∥ + M
∫ b

0
ψr∗(θ)dµ(θ) + MQ∥B∥

∫ b

0
1dµ(θ)

≤ N∥ϕ(0)∥ + M∥ω∥ + M
∫ b

0
ψr∗(θ)dµ(θ) + MQ∥B∥(µ(b) − µ(0)).

(3.6)

For η ∈ (ηi, θi](i = 1, 2, 3...k), then by (H4), we have

∥(Tvr)(η)∥ = ∥Hi(η, vr(ηi))∥ ≤ ai ≤ ã. (3.7)

For η ∈ (θi, ηi+1](i = 1, 2, 3...k), Lemma 3.5 and (3.5) yield the following estimations

∥Tvr∥∞ = sup
η∈[0,b]

∥(Tvr)(η)∥

≤
∥∥∥Ψ(η, θi)Hi(θi, vr(η−i )) + Φ(η, θi)H ′i (θi, vr(η−i ))

∥∥∥
+

∥∥∥∥∥∫ η

0
Φ(η, θ)[Bzvr (θ) + F(θ, vr

ρ(θ,vr
θ)
,Gvr

ρ(θ,vr
θ)

)]dµ(θ)
∥∥∥∥∥

≤Nã + Mc̃ + M
∫ b

0
ψr∗(θ)dµ(θ) + MQ∥B∥

∫ b

0
1dµ(θ)

≤Nã + Mc̃ + M
∫ b

0
ψr∗(θ)dµ(θ) + MQ∥B∥(µ(b) − µ(0)).

(3.8)

Combining (3.6)–(3.8), we have

r < ∥Tvr∥∞ ≤M
∫ b

0
ψr∗(θ)dµ(θ) + MQ∥B∥(µ(b) − µ(0)) + N (̃a + ϕ(0)) + M(̃c + ∥ω∥).
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Dividing by r and taking upper limit as r → ∞, one can know that

1 ≤Mγ[1 + M̃M∥B∥(µ(b) − µ(0))] < 1.

which is a contradiction to (3.3). Hence, there exists a number r such that T (Er) ⊂ Er.
Step 2. To prove that T is continuous on Er.
For this, we take a sequence {vn}∞n=1 ⊂ Er such that

vn → v as n→ ∞.

By Lemma 2.6, for η ∈ J, we can easily know

∥vn
η − vη∥Bh ≤ l sup

τ∈J
∥vn(τ) − v(τ)∥ = l∥vn − v∥∞ → 0 as n→ ∞.

In addition, for η ∈ J, one can obtain that

∥vn
ρ(η,vn

η) − vρ(η,vn
η)∥ → 0 as n→ ∞.

From (3.1), we have

∥zvn(θ) − zv(θ)∥ ≤M̃
(
N∥Hi(θi, vn(η−i )) −Hi(θi, v(η−i ))∥ + M∥H ′i (θi, vn(η−i )) −H ′i (θi, v(η−i ))∥

)
+ M̃M

∫ b

0

∥∥∥∥F(θ, vn
ρ(θ,vn

θ ),Gvn
ρ(θ,vn

θ )) − F(θ, vρ(θ,vθ),Gvρ(θ,vθ))
∥∥∥∥ dµ(θ).

(3.9)

By (H2), (H4), (H5), and Lemma 2.6, we get

∥T (vn) − T (v)∥∞

≤M
∫ b

0

∥∥∥∥F(θ, vn
ρ(θ,vn

θ ),Gvn
ρ(θ,vn

θ )) − F(θ, vρ(θ,vθ),Gvρ(θ,vθ))
∥∥∥∥ dµ(θ)

+ M∥B∥
∫ b

0
∥zvn(θ) − zv(θ)∥dµ(θ), θ ∈ [0, η1],

(3.10)

and

∥T (vn) − T (v)∥∞
≤

(
N∥Hi(θi, vn(η−i )) −Hi(θi, v(η−i ))∥ + M∥H ′i (θi, vn(η−i )) −H ′i (θi, v(η−i ))∥

)
+ M

∫ b

0

∥∥∥∥F(θ, vn
ρ(θ,vn

θ ),Gvn
ρ(θ,vn

θ )) − F(θ, vρ(θ,vθ),Gvρ(θ,vθ))
∥∥∥∥ dµ(θ)

+ M∥B∥
∫ b

0
∥zvn(θ) − zv(θ)∥dµ(θ), θ ∈

k⋃
i=1

(θi, ηi+1].

(3.11)

Thus, by the dominated convergence theorem, and (H2)–(H5), we conclude

∥T (vn) − T (v)∥∞ → 0 as n→ ∞.
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So, T is a continuous operator on Er.
Step 3. Claim that T is equiregulated.
For any η∗ ∈ (θi, ηi+1), one can get that

∥(Tv)(η) − (Tv)(η+∗ )∥
≤∥Ψ(η, θi) − Ψ(η+∗ , θi)∥∥Hi(θi, v(η−i ))∥ + ∥Φ(η, θi) − Φ(η+∗ , θi)∥∥H ′i (θi, v(η−i ))∥

+

∫ η+∗

θi

∥[Φ(η, θ) − Φ(η+∗ , θ)]F(θ, vρ(θ,vθ),Gvρ(θ,vθ))∥dµ(θ)

+

∫ η

η+∗

∥Φ(η, θ)F(θ, vρ(θ,vθ),Gvρ(θ,vθ))∥dµ(θ)

+

∫ η+∗

θi

∥[Φ(η, θ) − Φ(η+∗ , θ)]Bzv(θ)∥dµ(θ)

+

∫ η

η+∗

∥Φ(η, θ)Bzv(θ)∥dµ(θ)

=A1 + A2 + A3 + A4 + A5.

It is easy to know that A1, A2, A4 → 0 independently of v as η → η+∗ since Φ(η, θ) and Ψ(η, θ) are
strongly continuous. Let

K(η) =
∫ η

0
ψr∗(θ)dµ(θ).

Then, by Lemma 2.2, K(η) is a regulated function. Then,

A3≤ M(K(η) − K(η+∗ ))→ 0 as η→ η+∗ .

Similarly, A5 → 0 as η→ η+∗ .
According to the above discussion, it is also easy to derive

∥T (v)(η−∗ ) − T (v)(η)∥ as η→ η−∗

for every η∗ ∈ (θi, ηi+1].
For any η∗ ∈ [0, η1], the proof is obviously similar to the aforementioned discussion, so we omit it.

Therefore, T (Er) is equiregulated.
Step 4. Claim that if C ⊂ Er is countable and there exists w0 ∈ Er such that

C ⊂ co({w0} ∪ T (C)), (3.12)

then C is relatively compact.
Without loss of generality, suppose C = {vn}

∞
n=1 ⊂ Er.
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Then by (H2) and (H3), for each η ∈ J, we obtain

α {zvn(θ)}∞n=1

≤li+1(θ)α
(
{vηi+1 − Ψ(ηi+1, θi)Hi(θi, v(η−i )) − Φ(ηi+1, θi)H ′i (θi, v(η−i ))

−

∫ ηi+1

θi

Φ(ηi+1, θ)F(θ, vρ(θ,vθ),Gvρ(θ,vθ))dµ(θ)}∞n=1
)

≤li+1(θ)[Nb̃α{vn(θ)}∞n=1 + Md̃α{vn(θ)}∞n=1] + 2li+1(θ)M(1 + H∗)
∫ b

0
l0(θ)α{vn(θ)}∞n=1dµ(θ)

≤li+1(θ)
[
Nb̃ + Md̃ + 2M(1 + H∗)

∫ b

0
l0(θ)dµ(θ)

]
αG{vn}∞n=1.

(3.13)

By (H2),(H3), we have

α
(
{(Tvn) (η)}∞n=1

)
≤α

({∫ η

0
Φ(η, θ)[Bzv(θ)dµ(θ)

}∞
n=1

)
+ α

({∫ η

0
Φ(η, θ)F(θ, vρ(θ,vθ),Gvρ(θ,vθ))dµ(θ)

}∞
n=1

)
≤

[
2M(1 + H∗)

∫ b

0
l0(θ)dµ(θ)

]
αG{vn}∞n=1

+

[
2M∥B∥[Nb̃ + Md̃ + 2(1 + H∗)

∫ b

0
l0(θ)dµ(θ)]

∫ b

0
li+1(θ)dµ(θ)

]
αG{vn}∞n=1

≤
{
2M∥B∥[Nb̃ + Md̃ + 2(1 + H∗)

∫ b

0
l0(θ)dµ(θ)]

∫ b

0
li+1(θ)dµ(θ)

+ 2M(1 + H∗)
∫ b

0
l0(θ)dµ(θ)

}
αG{vn}∞n=1, η ∈ [0, η1].

(3.14)

For any η ∈ (θi, ηi+1](i = 1, 2, 3...k), by using (H2)–(H5), we have

α
(
{(Tvn) (η)}∞n=1

)
≤α

({
Ψ(η, θi)Hi(θi, v(η−i )) + Φ(η, θi)H ′i (θi, v(η−i ))

}∞
n=1

)
+ α

({∫ η

0
Φ(η, θ)[Bzv(θ)dµ(θ)

}∞
n=1

)
+ α

({∫ η

0
Φ(η, θ)F(θ, vρ(θ,vθ),Gvρ(θ,vθ))dµ(θ)

}∞
n=1

)
≤

[
2M(1 + H∗)

∫ b

0
l0(θ)dµ(θ)

]
αG{vn}∞n=1 + (Nb̃ + Md̃)αG{vn}∞n=1

+

[
2M∥B∥[Nb̃ + Md̃ + 2(1 + H∗)

∫ b

0
l0(θ)dµ(θ)]

∫ b

0
li+1(θ)dµ(θ)

]
αG{vn}∞n=1

≤
{
2M∥B∥[Nb̃ + Md̃ + 2(1 + H∗)

∫ b

0
l0(θ)dµ(θ)]

∫ b

0
li+1(θ)dµ(θ)

+ 2M(1 + H∗)
∫ b

0
l0(θ)dµ(θ) + (Nb̃ + Md̃)

}
αG{vn}∞n=1

=∆αG{vn}∞n=1.

(3.15)
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From Lemma 2.8, one can get that

αG({Tvn}∞n=1) = sup
η∈J

α({Tvn(η)}∞n=1). (3.16)

This together with (3.12) and (3.16) guarantees that

αG({vn}∞n=1) ≤ αG({Tvn}∞n=1) ≤ ∆αG({vn}∞n=1),

which means that C = {vn}∞n=1 is relatively compact.
Hence, according to Theorem 2.9, it is easy to know that the operator T has a fixed point. Then, the

system (1.1) is totally controllable. So the proof is complete. □

4. Application

In this section we present the application of the obtained theoretical results.
Example: Consider the following second-order control system:

∂(
∂v(η, x)
∂η

) = [
∂2

∂x2 v(η, x) + A(η)
∂

∂x
v(η, x)]dη + νz(η, x)dµ(η)

+[
∫ η

−∞

e2(θ−η) v(θ − σ1(η)σ2(∥v(η)∥), x)
4

dθ]dµ(η)

+[
∫ η

0
(η − θ)

∫ θ

−∞

e2(δ−θ) v(δ − σ1(η)σ2(∥v(t)∥), x)
2

dδdθ]dµ(η), η ∈ (0,
1
3

] ∪ (
2
3
, 1];

H1(η, v) =
e−(η− 1

3 )

4
·
|v( 1

3
−
, x)|

1 + |v( 1
3
−
, x)|

, η ∈ (
1
3
,

2
3

];

H ′1(η, v) = −
e−(η− 1

3 )

4
·
|v( 1

3
−
, x)|

1 + |v(1
3
−
, x)|

, η ∈ (
1
3
,

2
3

];

v(η, 0) = v(η, 2π) = 0, η ∈ [0, 1];

v(η, x) = ϕ(η, x),
∂

∂η
v(0, x) = ω, η ∈ (−∞, 0], x ∈ [0, 2π],

(4.1)

where η ∈ J = [0, 1], x ∈ [0, 2π]. Moreover, the function σi: (0,∞)→ (0,∞) is continuous for i = 1, 2.

Conclusion: System (4.1) is totally controllable on J.

Proof. System (4.1) can be regarded as a system of the form (1.1), where b = 1, B = ν, and

µ(η) =



1 − 1
2 , 0 ≤ η ≤ 1 − 1

2 ;
...

1 − 1
m , 1 − 1

m−1 < η ≤ 1 − 1
m , for m > 2 and m ∈ N;

...

1, t = 1.

Obviously, µ : J → R is left continuous and nondecreasing.
Define

v(η)(x) = v(η, x),
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z(η)(x) = z(η, x),
H1(η)(x) = H1(η, x)
H ′1(η)(x) = H1(η, x)

According to the research of [31] and [36], first let X = L2(L;C), where L = R \2πZ is a group. We
take A as the infinitesimal generator of a cosine family {Ψ(η)}η∈R with associated sine family {Φ(η)}η∈R.
We denote A(η) = A + Ã(η), where Ã(η) : D(Ã(η))→ X is a closed linear operator.

We consider the operator A f (ζ) = f ′′(ζ) having domain H2(L;C), where H2(T;C) represents the
Sobolev space of 2π periodic 2-integrable functions from R to C. Moreover, A has eigenvalues −κ2(κ ∈

N), with corresponding eigenfunction ϑκ(ζ) =

√
1

2π
eint (κ ∈ Z) is an orthonormal basis. Furthermore,

A(η) f =
∞∑
κ=1

−κ2⟨ f , ϑκ⟩ϑκ, f ∈ D(A).

The cosine function Ψ(η) is given by

Ψ(η) f =
∞∑
κ=1

cos(κη)⟨ f , ϑκ⟩ϑκ, η ∈ R

with associated sine function Φ(η)

Φ(η) f =
∞∑
κ=1

cos(κη)
κ
⟨ f , ϑκ⟩ϑκ, η ∈ R.

It is clearly seen that the family {Ψ(η)}η∈R is uniformly bounded by 1.
Next, for x ∈ (0, 2π), the linear operator L1 is defined as follows

L1z =
∫ 1

3

0
Φ(

1
3
, θ)νz(θ, x)dµ(θ). (4.2)

Similarly, the linear operator L2 is defined as follows

L2z =
∫ 1

2
3

Φ(1, θ)νz(θ, x)dµ(θ). (4.3)

It is easy to see that ∥L1∥ ≤
µ

2
, ∥L2∥ ≤

µ

3
. Hence, we know that M̃ ≤

µ

2
.

Since

H1(t, v) =
e−(t− 1

3 )

4
·
|v(1

3
−
, x)|

1 + |v(1
3
−
, x)|

, H ′1(t, v) = −
e−(t− 1

3 )

4
·
|v(1

3
−
, x)|

1 + |v( 1
3
−
, x)|

,

(H4) and (H5) are satisfied with a1 =
1
4 , c1 =

1
4 .

Set, h(θ) = e2θ, θ < 0, then

l =
∫ 0

−∞

h(θ)dθ =
1
2
.
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The norm ∥ · ∥Bh is defined as

∥ϕ∥Bh =

∫ 0

−∞

h(θ) sup
τ∈[θ,0]

|ϕ(τ)|dθ.

Let ρ(η, ϕ) = η − σ1(η)σ2(∥ϕ(0)∥). One can get that,

F(η, ϕ,Gϕ) =
∫ 0

−∞

e2θϕ

4
dθ +

∫ η

0
(η − θ)

∫ 0

−∞

e2τϕ

2
dτdθ.

We obtain, for ∥ϕ∥ ≤ r,

∥F(t, ϕ,Gϕ)∥ =

∥∥∥∥∥∥
∫ 0

−∞

e2θϕ

4
dθ +

∫ η

0
(η − θ)

∫ 0

−∞

e2τϕ

2
dτdθ

∥∥∥∥∥∥ ≤ r
8
+

rη2

8
.

We take ψr(η) =
r
8
+

rη2

8
with γ =

1
4

, thus (H2) is satisfied.
Finally, if ν is sufficiently small such that

2ν2 + ν < 3.

Therefore, it is easy to know from Theorem 3.6 that system (4.1) is totally controllable. □

5. Conclusions

This paper is mainly concerned with a class of non-autonomous second-order measure evolution
systems involving state-dependent delay and non-instantaneous impulses. We first give the definition
of Henstock-Lebesgue-Stieltjes integral and phase space. Then, the existence of the mild solution
of system (1.1) is obtained by using the integral equation given by the strongly continuous family
of cosines. By using the Kuratowski measure of noncompactness and Mönch fixed point theorem,
we obtain some sufficient conditions to ensure the total controllability of system (1.1). Finally, an
illustrative example is given to show the practical usefulness of the analytical results.
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