Based on the panel data of China from 2003 to 2017, this paper applies the panel vector autoregressive (PVAR) model to the study of the influencing factors of carbon emissions. After the cross-section dependence test, unit root test and cointegration test of panel data, the dynamic relationship between energy consumption, economic growth, urbanization, financial development and CO2 emissions is investigated by using PVAR model. Then, we used the impulse response function tool to better understand the reaction of the main variables of interest, CO2 emissions, aftershocks on four factors. Finally, through the variance decomposition of all factors, the influence degree of a single variable on other endogenous variables is obtained. Overall, the results show that the four factors have a significant and positive impact on carbon emissions. In addition, variance decomposition also showed that energy consumption and economic growth strongly explained CO2 emissions. These results indicate that the financial, economic and energy sectors of China's provinces still make relatively weak contributions to reducing carbon emissions and improving environmental quality. Therefore, several policies are proposed and discussed.
Citation: Huanyu Chen, Jizheng Yi, Aibin Chen, Guoxiong Zhou. Application of PVAR model in the study of influencing factors of carbon emissions[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13227-13251. doi: 10.3934/mbe.2022619
Based on the panel data of China from 2003 to 2017, this paper applies the panel vector autoregressive (PVAR) model to the study of the influencing factors of carbon emissions. After the cross-section dependence test, unit root test and cointegration test of panel data, the dynamic relationship between energy consumption, economic growth, urbanization, financial development and CO2 emissions is investigated by using PVAR model. Then, we used the impulse response function tool to better understand the reaction of the main variables of interest, CO2 emissions, aftershocks on four factors. Finally, through the variance decomposition of all factors, the influence degree of a single variable on other endogenous variables is obtained. Overall, the results show that the four factors have a significant and positive impact on carbon emissions. In addition, variance decomposition also showed that energy consumption and economic growth strongly explained CO2 emissions. These results indicate that the financial, economic and energy sectors of China's provinces still make relatively weak contributions to reducing carbon emissions and improving environmental quality. Therefore, several policies are proposed and discussed.
[1] | M. Kanwal, H. Khan, Does carbon asset add value to clean energy market? Evidence from EU, Green Finance, 3 (2021), 495–507. https://doi.org/10.3934/GF.2021023 doi: 10.3934/GF.2021023 |
[2] | G. Jin, B. Guo, X. Deng, Is there a decoupling relationship between CO2 emission reduction and poverty alleviation in China, Technol. Forecasting Social Change, 151 (2020), 119856. https://doi.org/10.1016/j.techfore.2019.119856 doi: 10.1016/j.techfore.2019.119856 |
[3] | K. Rana, S. R. Singh, N. Saxena, S. S. Sana, Growing items inventory model for carbon emission under the permissible delay in payment with partially backlogging, Green Finance, 3 (2021), 153–174. https://doi.org/10.3934/GF.2021009 doi: 10.3934/GF.2021009 |
[4] | G. Liao, P. Hou, X. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: The role of corporate environmental responsibility engagement, Int. J. Finance Econ., 26 (2021), 4386–4389. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020 |
[5] | I. S. Farouq, N. U. Sambo, A. U. Ahmad, A. H. Jakada, I. A. Danmaraya, Does financial globalization uncertainty affect CO2 emissions? Empirical evidence from some selected SSA countries, Quant. Finance Econ., 5 (2021), 247–263. https://doi.org/10.3934/QFE.2021011 doi: 10.3934/QFE.2021011 |
[6] | K. Sakakibara, T. Kanamura. Risk of temperature differences in geothermal wells and generation strategies of geothermal power, Green Finance, 2 (2020), 424–436. https://doi.org/10.3934/GF.2020023 doi: 10.3934/GF.2020023 |
[7] | D. F. T. Garofalo, R. M. L. Novaes, R. A. Pazianotto, V. G. Maciel, M. Brandão, J. Z. Shimbo, et al., Land-use change CO2 emissions associated with agricultural products at municipal level in Brazil, J. Cleaner Prod., 364 (2022), 132549. https://doi.org/10.1016/j.jclepro.2022.132549 doi: 10.1016/j.jclepro.2022.132549 |
[8] | Z. Li, G. Liao, K. Albitar, Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation, Bus. Strategy Environ., 29 (2020), 1045–1055. https://doi.org/10.1002/bse.2416 doi: 10.1002/bse.2416 |
[9] | Z. Li, Z. Huang, P. Failler, Dynamic correlation between crude oil price and investor sentiment in China: Heterogeneous and asymmetric effect, Energies, 15 (2022), 687. https://doi.org/10.3390/en1503068 doi: 10.3390/en1503068 |
[10] | C. Yang, T. Li, K. Albitar, Does energy efficiency affect ambient PM2.5? The moderating role of energy investment, Front. Environ. Sci., 2021 (2021), 210. https://doi.org/10.3389/fenvs.2021.707751 doi: 10.3389/fenvs.2021.707751 |
[11] | S. Wang, Q. Li, C. Fang, C. Zhou, The relationship between economic growth, energy consumption, and CO2 emissions: Empirical evidence from China, Sci. Total Environ., 542 (2016), 360–371. https://doi.org/10.1016/j.scitotenv.2015.10.027 doi: 10.1016/j.scitotenv.2015.10.027 |
[12] | L. Jamel, S. Maktouf, The nexus between economic growth, financial development, trade openness, and CO2 emissions in European countries, Cogent Econ. Finance, 5 (2017), 1341456. https://doi.org/10.1080/23322039.2017.1341456 doi: 10.1080/23322039.2017.1341456 |
[13] | J. Jian, X. Fan, P. He, H. Xiong, H. Shen, The effects of energy consumption, economic growth and financial development on CO2 emissions in China: A VECM approach, Sustainability, 11 (2019), 4850. https://doi.org/10.3390/su11184850 doi: 10.3390/su11184850 |
[14] | G. M. Grossman, A. B. Krueger, Economic growth and the environment, Q. J. Econ., 110 (1995), 353–377. https://doi.org/10.2307/2118443 doi: 10.2307/2118443 |
[15] | Z. Cao, J. Wei, H. Chen, CO2 emissions and urbanization correlation in China based on threshold analysis, Ecol. Indic., 61 (2016), 193–201. https://doi.org/10.1016/j.ecolind.2015.09.013 doi: 10.1016/j.ecolind.2015.09.013 |
[16] | P. Poumanyvong, S. Kaneko, Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis, Ecol. Econ., 70 (2010), 434–444. https://doi.org/10.1016/j.ecolecon.2010.09.029 doi: 10.1016/j.ecolecon.2010.09.029 |
[17] | F. Dong, Y. Wang, B. Su, Y. Hua, Y. Zhang, The process of peak CO2 emissions in developed economies: A perspective of industrialization and urbanization, Resour. Conserv. Recycl., 141 (2019), 61–75. https://doi.org/10.1016/j.resconrec.2018.10.010 doi: 10.1016/j.resconrec.2018.10.010 |
[18] | G. Akhmat, K. Zaman, T. Shukui, F. Sajjad, M. A. Khan, M. Z. Khan, The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries, Environ. Sci. Pollut. Res., 21 (2014), 7425–7435. https://doi.org/10.1007/s11356-014-2693-2 doi: 10.1007/s11356-014-2693-2 |
[19] | S. P. Nathaniel, C. O. Iheonu, Carbon dioxide abatement in Africa: the role of renewable and non-renewable energy consumption, Sci. Total Environ., 679 (2019), 337–345. https://doi.org/10.1016/j.scitotenv.2019.05.011 doi: 10.1016/j.scitotenv.2019.05.011 |
[20] | K. Zaman, M. A. Moemen, Energy consumption, carbon dioxide emissions and economic development: evaluating alternative and plausible environmental hypothesis for sustainable growth, Renewable Sustainable Energy Rev., 74 (2017), 1119–1130. https://doi.org/10.1016/j.rser.2017.02.072 doi: 10.1016/j.rser.2017.02.072 |
[21] | F. Abbasi, K. Riaz, CO2 emissions and financial development in an emerging economy: an augmented VAR approach, Energy Policy, 90 (2016), 102–114. https://doi.org/10.1016/j.enpol.2015.12.017 doi: 10.1016/j.enpol.2015.12.017 |
[22] | A. Tamazian, J. P. Chousa, K. C. Vadlamannati, Does higher economic and financial development lead to environmental degradation: evidence from BRIC countries, Energy policy, 37 (2009), 246–253. https://doi.org/10.1016/j.enpol.2008.08.025 doi: 10.1016/j.enpol.2008.08.025 |
[23] | M. Carreras-Simó, G. Coenders, The relationship between asset and capital structure: a compositional approach with panel vector autoregressive models, Quant. Finance Econ., 5 (2021), 571–590. https://doi.org/10.3934/QFE.2021025 doi: 10.3934/QFE.2021025 |
[24] | J. Chontanawat, Relationship between energy consumption, CO2 emission and economic growth in ASEAN: Cointegration and causality model, Energy Rep., 6 (2020), 660–665. https://doi.org/10.1016/j.egyr.2019.09.046 doi: 10.1016/j.egyr.2019.09.046 |
[25] | M. S. Gorus, M. Aydin, The relationship between energy consumption, economic growth, and CO2 emission in MENA countries: Causality analysis in the frequency domain, Energy, 168 (2019), 815–822. https://doi.org/10.1016/j.energy.2018.11.139 doi: 10.1016/j.energy.2018.11.139 |
[26] | B. Muhammad, Energy consumption, CO2 emissions and economic growth in developed, emerging and Middle East and North Africa countries, Energy, 179 (2019), 232–245. https://doi.org/10.1016/j.energy.2019.03.126 doi: 10.1016/j.energy.2019.03.126 |
[27] | H. Wu, L. Xu, S. Ren, Y. Hao, G. Yan, How do energy consumption and environmental regulation affect carbon emissions in China? New evidence from a dynamic threshold panel model, Resour. Policy, 67 (2020), 101678. https://doi.org/10.1016/j.resourpol.2020.10167 doi: 10.1016/j.resourpol.2020.10167 |
[28] | W. Gu, X. Zhao, X. Yan, C. Wang, Q. Li, Energy technological progress, energy consumption, and CO2 emissions: empirical evidence from China, J. Cleaner Prod., 236 (2019), 117666. https://doi.org/10.1016/j.jclepro.2019.117666 doi: 10.1016/j.jclepro.2019.117666 |
[29] | Q. Munir, H. H. Lean, R. Smyth, CO2 emissions, energy consumption and economic growth in the ASEAN-5 countries: a cross-sectional dependence approach, Energy Econ., 85 (2020), 104571. https://doi.org/10.1016/j.eneco.2019.104571 doi: 10.1016/j.eneco.2019.104571 |
[30] | D. Tenaw, A. D. Beyene, Environmental sustainability and economic development in sub-Saharan Africa: A modified EKC hypothesis, Renewable Sustainable Energy Rev., 143 (2021), 110897. https://doi.org/10.1016/j.rser.2021.110897 doi: 10.1016/j.rser.2021.110897 |
[31] | M. M. Rahman, R. Nepal, K. Alam, Impacts of human capital, exports, economic growth and energy consumption on CO2 emissions of a cross-sectionally dependent panel: Evidence from the newly industrialized countries (NICs), Environ. Sci. Policy, 121 (2021), 24–36. https://doi.org/10.1016/j.envsci.2021.03.017 doi: 10.1016/j.envsci.2021.03.017 |
[32] | J. P. Namahoro, Q. Wu, N. Zhou, S. Xue, Impact of energy intensity, renewable energy, and economic growth on CO2 emissions: Evidence from Africa across regions and income levels, Renewable Sustainable Energy Rev., 147 (2021), 111233. https://doi.org/10.1016/j.rser.2021.111233 doi: 10.1016/j.rser.2021.111233 |
[33] | M. Hu, R. Li, W. You, Y. Liu, C. C. Lee, Spatiotemporal evolution of decoupling and driving forces of CO2 emissions on economic growth along the Belt and Road, J. Cleaner Prod., 277 (2020), 123272. https://doi.org/10.1016/j.jclepro.2020.123272 doi: 10.1016/j.jclepro.2020.123272 |
[34] | J. Li, S. Li, Energy investment, economic growth and carbon emissions in China—Empirical analysis based on spatial Durbin model, Energy Policy, 140 (2020), 111425. https://doi.org/10.1016/j.enpol.2020.111425 doi: 10.1016/j.enpol.2020.111425 |
[35] | Y. Chen, J. Zhao, Z. Lai, Z. Wang, H. Xia, Exploring the effects of economic growth, and renewable and non-renewable energy consumption on China's CO2 emissions: evidence from a regional panel analysis, Renewable Energy, 140 (2019), 341–353. https://doi.org/10.1016/j.renene.2019.03.058 doi: 10.1016/j.renene.2019.03.058 |
[36] | Z. Wang, Y. Rasool, B. Zhang, Z. Ahmed, B. Wang, Dynamic linkage among industrialisation, urbanisation, and CO2 emissions in APEC realms: evidence based on DSUR estimation, Struct. Change Econ. Dyn., 52 (2020), 382–389. https://doi.org/10.1016/j.strueco.2019.12.001 doi: 10.1016/j.strueco.2019.12.001 |
[37] | H. Mahmood, T. T. Y. Alkhateeb, M. Furqan, Industrialization, urbanization and CO2 emissions in Saudi Arabia: Asymmetry analysis, Energy Rep., 6 (2020), 1553–1560. https://doi.org/10.1016/j.egyr.2020.06.004 doi: 10.1016/j.egyr.2020.06.004 |
[38] | S. Muhammad, X. Long, M. Salman, L. Dauda, Effect of urbanization and international trade on CO2 emissions across 65 belt and road initiative countries, Energy, 196 (2020), 117102. https://doi.org/10.1016/j.energy.2020.117102 doi: 10.1016/j.energy.2020.117102 |
[39] | X. Liu, J. Bae, Urbanization and industrialization impact of CO2 emissions in China, J. Cleaner Prod., 172 (2018), 178–186. https://doi.org/10.1016/j.jclepro.2017.10.156 doi: 10.1016/j.jclepro.2017.10.156 |
[40] | F. Yao, H. Zhu, M. Wang, The impact of multiple dimensions of urbanization on CO2 emissions: A spatial and threshold analysis of panel data on China's prefecture-level cities, Sustainable Cities Soc., 73 (2021), 103113. https://doi.org/10.1016/j.scs.2021.103113 doi: 10.1016/j.scs.2021.103113 |
[41] | S. A. H. Zaidi, M. W. Zafar, M. Shahbaz, F. Hou, Dynamic linkages between globalization, financial development and carbon emissions: Evidence from Asia Pacific Economic Cooperation countries, J. Cleaner Prod., 228 (2019), 533–543. https://doi.org/10.1016/j.jclepro.2019.04.210 doi: 10.1016/j.jclepro.2019.04.210 |
[42] | M. Khan, I. Ozturk, Examining the direct and indirect effects of financial development on CO2 emissions for 88 developing countries, J. Environ. Manage., 293 (2021), 112812. https://doi.org/10.1016/j.jenvman.2021.112812 doi: 10.1016/j.jenvman.2021.112812 |
[43] | U. K. Pata, Renewable energy consumption, urbanization, financial development, income and CO2 emissions in Turkey: testing EKC hypothesis with structural breaks, J. Cleaner Prod., 187 (2018), 770–779. https://doi.org/10.1016/j.jclepro.2018.03.236 doi: 10.1016/j.jclepro.2018.03.236 |
[44] | A. O. Acheampong, M. Amponsah, E. Boateng, Does financial development mitigate carbon emissions? Evidence from heterogeneous financial economies, Energy Econ., 88 (2020), 104768. https://doi.org/10.1016/j.eneco.2020.104768 doi: 10.1016/j.eneco.2020.104768 |
[45] | L. Huang, X. Zhao, Impact of financial development on trade-embodied carbon dioxide emissions: Evidence from 30 provinces in China, J. Cleaner Prod., 198 (2018), 721–736. https://doi.org/10.1016/j.jclepro.2018.07.021 doi: 10.1016/j.jclepro.2018.07.021 |
[46] | M. Salahuddin, K. Alam, I. Ozturk, K. Sohag, The effects of electricity consumption, economic growth, financial development and foreign direct investment on CO2 emissions in Kuwait, Renewable Sustainable Energy Rev., 81 (2018), 2002–2010. https://doi.org/10.1016/j.rser.2017.06.009 doi: 10.1016/j.rser.2017.06.009 |
[47] | L. Charfeddine, M. Kahia, Impact of renewable energy consumption and financial development on CO2 emissions and economic growth in the MENA region: a panel vector autoregressive (PVAR) analysis, Renewable Energy, 139 (2019), 198–213. https://doi.org/10.1016/j.renene.2019.01.010 doi: 10.1016/j.renene.2019.01.010 |
[48] | I. Love, L. Zicchino, Financial development and dynamic investment behavior: Evidence from panel VAR, Q. Rev. Econ. Finance, 46 (2006), 190–210. https://doi.org/10.1016/j.qref.2005.11.007 doi: 10.1016/j.qref.2005.11.007 |
[49] | K. Yang, J. Yi, A. Chen, J. Liu, W. Chen, Z. Jin, ConvPatchTrans: A script identification network with global and local semantics deeply integrated, Eng. Appl. Artif. Intell., 113 (2022), 104916. https://doi.org/10.1016/j.engappai.2022.104916 doi: 10.1016/j.engappai.2022.104916 |
[50] | K. Yang, J. Yi, A. Chen, J. Liu, W. Chen, ConDinet++: Full-scale fusion network based on conditional dilated convolution to extract roads from remote sensing images, IEEE Geosci. Remote Sens. Lett., 19 (2022), 8015105. https://doi.org/10.1109/LGRS.2021.3093101 doi: 10.1109/LGRS.2021.3093101 |
[51] | A. Levin, C. F. Lin, C. S. J. Chu, Unit root tests in panel data: asymptotic and finite-sample properties, J. Econom., 108 (2002), 1–24. https://doi.org/10.1016/S0304-4076(01)00098-7 doi: 10.1016/S0304-4076(01)00098-7 |
[52] | K. S. Im, M. H. Pesaran, Y. Shin, Testing for unit roots in heterogeneous panels, J. Econom., 115 (2003), 53–74. https://doi.org/10.1016/S0304-4076(03)00092-7 doi: 10.1016/S0304-4076(03)00092-7 |
[53] | M. H. Pesaran, A simple panel unit root test in the presence of cross‐section dependence, J. Appl. Econom., 22 (2007), 265–312. https://doi.org/10.1002/jae.951 doi: 10.1002/jae.951 |
[54] | H. R. Moon, B. Perron, Testing for a unit root in panels with dynamic factors, J. Econom., 122 (2004), 81–126. https://doi.org/10.1016/j.jeconom.2003.10.020 doi: 10.1016/j.jeconom.2003.10.020 |
[55] | T. S. Breusch, A. R. Pagan, The Lagrange multiplier test and its applications to model specification in econometrics, Rev. Econ. Stud., 47 (1980), 239–253. https://doi.org/10.2307/2297111 doi: 10.2307/2297111 |
[56] | M. H. Pesaran, General diagnostic tests for cross-sectional dependence in panels, Empirical Econ., 60 (2021), 13–50. https://doi.org/10.1007/s00181-020-01875-7 doi: 10.1007/s00181-020-01875-7 |
[57] | P. Pedroni, Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis, Econom. Theory, 20 (2004), 597–625. https://doi.org/10.1017/S0266466604203073 doi: 10.1017/S0266466604203073 |
[58] | J. Westerlund, Testing for panel cointegration with multiple structural breaks, Oxford Bull. Econ. Stat., 68 (2006), 101–132. https://doi.org/10.1111/j.1468-0084.2006.00154.x doi: 10.1111/j.1468-0084.2006.00154.x |
[59] | H. Sun, C. A. Samuel, J. C. K. Amissah, F. Taghizadeh-Hesary, I. A. Mensah, Non-linear nexus between CO2 emissions and economic growth: a comparison of OECD and B & R countries, Energy, 212 (2020), 118637. https://doi.org/10.1016/j.energy.2020.118637 doi: 10.1016/j.energy.2020.118637 |
[60] | M. Jaforullah, A. King, Does the use of renewable energy sources mitigate CO2 emissions? A reassessment of the US evidence, Energy Econ., 49 (2015), 711–717. https://doi.org/10.1016/j.eneco.2015.04.006 doi: 10.1016/j.eneco.2015.04.006 |
[61] | X. Long, E. Y. Naminse, J. Du, J. Zhuang, Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012, Renewable Sustainable Energy Rev., 52 (2015), 680–688. https://doi.org/10.1016/j.rser.2015.07.176 doi: 10.1016/j.rser.2015.07.176 |
[62] | P. Chunark, B. Limmeechokchai, S. Fujimori, T. Masui, Renewable energy achievements in CO2 mitigation in Thailand's NDCs, Renewable Energy, 114 (2017), 1294–1305. https://doi.org/10.1016/j.renene.2017.08.017 doi: 10.1016/j.renene.2017.08.017 |
[63] | Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerging Mark. Finance Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076 |
[64] | T. Li, J. Zhong, Z. Huang, Potential dependence of financial cycles between emerging and developed countries: based on ARIMA-GARCH copula model, Emerging Mark. Finance Trade, 56 (2019), 1237–1250. https://doi.org/10.1080/1540496x.2019.1611559 doi: 10.1080/1540496x.2019.1611559 |
[65] | Z. Li, F. Zou, Y. Tan, J. Zhu, Does financial excess support land urbanization-an empirical study of cities in China, Land, 10 (2021), 635. https://doi.org/10.3390/land10060635 doi: 10.3390/land10060635 |
[66] | M. Hong, X. Wang, Z. Li, Will oil price volatility cause market panic, Energies, 15 (2022), 4629. https://doi.org/10.3390/en15134629 doi: 10.3390/en15134629 |
[67] | T. Li, X. Li, G. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanbul Rev., 22 (2022), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005 |
[68] | Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity? Econ. Res. Ekonomska Istraživanja, 2021 (2021), 1–20. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596 |