Research article Special Issues

Stochastic assessment of temperature–CO2 causal relationship in climate from the Phanerozoic through modern times

  • Received: 29 March 2024 Revised: 01 July 2024 Accepted: 03 July 2024 Published: 10 July 2024
  • As a result of recent research, a new stochastic methodology of assessing causality was developed. Its application to instrumental measurements of temperature (T) and atmospheric carbon dioxide concentration ([CO2]) over the last seven decades provided evidence for a unidirectional, potentially causal link between T as the cause and [CO2] as the effect. Here, I refine and extend this methodology and apply it to both paleoclimatic proxy data and instrumental data of T and [CO2]. Several proxy series, extending over the Phanerozoic or parts of it, gradually improving in accuracy and temporal resolution up to the modern period of accurate records, are compiled, paired, and analyzed. The extensive analyses made converge to the single inference that change in temperature leads, and that in carbon dioxide concentration lags. This conclusion is valid for both proxy and instrumental data in all time scales and time spans. The time scales examined begin from annual and decadal for the modern period (instrumental data) and the last two millennia (proxy data), and reach one million years for the most sparse time series for the Phanerozoic. The type of causality appears to be unidirectional, T→[CO2], as in earlier studies. The time lags found depend on the time span and time scale and are of the same order of magnitude as the latter. These results contradict the conventional wisdom, according to which the temperature rise is caused by [CO2] increase.

    Citation: Demetris Koutsoyiannis. Stochastic assessment of temperature–CO2 causal relationship in climate from the Phanerozoic through modern times[J]. Mathematical Biosciences and Engineering, 2024, 21(7): 6560-6602. doi: 10.3934/mbe.2024287

    Related Papers:

  • As a result of recent research, a new stochastic methodology of assessing causality was developed. Its application to instrumental measurements of temperature (T) and atmospheric carbon dioxide concentration ([CO2]) over the last seven decades provided evidence for a unidirectional, potentially causal link between T as the cause and [CO2] as the effect. Here, I refine and extend this methodology and apply it to both paleoclimatic proxy data and instrumental data of T and [CO2]. Several proxy series, extending over the Phanerozoic or parts of it, gradually improving in accuracy and temporal resolution up to the modern period of accurate records, are compiled, paired, and analyzed. The extensive analyses made converge to the single inference that change in temperature leads, and that in carbon dioxide concentration lags. This conclusion is valid for both proxy and instrumental data in all time scales and time spans. The time scales examined begin from annual and decadal for the modern period (instrumental data) and the last two millennia (proxy data), and reach one million years for the most sparse time series for the Phanerozoic. The type of causality appears to be unidirectional, T→[CO2], as in earlier studies. The time lags found depend on the time span and time scale and are of the same order of magnitude as the latter. These results contradict the conventional wisdom, according to which the temperature rise is caused by [CO2] increase.



    加载中


    [1] D. Koutsoyiannis, C. Onof, A. Christofides, Z. W. Kundzewicz, Revisiting causality using stochastics: 1. Theory, Proc. R. Soc. A, 478 (2022), 20210836. https://doi.org/10.1098/rspa.2021.0835 doi: 10.1098/rspa.2021.0835
    [2] J. Veizer, Celestial climate driver: A perspective from four billion years of the carbon cycle, Geosci. Canada, 32 (2005), 13–28. https://doi.org/10.1142/9789812773890_0010 doi: 10.1142/9789812773890_0010
    [3] J. Veizer, The role of water in the fate of carbon dioxide: implications for the climate system, in 43rd Int. Seminar on Nuclear War and Planetary Emergencies (2011), R. Ragaini (Ed.). World Scientific, 313–327. https://doi.org/10.1142/8232
    [4] J. Veizer, Planetary temperatures/climate across geological time scales, in International Seminar on Nuclear War and Planetary Emergencies—44th Session: The Role of Science in the Third Millennium (2012), 287–288. https://doi.org/10.1142/9789814415019_0023
    [5] J. Laskar, A numerical experiment on the chaotic behaviour of the Solar System, Nature, 338 (1989), 237–238. https://doi.org/10.1038/338237a0 doi: 10.1038/338237a0
    [6] J. Laskar, The limits of Earth orbital calculations for geological time-scale use, Philos. Tr. R. Soc. Lond. A, 357 (1999), 1735–1759. https://doi.org/10.1098/rsta.1999.0399 doi: 10.1098/rsta.1999.0399
    [7] M. J. Duncan, Orbital stability and the structure of the solar system, in 1994, in: Circumstellar Dust Disks and Planet Formation, Proceedings of the 10th IAP Astrophysics Meeting, Institut d'Astrophysique de Paris (1994), edited by: R. Ferlet, and A. Vidal-Madjar, Editions Frontiers, Gif sur Yvette, France, 245–256.
    [8] J. L. Lissauer, Chaotic motion in the Solar System, Rev. Mod. Phys., 71 (1999), 835–845. https://doi.org/10.1103/RevModPhys.71.835 doi: 10.1103/RevModPhys.71.835
    [9] D. Koutsoyiannis, A random walk on water, Hydrol. Earth Syst. Sci., 14 (2010), 585–601. https://doi.org/10.5194/hess-14-585-2010 doi: 10.5194/hess-14-585-2010
    [10] M. Milanković, Nebeska Mehanika, Beograd, 1935.
    [11] M.Milanković, Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem, Ko niglich Serbische Akademice, Beograd, 1941.
    [12] M. Milanković, Canon of Insolation and the Ice-Age Problem, Agency for Textbooks, Belgrade, 1998.
    [13] J. D. Hays, J. Imbrie, J., N. J. Shackleton, Variations in the Earth's Orbit: Pacemaker of the Ice Ages, Science, 194 (1976), 1121–1132. https://doi.org/10.1126/science.194.4270.1121 doi: 10.1126/science.194.4270.1121
    [14] G. Roe, In defense of Milankovitch. Geophys. Res. Lett. 33 (2006). https://doi.org/10.1029/2006GL027817 doi: 10.1029/2006GL027817
    [15] N. J. Shaviv, H. Svensmark, J. Veizer, The phanerozoic climate. Ann. N. Y. Acad. Sci., 1519 (2023), 7–19. https://doi.org/10.1111/nyas.14920 doi: 10.1111/nyas.14920
    [16] D. Koutsoyiannis, Relative importance of carbon dioxide and water in the greenhouse effect: Does the tail wag the dog? Preprints, 2024040309 (2024). https://doi.org/10.20944/preprints202404.0309.v1 doi: 10.20944/preprints202404.0309.v1
    [17] D. Koutsoyiannis, Time's arrow in stochastic characterization and simulation of atmospheric and hydrological processes, Hydrol. Sci. J., 64 (2019), 1013–1037. https://doi.org/10.1080/02626667.2019.1600700 doi: 10.1080/02626667.2019.1600700
    [18] D. Koutsoyiannis, Revisiting the global hydrological cycle: is it intensifying?, Hydrol. Earth Syst. Sci., 24 (2020), 3899–3932. https://doi.org/10.5194/hess-24-3899-2020 doi: 10.5194/hess-24-3899-2020
    [19] D. Koutsoyiannis, Z. W. Kundzewicz, Atmospheric temperature and CO2: Hen-or-egg causality?, Sci, 2 (2020), 83. https://doi.org/10.3390/sci2040083 doi: 10.3390/sci2040083
    [20] D. Koutsoyiannis, Rethinking climate, climate change, and their relationship with water, Water, 13 (2021), 849. https://doi.org/10.3390/w13060849 doi: 10.3390/w13060849
    [21] D. Koutsoyiannis, C. Onof, A. Christofides, Z. W. Kundzewicz, Revisiting causality using stochastics: 2. Applications, Proc. R. Soc. A, 478 (2022), 20210835. https://doi.org/10.1098/rspa.2021.0835 doi: 10.1098/rspa.2021.0835
    [22] D. Koutsoyiannis, C. Onof, Z. W. Kundzewicz, A. Christofides, On hens, eggs, temperatures and CO2: Causal links in Earth's atmosphere, Sci, 5 (2023), 35. https://doi.org/10.3390/sci5030035 doi: 10.3390/sci5030035
    [23] D. Koutsoyiannis, C. Vournas, Revisiting the greenhouse effect—a hydrological perspective, Hydrol. Sci. J., 69 (2024), 151–164. https://doi.org/10.1080/02626667.2023.2287047 doi: 10.1080/02626667.2023.2287047
    [24] D. Koutsoyiannis, Net isotopic signature of atmospheric CO2 sources and sinks: No change since the Little Ice Age, Sci, 6 (2024), 17. https://doi.org/10.3390/sci6010017 doi: 10.3390/sci6010017
    [25] J. D. Shakun, P. U. Clark, F. He, S. A. Marcott, A. C. Mix, Z. Liu, et al., Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation, Nature, 484 (2012), 49–54. https://doi.org/10.1038/nature10915 doi: 10.1038/nature10915
    [26] J. C. Beeman, L. Gest, F. Parrenin, D. Raynaud, T. J. Fudge, C. Buizert, et al., Antarctic temperature and CO2: near-synchrony yet variable phasing during the last deglaciation, Clim. Past, 15 (2019), 913–926. https://doi.org/10.5194/cp-15-913-2019 doi: 10.5194/cp-15-913-2019
    [27] F. Parrenin, V. Masson-Delmotte, P. Köhler, D. Raynaud, D. Paillard, J. Schwander, et al., Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming, Science 339, (2013), 1060–1063. https://doi.org/10.1126/science.1226368 doi: 10.1126/science.1226368
    [28] W. Soon, Implications of the secondary role of carbon dioxide and methane forcing in climate change: past, present, and future. Phys. Geogr. 28 (2007), 97–125. https://doi.org/10.2747/0272-3646.28.2.97 doi: 10.2747/0272-3646.28.2.97
    [29] R. A. Berner, Z. Kothavala, GEOCARB Ⅲ: A revised model of atmospheric CO2 over Phanerozoic time, Am. J. Sci., 301 (2001), 182–204. https://doi.org/10.2475/ajs.301.2.182 doi: 10.2475/ajs.301.2.182
    [30] J. Veizer, Y. Godderis, L. M. François, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon, Nature, 408 (2000), 698–701. https://doi.org/10.1038/35047044 doi: 10.1038/35047044
    [31] N. Caillon, J. P. Severinghaus, J. Jouzel, J. M. Barnola, J. Kang, V. Y. Lipenkov, Timing of atmospheric CO2 and Antarctic temperature changes across Termination Ⅲ, Science 299 (2003), 1728–1731. https://doi.org/10.1126/science.1078758 doi: 10.1126/science.1078758
    [32] J. B. Pedro, S. O. Rasmussen, T. D. van Ommen, Tightened constraints on the time-lag between Antarctic temperature and CO2 during the last deglaciation, Clim. Past, 8 (2012), 1213–1221. https://doi.org/10.5194/cp-8-1213-2012 doi: 10.5194/cp-8-1213-2012
    [33] O. Humlum, K. Stordahl, J. E. Solheim, The phase relation between atmospheric carbon dioxide and global temperature, Glob. Planet. Change, 100 (2013), 51–69. https://doi.org/10.1016/j.gloplacha.2012.08.008 doi: 10.1016/j.gloplacha.2012.08.008
    [34] C. R. Scotese, H. Song, B. J. Milels, D. G. van der Meer, Phanerozoic paleotemperatures: The earth's changing climate during the last 540 million years, Earth Sci. Rev., 215 (2021), 103503. https://doi.org/10.1016/j.earscirev.2021.103503 doi: 10.1016/j.earscirev.2021.103503
    [35] E. L. Grossman, M. M. Joachimski, Ocean temperatures through the Phanerozoic reassessed, Sci. Rep., 12 (2022), 8938. https://doi.org/10.1038/s41598-022-11493-1 doi: 10.1038/s41598-022-11493-1
    [36] H. Song, P. B. Wignall, H. Song, X. Dai, D. Chu, Seawater temperature and dissolved oxygen over the past 500 million years, J. Earth Sci., 30 (2019), 236–243. https://doi.org/10.1007/s12583-018-1002-2 doi: 10.1007/s12583-018-1002-2
    [37] J. P. Klages, U. Salzmann, T. Bickert, C.-D. Hillenbrand, K. Gohl, G. Kuhn, et al., Temperate rainforests near the South Pole during peak Cretaceous warmth, Nature 580 (2020), 81–86. https://doi.org/10.1038/s41586-020-2148-5 doi: 10.1038/s41586-020-2148-5
    [38] J. M. Schaefer, R. C. Finkel, G. Balco, R. B. Alley, M. W. Caffee, J. P. Briner, et al., Greenland was nearly ice-free for extended periods during the Pleistocene, Nature, 540 (2016), 252–255. https://doi.org/10.1038/nature20146 doi: 10.1038/nature20146
    [39] K. H. Kjær, M. W. Pedersen, B. De Sanctis, B. De Cahsan, T. S. Korneliussen, C. S. Michelsen, et al., A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA, Nature, 612 (2022), 283–291. https://doi.org/10.1038/s41586-022-05453-y doi: 10.1038/s41586-022-05453-y
    [40] R. A. Berner, GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2, Geochim. Cosmochim. Acta, 70 (2006), 5653–5664. https://doi.org/10.1016/j.gca.2005.11.032 doi: 10.1016/j.gca.2005.11.032
    [41] D. L. Royer, Y. Donnadieu, J. Park, J. Kowalczyk, Y. Godderis, Error analysis of CO2 and O2 estimates from the long-term geochemical model GEOCARBSULF, Am. J. Sci., 314 (2014), 1259–1283. https://doi.org/10.2475/09.2014.01 doi: 10.2475/09.2014.01
    [42] G. L. Foster, D. L. Royer, D. J. Lunt, Future climate forcing potentially without precedent in the last 420 million years, Nat. Commun., 8 (2017), 14845. https://doi.org/10.1038/ncomms14845 doi: 10.1038/ncomms14845
    [43] D. L. Royer, Atmospheric CO2 and O2 during the Phanerozoic: Tools, patterns and impacts. In Treatise on Geochemistry, 2nd ed.; H. Holland, K. Turekian, Eds., Elselvier, Amsterdam, The Netherlands, (2014), 251–267. https://doi.org/10.1016/B978-0-08-095975-7.01311-5
    [44] W. J. Davis, The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years, Climate, 5 (2017), 76. https://doi.org/10.3390/cli5040076 doi: 10.3390/cli5040076
    [45] R. A. Berner, Addendum to "Inclusion of the Weathering of Volcanic Rocks in the GEOCARBSULF Model" (R. A, Berner, 2006, V. 306, p. 295–302), Am. J. Sci., 308 (2008), 100–103. https://doi.org/10.2475/01.2008.04 doi: 10.2475/01.2008.04
    [46] J. J. Sepkoski, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology, 7 (1981), 36–53. https://doi.org/10.1017/S0094837300003778 doi: 10.1017/S0094837300003778
    [47] T. Westerhold, N. Marwan, A. J. Drury, D. Liebrand, C. Agnini, E. Anagnostou, et al., An astronomically dated record of Earth's climate and its predictability over the last 66 million years, Science, 369 (2020), 1383–1387. https://doi.org/10.1126/science.aba6853 doi: 10.1126/science.aba6853
    [48] A. L. Melott, R. K. Bambach, Analysis of periodicity of extinction using the 2012 geological timescale, Paleobiology, 40 (2014), 177–196. https://doi.org/10.1666/13047 doi: 10.1666/13047
    [49] W. J. Davis, Mass extinctions and their relationship with atmospheric carbon dioxide concentration: Implications for Earth's future, Earth's Future, 11 (2023), e2022EF003336. https://doi.org/10.1029/2022EF003336 doi: 10.1029/2022EF003336
    [50] J. W. Rae, Y. G. Zhang, X. Liu, G. L. Foster, H. M. Stoll, R. D. Whiteford, Atmospheric CO2 over the past 66 million years from marine archives, Ann. Rev. Earth Planet. Sci., 49 (2021), 609–641. https://doi.org/10.1146/annurev-earth-082420-063026 doi: 10.1146/annurev-earth-082420-063026
    [51] S. Epstein, R. Buchsbaum, H. A. Lowenstam, H. C. Urey, Revised carbonate-water isotopic temperature scale, Geolog. Soc. Am. Bullet., 64 (1953), 1315–1326. https://doi.org/10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO; 2 doi: 10.1130/0016-7606(1953)64[1315:RCITS]2.0.CO; 2
    [52] J. Jouzel, C. Lorius, J. R. Petit, C. Genthon, N. I. Barkov, V. M. Kotlyakov, et al., Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160 000 years), Nature, 329 (1987), 403–408. https://doi.org/10.1038/329403a0 doi: 10.1038/329403a0
    [53] J. R. Petit, J. Jouzel, D. Raynaud, N. I. Barkov, J.-M. Barnola, I. Basile, et al., Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica, Nature 399 (1999), 429–436. https://doi.org/10.1038/20859 doi: 10.1038/20859
    [54] J.-M. Barnola, P. Pimienta, D. Raynaud, Y. S. Korotkevich, CO2-climate relationship as deduced from the Vostok ice core: A re-examination based on new measurements and on a re-evaluation of the air dating, Tellus B Chem. Phys, Meteorol., 43 (1991), 83–90. https://doi.org/10.3402/tellusb.v43i2.15249 doi: 10.3402/tellusb.v43i2.15249
    [55] B. Christiansen, F. C. Ljungqvist, Challenges and perspectives for large-scale temperature reconstructions of the past two millennia, Rev. Geoph., 55 (2017), 40–96. https://doi.org/10.1002/2016RG000521 doi: 10.1002/2016RG000521
    [56] A. Moberg, D. M. Sonechkin, K. Holmgren, N. M. Datsenko, W. Karlén, Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data, Nature, 433 (2005), 613–617. https://doi.org/10.1038/nature03265 doi: 10.1038/nature03265
    [57] C. Loehle, J. H. McCulloch, Correction to: A 2000-year global temperature reconstruction based on non-tree ring proxies, Energy Environ., 19 (2008), 93–100. https://doi.org/10.1260/095830508783563109 doi: 10.1260/095830508783563109
    [58] B. Christiansen, F. C. Ljungqvist, The extra-tropical Northern Hemisphere temperature in the last two millennia: reconstructions of low-frequency variability, Clim. Past, 8 (2012), 765–786. https://doi.org/10.5194/cp-8-765-2012 doi: 10.5194/cp-8-765-2012
    [59] A. Indermühle, T. F. Stocker, F. Joos, H. Fischer, H. J. Smith, M. Wahlen, et al., Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica, Nature, 398 (1999), 121–126. https://doi.org/10.1038/18158 doi: 10.1038/18158
    [60] D. M. Etheridge, L. P. Steele, R. L. Langenfelds, R. J. Francey, J.-M. Barnola, V. I. Morgan, Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn, J. Geophys. Res. Atmosph. 101, (1996), 4115–4128. https://doi.org/10.1029/95JD03410 doi: 10.1029/95JD03410
    [61] R. J. Francey, C. E. Allison, D. M. Etheridge, C. M. Trudinger, I. G. Enting, M. Leuenberger, et al., A 1000-year high precision record of δ13C in atmospheric CO2, Tellus B, 51 (1999), 170–193. https://doi.org/10.3402/tellusb.v51i2.16269 doi: 10.3402/tellusb.v51i2.16269
    [62] F. Böhm, A. Haase-Schramm, A. Eisenhauer, W. C. Dullo, M. M. Joachimski, H. Lehnert, et al., Evidence for preindustrial variations in the marine surface water carbonate system from coralline sponges, Geochem, Geophys. Geosyst., 3 (2002), 1–13. https://doi.org/10.1029/2001GC000264 doi: 10.1029/2001GC000264
    [63] L. L. R. Kouwenberg, Application of conifer needles in the reconstruction of Holocene CO2 levels, Ph.D. thesis, Utrecht, Laboratory of Paleobotany and Palynology (LPP) Foundation, LPP Contributions series 16,130 p., 2004. https://dspace.library.uu.nl/bitstream/handle/1874/243/full.pdf (accessed 2024-03-10).
    [64] L. Kouwenberg, R. Wagner, W. Kürschner, H. Visscher, Atmospheric CO2 fluctuations during the last millennium reconstructed by stomatal frequency analysis of Tsuga heterophylla needles, Geology, 33 (2005), 33–36. https://doi.org/10.1130/G20941.1 doi: 10.1130/G20941.1
    [65] T. B. van Hoof, F. Wagner-Cremer, W. M. Kürschner, H. Visscher, A role for atmospheric CO2 in preindustrial climate forcing, Proc. Nat. Acad. Sci., 105 (2008), 15815–15818. https://doi.org/10.1073/pnas.0807624105 doi: 10.1073/pnas.0807624105
    [66] J. M. Barnola, M. Anklin, J. Porcheron, D. Raynaud, J. Schwander, B. Stauffer, CO2 evolution during the last millennium as recorded by Antarctic and Greenland ice, Tellus B Chem. Phys. Meteorol., 47 (1995), 264–272. https://doi.org/10.3402/tellusb.v47i1-2.16046 doi: 10.3402/tellusb.v47i1-2.16046
    [67] M. Anklin, J. Schwander, B. Stauffer, J. Tschumi, A. Fuchs, J. M. Barnola, et al., CO2 record between 40 and 8 kyr BP from the Greenland Ice Core Project ice core, J. Geophys. Res. Oceans, 102 (1997), 26539–26545. https://doi.org/10.1029/97JC00182 doi: 10.1029/97JC00182
    [68] J. C. McElwain, F. E. Mayle, D. J. Beerling, Stomatal evidence for a decline in atmospheric CO2 concentration during the Younger Dryas stadial: A comparison with Antarctic ice core records, J. Quaternary Sci., 17 (2002), 21–29. https://doi.org/10.1002/jqs.664 doi: 10.1002/jqs.664
    [69] F. Wagner, L. L. Kouwenberg, T. B. van Hoof, H. Visscher, Reproducibility of Holocene atmospheric CO2 records based on stomatal frequency, Quaternary Sci. Rev., 23 (2004), 1947–1954. https://doi.org/10.1016/j.quascirev.2004.04.003 doi: 10.1016/j.quascirev.2004.04.003
    [70] C. A. Jessen, M. Rundgren, S. Björck, D. Hammarlund, Abrupt climatic changes and an unstable transition into a late Holocene Thermal Decline: A multiproxy lacustrine record from southern Sweden, J. Quaternary Sci., 20 (2005), 349–362. https://doi.org/10.1002/jqs.921 doi: 10.1002/jqs.921
    [71] M. Steinthorsdottir, B. Wohlfarth, M. E. Kylander, M. Blaauw, P. J. Reimer, Stomatal proxy record of CO2 concentrations from the last termination suggests an important role for CO2 at climate change transitions, Quaternary Sci. Rev., 68 (2013), 43–58. https://doi.org/10.1016/j.quascirev.2013.02.003 doi: 10.1016/j.quascirev.2013.02.003
    [72] Y. Wang, A. Momohara, N. Wakamatsu, T. Omori, M. Yoneda, M. Yang, Middle and Late Holocene altitudinal distribution limit changes of Fagus crenata forest, Mt. Kurikoma, Japan indicated by stomatal evidence, Boreas, 49 (2020), 718–729. https://doi.org/10.1111/bor.12463 doi: 10.1111/bor.12463
    [73] S. Azharuddin, P. Govil, T. B. Chalk, M. Shekhar, G. L. Foster, R. Mishra, Abrupt upwelling and CO2 outgassing episodes in the north-eastern Arabian Sea since mid-Holocene, Sci. Rep., 12 (2022), 3830. https://doi.org/10.1038/s41598-022-07774-4 doi: 10.1038/s41598-022-07774-4
    [74] B. Christiansen, F. C. Ljungqvist, Northern Hemisphere extratropical 2000 year temperature reconstruction, IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series #2012-049, NOAA/NCDC Paleoclimatology Program, Boulder CO, USA, 2012. https://www.ncdc.noaa.gov/paleo/study/12902 (accessed on 16 March 2024)
    [75] ERA5: data documentation - Copernicus Knowledge Base - ECMWF Confluence Wiki. Available online: https://confluence.ecmwf.int/display/CKB/ERA5%3A+data+documentation #heading-Relatedarticles (accessed on 25 March 2023).
    [76] C. D. Keeling, S. C. Piper, T. P. Whorf, R. F. Keeling, Evolution of natural and anthropogenic fluxes of atmospheric CO2 from 1957 to 2003, Tellus B: Chem. Phys. Meteorol., 63 (2011), 1–22. https://doi.org/10.1111/j.1600-0889.2010.00507.x doi: 10.1111/j.1600-0889.2010.00507.x
    [77] World Economic Forum, CO2 levels in atmosphere are at their highest in 800,000 years https://www.weforum.org/agenda/2018/05/earth-just-hit-a-terrifying-milestone-for-the-first-time-in-more-than-800-000-years/(accessed on 16 March 2024
    [78] The Conversation, The three-minute story of 800,000 years of climate change with a sting in the tail, https://theconversation.com/the-three-minute-story-of-800-000-years-of-climate-change-with-a-sting-in-the-tail-73368 (accessed on 16 March 2024)
    [79] NASA, Graphic: The relentless rise of carbon dioxide, https://science.nasa.gov/resource/graphic-the-relentless-rise-of-carbon-dioxide (accessed on 16 March 2024).
    [80] M. Shan, Analysis on the influence of doubled carbon dioxide on the extreme weather, Proceedings of the 3rd International Conference on Materials Chemistry and Environmental Engineering, Applied and Computational Engineering, 3 (2023), 368–373. https://doi.org/10.54254/2755-2721/3/20230554 doi: 10.54254/2755-2721/3/20230554
    [81] H. S. Kang, S. Chester, C. Meneveau, Decaying turbulence in an active-grid-generated flow and comparisons with large-eddy simulation, J. Fluid Mech., 480 (2003), 129–160. https://doi.org/10.1017/S0022112002003579 doi: 10.1017/S0022112002003579
    [82] Center for Environmental and Applied Fluid Mechanics, 30 data files at x/M = 20 for probe separations corresponding to filter scale 5 mm. http://pages.jh.edu/~cmeneve1/datasets/Activegrid/M20/H1 (accessed on 16 March 2024)
    [83] D. Koutsoyiannis, Hydrology and Change, Hydrol. Sci. J., 58 (2013), 1177–1197. https://doi.org/10.1080/02626667.2013.804626 doi: 10.1080/02626667.2013.804626
    [84] D. Koutsoyiannis, Entropy production in stochastics, Entropy, 19 (2017), 581. https://doi.org/10.3390/e19110581 doi: 10.3390/e19110581
    [85] D. Koutsoyiannis, Stochastics of Hydroclimatic Extremes - A Cool Look at Risk, Edition 3, 2023, ISBN: 978-618-85370-0-2,391 pages, Kallipos Open Academic Editions, Athens. https://doi.org/10.57713/kallipos-1
    [86] Climate Explorer, Dutch Royal Netherlands Meteorological Institute (KNMI), http://climexp.knmi.nl/(accessed on 25 January 2024).
    [87] Scripps CO2 Program, Sampling Station Records, Available online, https://scrippsco2.ucsd.edu/data/atmospheric_co2/sampling_stations.html (accessed on 15 November 2023).
    [88] J. Ahn, M. Headly, M. Wahlen, E. J. Brook, P. A. Mayewski, K. C. Taylor, CO2 diffusion in polar ice: observations from naturally formed CO2 spikes in the Siple Dome (Antarctica) ice core, J. Glaciol., 54 (2008), 685–695. https://doi.org/10.3189/002214308786570764 doi: 10.3189/002214308786570764
    [89] C. W. Granger, Investigating causal relations by econometric models and cross-spectral methods, Econometrica, 37 (1969), 424–438. https://doi.org/10.2307/1912791 doi: 10.2307/1912791
    [90] C. W. Granger, Testing for causality: A personal viewpoint, J. Econ. Dyn. Control, 2 (1980), 329–352. https://doi.org/10.1016/0165-1889(80)90069-X doi: 10.1016/0165-1889(80)90069-X
    [91] J. Pearl, Causal inference in statistics: An overview, Stat. Surv., 3 (2009), 96–146. https://doi.org/10.1214/09-SS057 doi: 10.1214/09-SS057
    [92] J. Pearl, M. Glymour, N.P. Jewell, Causal Inference in Statistics: A Primer, Wiley, Chichester, UK, 2016.
    [93] A. Hannart, J. Pearl, F. E. L. Otto, P. Naveau, M. Ghil, Causal counterfactual theory for the attribution of weather and climate-related events, Bull. Amer. Met. Soc., 97 (2016), 99–110. https://doi.org/10.1175/BAMS-D-14-00034.1 doi: 10.1175/BAMS-D-14-00034.1
    [94] S. Arrhenius, On the influence of carbonic acid in the air upon the temperature of the ground, Lond. Edinb. Dublin Philos. Mag. J. Sci., 41 (1896), 237–276. https://doi.org/10.1080/14786449608620846 doi: 10.1080/14786449608620846
    [95] A. Prokoph, G. A. Shields, J. Veizer, Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database through Earth history, Earth Sci. Rev., 87 (2008), 113–133. https://doi.org/10.1016/j.earscirev.2007.12.003 doi: 10.1016/j.earscirev.2007.12.003
    [96] J. Park, A re-evaluation of the coherence between global-average atmospheric CO2 and temperatures at interannual time scales, Geophys. Res. Lett., 36 (2009), L22704. https://doi.org/10.1029/2009GL040975 doi: 10.1029/2009GL040975
    [97] L. Åsbrink, Revisiting causality using stochastics on atmospheric temperature and CO2 concentration, Proc. R. Soc. A, 479 (2023), 20220529. https://doi.org/10.1098/rspa.2022.0529 doi: 10.1098/rspa.2022.0529
    [98] R. Weiss, Carbon dioxide in water and seawater: The solubility of a non-ideal gas, Mar. Chem. 2 (1974), 203–215. https://doi.org/10.1016/0304-4203(74)90015-2 doi: 10.1016/0304-4203(74)90015-2
  • mbe-21-07-287 Appendix.docx
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7413) PDF downloads(1157) Cited by(2)

Article outline

Figures and Tables

Figures(22)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog