In this paper, we propose and justify a synthesized version of the tuberculosis transmission model featuring treatment abandonment. In contrast to other models that account for the treatment abandonment, our model has only four state variables or classes (susceptible, latent, infectious, and treated), while people abandoning treatment are not gathered into an additional class. The proposed model retains the core properties that are highly desirable in epidemiological modeling. Namely, the disease transmission dynamics is characterized by the basic reproduction number $ \mathscr{R}_0 $, a threshold value that determines the number of possible steady states and their stability properties. It is shown that the disease-free equilibrium is globally asymptotically stable (GAS) only if $ \mathscr{R}_0 < 1 $, while a strictly positive endemic equilibrium exists and is GAS only if $ \mathscr{R}_0 > 1. $ Analysis of the dependence of $ \mathscr{R}_0 $ on the treatment abandonment rate shows that a reduction of the treatment abandonment rate has a positive effect on the disease incidence and results in avoiding disease-related fatalities.
Citation: Edwin Barrios-Rivera, Hanner E. Bastidas-Santacruz, Carmen A. Ramirez-Bernate, Olga Vasilieva. A synthesized model of tuberculosis transmission featuring treatment abandonment[J]. Mathematical Biosciences and Engineering, 2022, 19(11): 10882-10914. doi: 10.3934/mbe.2022509
In this paper, we propose and justify a synthesized version of the tuberculosis transmission model featuring treatment abandonment. In contrast to other models that account for the treatment abandonment, our model has only four state variables or classes (susceptible, latent, infectious, and treated), while people abandoning treatment are not gathered into an additional class. The proposed model retains the core properties that are highly desirable in epidemiological modeling. Namely, the disease transmission dynamics is characterized by the basic reproduction number $ \mathscr{R}_0 $, a threshold value that determines the number of possible steady states and their stability properties. It is shown that the disease-free equilibrium is globally asymptotically stable (GAS) only if $ \mathscr{R}_0 < 1 $, while a strictly positive endemic equilibrium exists and is GAS only if $ \mathscr{R}_0 > 1. $ Analysis of the dependence of $ \mathscr{R}_0 $ on the treatment abandonment rate shows that a reduction of the treatment abandonment rate has a positive effect on the disease incidence and results in avoiding disease-related fatalities.
[1] | A. Prasad, A. Ross, P. Rosenberg, C. Dye, A world of cities and the end of TB, Trans. R. Soc. Tropical Med. Hyg., 110 (2016), 151–152. https://doi.org/10.1093/trstmh/trw004 doi: 10.1093/trstmh/trw004 |
[2] | M. Saunders, C. Evans, Fighting poverty to prevent tuberculosis, Lancet. Infect. Dis., 16 (4), 395–396. https://doi.org/10.1016/S1473-3099(15)00434-X |
[3] | World Health Organization, Global Tuberculosis Report 2018, 2018. Available from: https://www.who.int/publications/i/item/9789241565646. |
[4] | N. Meier, M. Jacobsen, T. Ottenhoff, N. Ritz, A systematic review on novel Mycobacterium tuberculosis antigens and their discriminatory potential for the diagnosis of latent and active tuberculosis, Front. Immunol., 9 (2018), 2476. https://doi.org/10.3389/fimmu.2018.02476 doi: 10.3389/fimmu.2018.02476 |
[5] | L. Connolly, P. Edelstein, L. Ramakrishnan, Why is long-term therapy required to cure tuberculosis?, PLoS Med., 4 (2007), e120. https://doi.org/10.1371/journal.pmed.0040120 doi: 10.1371/journal.pmed.0040120 |
[6] | C. Beltran, T. Heunis, J. Gallant, R. Venter, N. Du Plessis, A. Loxton, et al., Investigating non-sterilizing cure in TB patients at the end of successful anti-TB therapy, Front. Cell. Infect. Microbiol., 10 (2020), 443. https://doi.org/10.3389/fcimb.2020.00443 doi: 10.3389/fcimb.2020.00443 |
[7] | G. Walzl, K. Ronacher, W. Hanekom, T. Scriba, A. Zumla, Immunological biomarkers of tuberculosis, Nat. Rev. Immunol., 11 (2011), 343–354. https://doi.org/10.1038/nri2960 doi: 10.1038/nri2960 |
[8] | R. Wallis, S. Vinhas, J. Johnson, F. Ribeiro, M. Palaci, R. Peres, et al., Whole blood bactericidal activity during treatment of pulmonary tuberculosis, J. Infect. Dis., 187 (2003), 270–278. https://doi.org/10.1086/346053 doi: 10.1086/346053 |
[9] | P. MacPherson, R. Houben, J. Glynn, E. Corbett, K. Kranzer, Pre-treatment loss to follow-up in tuberculosis patients in low-and lower-middle-income countries and high-burden countries: A systematic review and meta-analysis, Bull. World Health Organ., 92 (2013), 126–138. https://doi.org/10.2471/BLT.13.124800 doi: 10.2471/BLT.13.124800 |
[10] | T. Tanimura, E. Jaramillo, D. Weil, M. Raviglione, K. Lönnroth, Financial burden for tuberculosis patients in low-and middle-income countries: A systematic review, Eur. Respir. J., 43 (2014), 1763–1775. https://doi.org/10.1183/09031936.00193413 doi: 10.1183/09031936.00193413 |
[11] | G. Bezerra, T. Araujo, T. Silva, J. Teixeira, T. Magalhães, M. Duarte, Prevalence and associated factors of tuberculosis treatment abandonment, Revista da Escola de Enfermagem da USP, 55 (2021), e03767. https://doi.org/10.1590/S1980-220X2020039203767 doi: 10.1590/S1980-220X2020039203767 |
[12] | N. Gomes, M. Bastos, R. Marins, A. Barbosa, L. Soares, A. de Abreu, et al., Differences between risk factors associated with tuberculosis treatment abandonment and mortality, Pulm. Med., 2015 (2015). https://doi.org/10.1155/2015/546106 doi: 10.1155/2015/546106 |
[13] | J. Trauer, Mathematical Modelling for Programmatic Responses to Tuberculosis in the Asia-Pacific, Ph.D thesis, The University of Melbourne, 2016. |
[14] | C. Castillo-Chavez, Z. Feng, To treat or not to treat: the case of tuberculosis, J. Math. Biol., 35 (1997), 629–656. https://doi.org/10.1007/s002850050069 doi: 10.1007/s002850050069 |
[15] | Z. Feng, C. Castillo-Chavez, A. Capurro, A model for tuberculosis with exogenous reinfection, Theor. Popul. Biol., 57 (2000), 235–247. https://doi.org/10.1006/tpbi.2000.1451 doi: 10.1006/tpbi.2000.1451 |
[16] | A. Ssematimba, J. Mugisha, L. Luboobi, Mathematical models for the dynamics of tuberculosis in density-dependent populations: The case of internally displaced peoples' camps (IDPCs) in Uganda, J. Math. Stat., 1 (2005), 217–224. https://doi.org/10.3844/jmssp.2005.217.224 doi: 10.3844/jmssp.2005.217.224 |
[17] | B. Song, C. Castillo-Chavez, J. Aparicio, Global dynamics of tuberculosis models with density dependent demography, in Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory, Springer, (2002), 275–294. https://doi.org/10.1007/978-1-4613-0065-6 |
[18] | E. Ziv, C. Daley, S. Blower, Early therapy for latent tuberculosis infection, Am. J. Epidemiol., 153 (2001), 381–385. https://doi.org/10.1093/aje/153.4.381 doi: 10.1093/aje/153.4.381 |
[19] | F. Agusto, J. Cook, P. Shelton, M. Wickers, Mathematical model of MDR-TB and XDR-TB with isolation and lost to follow-up, Abstr. Appl. Anal., 2015 (2015). https://doi.org/10.1155/2015/828461 doi: 10.1155/2015/828461 |
[20] | L. Liu, Y. Wang, A mathematical study of a TB model with treatment interruptions and two latent periods, Comput. Math. Methods Med., 2014 (2014). https://doi.org/10.1155/2014/932186 doi: 10.1155/2014/932186 |
[21] | L. Liu, Y. Wang, Analysis of a TB model with treatment interruptions, J. Nonlinear Sci. Appl., 9 (2016), 1549–1563. https://doi.org/10.22436/jnsa.009.04.13 doi: 10.22436/jnsa.009.04.13 |
[22] | D. Moualeu, A. Yakam, S. Bowong, A. Temgoua, Analysis of a tuberculosis model with undetected and lost-sight cases, Commun. Nonlinear Sci. Numer. Simul., 41 (2016), 48–63. https://doi.org/10.1016/j.cnsns.2016.04.012 doi: 10.1016/j.cnsns.2016.04.012 |
[23] | D. Setyorini, B. Handari, D. Aldila, Numerical analysis of the impact of loss-sight and undetected cases in the spread of TB, in AIP Conference Proceedings, 2084 (2019), 020019. https://doi.org/10.1063/1.5094283 |
[24] | Y. Emvudu, R. Demasse, D. Djeudeu, Optimal control of the lost to follow up in a tuberculosis model, Comput. Math. Methods Med., 2011 2011. https://doi.org/10.1155/2011/398476 doi: 10.1155/2011/398476 |
[25] | M. Bates, Y. Ahmed, N. Kapata, M. Maeurer, P. Mwaba, A. Zumla, Perspectives on tuberculosis in pregnancy, Int. J. Infect. Dis., 32 (2015), 124–127. https://doi.org/10.1016/j.ijid.2014.12.014 doi: 10.1016/j.ijid.2014.12.014 |
[26] | S. Fitzwater, L. Caviedes, R. Gilman, J. Coronel, D. LaChira, C. Salazar, et al., Prolonged infectiousness of tuberculosis patients in a directly observed therapy short-course program with standardized therapy, Clin. Infect. Dis., 51 (2010), 371–378. https://doi.org/10.1086/655127 doi: 10.1086/655127 |
[27] | J. Liu, T. Zhang, Global stability for a tuberculosis model, Math. Comput. Modell., 54 (2011), 836–845. https://doi.org/10.1016/j.mcm.2011.03.033 doi: 10.1016/j.mcm.2011.03.033 |
[28] | J. Trauer, J. Denholm, E. McBryde, Construction of a mathematical model for tuberculosis transmission in highly endemic regions of the Asia-Pacific, J. Theor. Biol., 358 (2014), 74–84. https://doi.org/10.1016/j.jtbi.2014.05.023 doi: 10.1016/j.jtbi.2014.05.023 |
[29] | M. Martcheva, An introduction to mathematical epidemiology, in Texts in Applied Mathematics, Springer Science & Business Media, 61 (2015). https://doi.org/10.1007/978-1-4899-7612-3 |
[30] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6 |
[31] | C. Castillo-Chavez, Z. Feng, W. Huang, On the computation of ${R}_0$ and its role on global stability, in Mathematical Approaches for Emerging and Re-Emerging Infection Diseases: An Introduction, Springer-Verlag, 125 (2002), 229–250. https://doi.org/10.1007/978-1-4757-3667-0_13 |
[32] | P. Waltman, A Second Course in Elementary Differential Equations, Academic Press, 1986. https://doi.org/10.1016/B978-0-12-733910-8.50005-3 |
[33] | B. Goh, Management and analysis of biological populations, in Developments in Agricultural and Managed Forest Ecology, Elsevier Science Ltd., 9 (1980). |
[34] | C. McCluskey, Lyapunov functions for tuberculosis models with fast and slow progression, Math. Biosci. Eng., 3 (2006), 603–614. https://doi.org/10.3934/mbe.2006.3.603 doi: 10.3934/mbe.2006.3.603 |
[35] | B. J. Venkatachala, Inequalities: An approach through problems, in Texts and Readings in Mathematics, Springer, 49 (2018). https://doi.org/10.1007/978-981-10-8732-5 |
[36] | Y. Yang, S. Tang, X. Ren, H. Zhao, C. Guo, Global stability and optimal control for a tuberculosis model with vaccination and treatment, Discrete Contin. Dyn. Syst. B, 21 (2016), 1009–1022. https://doi.org/10.3934/dcdsb.2016.21.1009 doi: 10.3934/dcdsb.2016.21.1009 |
[37] | D. Gao, N. Huang, Optimal control analysis of a tuberculosis model, Appl. Math. Modell., 58 (2018), 47–64. https://doi.org/10.1016/j.apm.2017.12.027 doi: 10.1016/j.apm.2017.12.027 |
[38] | M. Gomes, P. Rodrigues, F. Hilker, N. Mantilla-Beniers, M. Muehlen, A. Paulo, et al., Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions, J. Theor. Biol., 248 (2007), 608–617. https://doi.org/10.1016/j.jtbi.2007.06.005 doi: 10.1016/j.jtbi.2007.06.005 |
[39] | R. Hickson, G. Mercer, K. Lokuge, A metapopulation model of tuberculosis transmission with a case study from high to low burden areas, PLoS One, 7 (2012), e3441. https://doi.org/10.1371/journal.pone.0034411 doi: 10.1371/journal.pone.0034411 |
[40] | M. Renardy, D. E. Kirschner, A framework for network-based epidemiological modeling of tuberculosis dynamics using synthetic datasets, Bull. Math. Biol., 82 (2020), 1–20. https://doi.org/10.1007/s11538-020-00752-9 doi: 10.1007/s11538-020-00752-9 |
[41] | E. Barrios, S. Lee, O. Vasilieva, Assessing the effects of daily commuting in two-patch dengue dynamics: A case study of Cali, Colombia, J. Theor. Biol., 453 (2018), 14–39. https://doi.org/10.1016/j.jtbi.2018.05.015 doi: 10.1016/j.jtbi.2018.05.015 |