Research article

Near-optimal control and threshold behavior of an avian influenza model with spatial diffusion on complex networks


  • Received: 19 May 2021 Accepted: 23 July 2021 Published: 28 July 2021
  • Near-optimization is as sensible and important as optimization for both theory and applications. This paper concerns the near-optimal control of an avian influenza model with saturation on heterogeneous complex networks. Firstly, the basic reproduction number $ \mathcal{R}_{0} $ is defined for the model, which can be used to govern the threshold dynamics of influenza disease. Secondly, the near-optimal control problem was formulated by slaughtering poultry and treating infected humans while keeping the loss and cost to a minimum. Thanks to the maximum condition of the Hamiltonian function and the Ekeland's variational principle, we establish both necessary and sufficient conditions for the near-optimality by several delicate estimates for the state and adjoint processes. Finally, a number of examples presented to illustrate our theoretical results.

    Citation: Keguo Ren, Xining Li, Qimin Zhang. Near-optimal control and threshold behavior of an avian influenza model with spatial diffusion on complex networks[J]. Mathematical Biosciences and Engineering, 2021, 18(5): 6452-6483. doi: 10.3934/mbe.2021321

    Related Papers:

  • Near-optimization is as sensible and important as optimization for both theory and applications. This paper concerns the near-optimal control of an avian influenza model with saturation on heterogeneous complex networks. Firstly, the basic reproduction number $ \mathcal{R}_{0} $ is defined for the model, which can be used to govern the threshold dynamics of influenza disease. Secondly, the near-optimal control problem was formulated by slaughtering poultry and treating infected humans while keeping the loss and cost to a minimum. Thanks to the maximum condition of the Hamiltonian function and the Ekeland's variational principle, we establish both necessary and sufficient conditions for the near-optimality by several delicate estimates for the state and adjoint processes. Finally, a number of examples presented to illustrate our theoretical results.



    加载中


    [1] E. C. J. Claas, A. D. Osterhaus, R. Van Beek, J. C. De Jong, G. F. Rimmelzwaan, D. A. Senne, et al., Erratum: Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus, Lancet, 351 (1998), 472–477. doi: 10.1016/S0140-6736(97)11212-0
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. London, Ser. A, 115(1927), 700–721. doi: 10.1098/rspa.1927.0118
    [3] W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ. The problem of endemicity, Proc. R. Soc. London, Ser. A, 138 (1932), 55–83. doi: 10.1098/rspa.1932.0171
    [4] W. O.Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅲ. Further studies of the problem of endemicity, Proc. R. Soc. Lond. Ser. A, 141 (1933), 94–122. doi: 10.1098/rspa.1933.0106
    [5] S. Liu, S. Ruan, X. Zhang, Nonlinear dynamics of avian influenza epidemic models, Math. Biosci., 283 (2017), 118–135. doi: 10.1016/j.mbs.2016.11.014
    [6] L. Bourouiba, S. Gourley, R. Liu, J. Wu, The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza, SIAM J. Appl. Math., 71 (2011), 487–516. doi: 10.1137/100803110
    [7] S. Iwami, Y. Takeuchi, X. N. Liu, Avian-human influenza epidemic model, Math. Biosci., 207 (2007), 1–25. doi: 10.1016/j.mbs.2006.08.001
    [8] N. Tuncer, M. Martcheva, Modeling seasonality in avian influenza H5N1, J. Biol. Syst., 21 (2013), 1340004. doi: 10.1142/S0218339013400044
    [9] X. Hu, Media reports on the impact of bird flu transmission, J. Northwest. Polytech. Univ., 44 (2014), 525–527.
    [10] V. Capasso, G. Serio, A generalization of the Kermack-McKendrick deterministic epidemic model, Math. Biosci., 42 (1978), 43–61. doi: 10.1016/0025-5564(78)90006-8
    [11] W. M. Liu, S. A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models, J. Math. Biol., 23 (1986), 187–204. doi: 10.1007/BF00276956
    [12] D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate, Math. Biosci., 208 (2007), 419–429. doi: 10.1016/j.mbs.2006.09.025
    [13] Q. Tang, J. Ge, Z. Lin, An SEI-SI avian-human influenza model with diffusion and nonlocal delay, Appl. Math. Comput., 247 (2014), 753–761.
    [14] C. X. Lei, K. Kwangik, Z. G. Lin, The spreading frontiers of avian-human influenza described by the free boundary, Sci. China, 57 (2014), 971–990. doi: 10.1007/s11425-013-4652-7
    [15] A. L. Barabasi, R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512. doi: 10.1126/science.286.5439.509
    [16] X. X. Zhan, C. Liu, G. Zhou, Z. K. Zhang, Coupling dynamics of epidemic spreading and information diffusion on complex networks, Appl. Math. Comput., 332 (2018), 437–448.
    [17] P. Van den Driessche, J. Watmough, Reproduction number and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. doi: 10.1016/S0025-5564(02)00108-6
    [18] K. I. Kim, Z. G. Lin, L. Zhang, Avian-human influenza epidemic model with diffusion, Nonlinear Anal., 11 (2010), 313–322. doi: 10.1016/j.nonrwa.2008.11.015
    [19] G. Dhariwal, A. Jungel, N. Zamponi, Global martingale solutions for a stochastic population cross-diffusion system, Stoch. Process. Their Appl., 129 (2019), 3792–3820. doi: 10.1016/j.spa.2018.11.001
    [20] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Soc., 2008.
    [21] R. H. Martin, H. L. Smith, Abstract functional-differential equations and reaction-diffusion systems, Trans. Am. Math. Soc., 321 (1990), 1–44.
    [22] R. S. Cantrell, C. Cosner, Spatial Ecology Via Reaction-Diffusion Equations, John Wiley and Sons, Ltd., 2004.
    [23] F. H. Clarke, Optimization and nonsmooth analysis, SIAM, Philadelphia, 1990.
    [24] J. Huang, X. Li, G. Wang, Near-optimal control problems for linear forward-backward stochastic systems, Automatica, 46 (2010), 397–404. doi: 10.1016/j.automatica.2009.11.016
    [25] I. Ekeland, Nonconvex mininization problems, Bull. Am. Math. Soc., 1 (1979), 443–474. doi: 10.1090/S0273-0979-1979-14595-6
    [26] W. D. Wang, X. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Sys., 11 (2012), 1652–1673. doi: 10.1137/120872942
    [27] H. R. Thieme, Spectral bound and reproduction number for infinite-dimensional population structure and time heterogeneity, SIAM J. Appl. Math., 70 (2009), 188–211. doi: 10.1137/080732870
    [28] W. Wang, X. Q. Zhao, Basic reproduction numbers for reaction-diffusion epidemic models, SIAM J. Appl. Dyn. Sys., 11 (2012), 1652–1673. doi: 10.1137/120872942
    [29] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction- diffusion model, Discrete Cont. Dyn., 21 (2008), 1. doi: 10.3934/dcds.2008.21.1
    [30] W. D. Wang, X. Q. Zhao, Spatial invasion threshold of lyme disease, SIAM J. Appl. Math., 75 (2015), 1142–1170. doi: 10.1137/140981769
    [31] X. Mao, Stochastic Differential Equations and Applications, Elsevier, 2007.
    [32] J. Yong, X. Zhou, Stochastic Control: Hamiltonian Systems and HJB Equations, Springer, 1999.
    [33] D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. doi: 10.1137/S0036144500378302
    [34] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Boca Raton, FL: Chapman and Hall/CRC, 2007.
    [35] F. Chen, J. Cui, Cross-species epidemic dynamic model of influenza, in 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), IEEE, (2016), 1567–1572.
    [36] China Agricultural Yearbook Editing Committee, China Agriculture Yearbook, 2012.
    [37] S. Liu, S. Ruan, X. Zhang, Nonlinear dynamics of avian influenza epidemic models, Math. Biosci., 283 (2017), 118–135. doi: 10.1016/j.mbs.2016.11.014
    [38] X. Zhang, Global dynamics of a stochastic avian-human influenza epidemic model with logistic growth for avian population, Nonlinear Dyn., 90 (2017), 2331–2343. doi: 10.1007/s11071-017-3806-5
    [39] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, American Mathematical Soc., 2008.
    [40] M. Uzunca, T. Kucukseyhan, H. Yucel, B. Karasozen, Optimal control of convective fitzhughnagumo equation, Comput. Math. Appl., 73 (2017), 2151–2169. doi: 10.1016/j.camwa.2017.02.028
    [41] R. Buchholz, H. Engel, E. Kammann, Erratum to: on the optimal control of the schlögl-model, Comput. Opy. Appl., 56 (2013), 187–188. doi: 10.1007/s10589-013-9570-7
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2552) PDF downloads(161) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog