Research article Special Issues

Maximum degree and minimum degree spectral radii of some graph operations


  • Received: 30 April 2022 Revised: 25 June 2022 Accepted: 04 July 2022 Published: 18 July 2022
  • New results relating to the maximum and minimum degree spectral radii of generalized splitting and shadow graphs have been constructed on the basis of any regular graph, referred as base graph. In particular, we establish the relations of extreme degree spectral radii of generalized splitting and shadow graphs of any regular graph.

    Citation: Xiujun Zhang, Ahmad Bilal, M. Mobeen Munir, Hafiz Mutte ur Rehman. Maximum degree and minimum degree spectral radii of some graph operations[J]. Mathematical Biosciences and Engineering, 2022, 19(10): 10108-10121. doi: 10.3934/mbe.2022473

    Related Papers:

  • New results relating to the maximum and minimum degree spectral radii of generalized splitting and shadow graphs have been constructed on the basis of any regular graph, referred as base graph. In particular, we establish the relations of extreme degree spectral radii of generalized splitting and shadow graphs of any regular graph.



    加载中


    [1] I. Gutman, The energy of a graph, Ber. Math. Statist. Sekt. Forschungsz. Graz, 103 (1978), 1-22. https://doi.org/10.1002/9783527627981
    [2] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs Theory and Applications, Academic Press, 1982.
    [3] D. Cvetkovic, P. Rowlinson, The largest eigenvalue of a graph, Linear Multilinear Algebra, 28 (1990), 3-33. https://doi.org/10.1080/03081089008818026 doi: 10.1080/03081089008818026
    [4] Y. Hong, Upper bounds of the spectral radius of graphs in terms of genus, J. Combin. Theory Ser., 74 (1998), 153-159. https://doi.org/10.1006/jctb.1998.1837 doi: 10.1006/jctb.1998.1837
    [5] R. A. Brualdi, E. S. Solheid, On the spectral radius of complementary acyclic matrices of zeros and ones, SIAM J. Algebraic Discrete Methods, 7 (1986), 265-272. https://doi.org/10.1137/0607030 doi: 10.1137/0607030
    [6] M. Fiedler, V. Nikiforov, Spectral radius and Hamiltonicity of graphs, Linear Algebra Appl., 432 (2010), 2170-2173. https://doi.org/10.1016/j.laa.2009.01.005 doi: 10.1016/j.laa.2009.01.005
    [7] M. Lu, H. Liu, F. Tian, Spectral radius and Hamiltonian graphs, Linear Algebra Appl., 437 (2012), 1670-1674. https://doi.org/10.1016/j.laa.2012.05.021 doi: 10.1016/j.laa.2012.05.021
    [8] V. Nikiforov, More spectral bounds on the clique and independence numbers, J. Combin. Theory Ser., 99 (2009), 819-826. https://doi.org/10.1016/j.jctb.2009.01.003 doi: 10.1016/j.jctb.2009.01.003
    [9] V. Nikiforov, The spectral radius of graphs without paths and cycles of specified length, Linear Algebra Appl., 432 (2010), 2243-2256. https://doi.org/10.1016/j.laa.2009.05.023 doi: 10.1016/j.laa.2009.05.023
    [10] W. Yuan, B. Wang, M. Zhai, On the spectral radii of graphs without given cycles, Electron. J. Linear Algebra, 23 (2012), 599-606. https://doi.org/10.13001/1081-3810.1544 doi: 10.13001/1081-3810.1544
    [11] M. Zhai, B. Wang, Proof of a conjecture on the spectral radius of C4-free graphs, Linear Algebra Appl., 437 (2012), 1641-1647. https://doi.org/10.1016/j.laa.2012.05.006 doi: 10.1016/j.laa.2012.05.006
    [12] S. Butler, F. Chung, Small spectral gap in the combinatorial Laplacian implies Hamiltonian, Ann. Comb., 13 (2010), 403-412. https://doi.org/10.1007/s00026-009-0039-4 doi: 10.1007/s00026-009-0039-4
    [13] J. V. Heuvel, Hamilton cycles and eigenvalues of graphs, Linear Algebra Appl., 228 (1995), 723-730. https://doi.org/10.1016/0024-3795(95)00254-O doi: 10.1016/0024-3795(95)00254-O
    [14] M. Krivelevich, B. Sudakov, Sparse pseudo-random graphs are Hamiltonian, J. Graph Theory, 42 (2003), 17-33. https://doi.org/10.1002/jgt.10065 doi: 10.1002/jgt.10065
    [15] B. Mohar, A domain monotonicity theorem for graphs and hamiltonicity, Discrete Appl. Math., 36 (1992), 169-177. https://doi.org/10.1016/0166-218X(92)90230-8 doi: 10.1016/0166-218X(92)90230-8
    [16] B. Zhou, Signless Laplacian spectral radius and Hamiltonicity, Linear Algebra Appl., 432 (2010), 566-570. https://doi.org/10.1016/j.laa.2009.09.004 doi: 10.1016/j.laa.2009.09.004
    [17] R. A. Horn, C. R. Johnson, Topics in Matrix Analysis, Cambridge Univ. Press, 1991. https://doi.org/10.1017/CBO9780511840371
    [18] F. R. Gantmacher, The Theory of Matrices, Chelsea, 1959.
    [19] R. Balakrishnan, The energy of a graph, Lin. Algebra Appl., 387 (2004), 287-295. https://doi.org/10.1016/j.laa.2004.02.038
    [20] R. B. Bapat, S. Pati, Energy of a graph is never an odd integer, Bull. Kerala Math. Assoc., 1 (2004), 129-132. https://doi.org/10.2298/AADM0801118P doi: 10.2298/AADM0801118P
    [21] S. Pirzada, S. Gutman, Energy of a graph is never the square root of an odd integer, Appl. Anal. Discr. Math., 2 (2008), 118-121. https://doi.org/10.2298/AADM0801118P doi: 10.2298/AADM0801118P
    [22] O. Jones, Spectra of simple graphs, Whitman College, 13 (2013), 1-20.
    [23] S. Meenaksh, S. Lavanya, A Survey on Energy of Graphs, Ann. Pure Appl. Math., 8 (2014), 183-191.
    [24] V. Nikiforov, The energy of graphs and matrices, J. Math. Anal. Appl., 326 (2007), 1472-1475. https://doi.org/10.1016/j.jmaa.2006.03.072 doi: 10.1016/j.jmaa.2006.03.072
    [25] K. Samir, Vaidya, M. P. Kalpesh, Some new results on energy of graphs, MATCH Common. Math Comput. Chem, 77 (2017), 589-594.
    [26] K. Samir, Vaidya, M. P. Kalpesh, On energy m-splitting and m-shadow graphs, Far East J. Of Math. Sci., 102 (2017), 1571-1578. https://doi.org/10.17654/MS102081571 doi: 10.17654/MS102081571
    [27] J. B. Liu, M. Munir, A. Yousaf, A. Naseem, K. Ayub, Distance and adjacency energies of multi-level wheel networks, Mathematics, 7 (2019), 43. https://doi.org/10.3390/math7010043 doi: 10.3390/math7010043
    [28] Z. Q. Chu, M. Munir, A. Yousaf, M. I. Qureshi, J, B. Liu, Laplacian and signless laplacian spectra and energies of multi-step wheels, Math. Biosci. Eng., 17 (2020), 3649-3659. https://doi.org/10.3934/mbe.2020206 doi: 10.3934/mbe.2020206
    [29] J. B. Liu, X. F. Pan, F. T. Hu, F. HuF, On Asymptotic Laplacian-energy-like invariant of lattices, Appl. Math. Comput., 253 (2015), 205-214. https://doi.org/10.1016/j.amc.2014.12.035 doi: 10.1016/j.amc.2014.12.035
    [30] S. M. Hosamani, H. S. Ramane, On degree sum energy of a graph, Eur. J. Pure Appl. Math., 9 (2016), 340-345.
    [31] B. Basavanagoud, E. Chitra, On degree square sum energy of graphs, Int. J. Math. Its Appl., 6 (2018), 193-205.
    [32] N. J. Rad, A. Jahanbani, I. Gutman, Zagreb energy and Zagreb Estrada index of graphs, MATCH Commun. Math. Comput. Chem., 79 (2018), 371-386.
    [33] I. Gutman, B. Furtula, On graph energies and their application, Bulletin (Acadmie Serbe Des Sciences Et Des Arts. Classe Des Sciences Mathmatiques Et Naturelles. SciencesMath matiques), 44 (2019), 29-45.
    [34] X. Li, Y. Shi, I. Gutman, Graph Energy, Springer, New York, 2012. https://doi.org/10.1007/978-1-4614-4220-2
    [35] R. Balakrishnan, K. Ranganathan, A Textbook of Graph Theory, Springer, 2000. https://doi.org/10.1007/978-1-4419-8505-7
    [36] R. J. Wilson, Introduction to Graph Theory, Oliver and Boyd, 1972.
    [37] J. J. Sylvester, Chemistry and algebra, Nature, 17 (1877), 284. https://doi.org/10.1038/017284a0
    [38] A. T. Balaban, Applications of graph theory in chemistry, J. Chem. Inf. Comput. Sci., 25 (1985), 334-343. https://doi.org/10.1021/ci00047a033 doi: 10.1021/ci00047a033
    [39] M. RandiC, On characterization of molecular branching, J. Amer. Chem. Soc., 97 (1975), 6609-6615. https://doi.org/10.1021/ja00856a001 doi: 10.1021/ja00856a001
    [40] K. Yuge, Extended configurational polyhedra based on graph representation for crystalline solids, Trans. Material Res. Soc., 43 (2018), 233-236. https://doi.org/10.14723/tmrsj.43.233 doi: 10.14723/tmrsj.43.233
    [41] A. Dhanalakshmi, K. S. Rao, K. Sivakumar, Characterization of a-cyclodextrin using adjacency and distance matrix, Indian J. Sci., 12 (2015), 78-83.
    [42] J. Praznikar, M. Tomic, D. Turk, Validation and quality assessment of macromolecular structures using complex network analysis, Sci. Rep., 9 (2019), 1678. https://doi.org/10.1038/s41598-019-38658-9 doi: 10.1038/s41598-019-38658-9
    [43] H. Wu, Y. Zhang, W. Chen, Z. Mu, Comparative analysis of protein primary sequences with graph energy, Phys. A, 437 (2015), 249-262. https://doi.org/10.1016/j.physa.2015.04.017 doi: 10.1016/j.physa.2015.04.017
    [44] L. D. Paola, G. Mei, A. D. Venere, A. Giuliani, Exploring the stability of dimers through protein structure topology, Curr. Protein Peptide Sci., 17 (2016), 30-36. https://doi.org/10.2174/1389203716666150923104054 doi: 10.2174/1389203716666150923104054
    [45] D. Sun, C. Xu, Y. Zhang, A novel method of 2D graphical representation for proteins and its application, MATCH Commun. Math. Comput. Chem., 75 (2016), 431-446.
    [46] L. Yu, Y. Z. Hang, I. Gutman, Y. Shi, M. Dehmer, Protein sequence comparison based on physicochemical properties and positionfeature energy matrix, Sci. Rep., 7 (2017), 46237. https://doi.org/10.1038/srep46237 doi: 10.1038/srep46237
    [47] A. Giuliani, S. Filippi, M. Bertolaso, Why network approach can promote a new way of thinking in biology, Front. Genet., 5 (2014), 83. https://doi.org/10.3389/fgene.2014.00083 doi: 10.3389/fgene.2014.00083
    [48] J. Jiang, R. Zhang, L. Guo, W. Li, X. Cai, Network aggregation process in multilayer air transportation networks, Chin. Phys. Lett., 33 (2016), 108901. https://doi.org/10.1088/0256-307X/33/10/108901 doi: 10.1088/0256-307X/33/10/108901
    [49] T. A. Shatto, E. K. C. Etinkaya, Variations in graph energy: A measure for network resilience, in 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM), (2017), 1-7. https://doi.org/10.1109/RNDM.2017.8093019
    [50] M. Akram, S. Naz, Energy of Pythagorean fuzzy graphs with applications, Mathematics, 6 (2018), 136. https://doi.org/10.3390/math6080136 doi: 10.3390/math6080136
    [51] M. Gao, E. P. Lim, D. Lo, Network Data Mining and Analysis, World Scientific, 4 (2018), 1-4. https://doi.org/10.1142/9789813274969-0001
    [52] A. Pugliese, R. Nilchiani, Complexity analysis of fractionated spacecraft architectures, in AIAA SPACE and Astronautics Forum and Exposition, (2017), 5118-5126. https://doi.org/10.2514/6.2017-5118
    [53] C. Adiga, M. Smitha, On maximum degree energy of a graph, Int. J. Contemp. Math. Sci., 4 (2009), 385-396.
    [54] B. Basavanagoud, P. Jakkannavar, Minimum degree energy pf graphs, Electron. J. Math. Anal. Appl., 7 (2019), 230-243.
    [55] S. Alikhani, N. Ghanbari, Randic energy of specific graphs, Appl. Math and Comp, 269 (2015), 722-730. https://doi.org/10.1016/j.amc.2015.07.112 doi: 10.1016/j.amc.2015.07.112
    [56] M. R. Oboudi, Energy and seidel energy of graphs, MATCH Commun. Math. Comput. Chem., 75 (2016), 291-303.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2166) PDF downloads(133) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog