In this paper we study the $ k $-domination and total $ k $-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the $ 2 $-domination number and the total $ 2 $-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the $ 3 $-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of $ k $-domination and total $ k $-domination of catacondensed hexagonal systems for all possible values of $ k $.
Citation: Sergio Bermudo, Robinson A. Higuita, Juan Rada. $ k $-domination and total $ k $-domination numbers in catacondensed hexagonal systems[J]. Mathematical Biosciences and Engineering, 2022, 19(7): 7138-7155. doi: 10.3934/mbe.2022337
In this paper we study the $ k $-domination and total $ k $-domination numbers of catacondensed hexagonal systems. More precisely, we give the value of the total domination number, we find upper and lower bounds for the $ 2 $-domination number and the total $ 2 $-domination number, characterizing the catacondensed hexagonal systems which attain these bounds, and we give the value of the $ 3 $-domination number for any catacondensed hexagonal system with a given number of hexagons. These results complete the study of $ k $-domination and total $ k $-domination of catacondensed hexagonal systems for all possible values of $ k $.
[1] | J. F. Fink, M. S. Jacobson, $n$-domination in graphs, in Graph Theory with Applications to Algorithms and Computer Science, Wiley, (1985), 127–147. |
[2] | Y. Caro, On the k-domination and k-transversal numbers of graphs and hypergraphs, Ars Comb., 29 (1990), 49–55. |
[3] | Y. Caro, Y. Roditty, A note on the $k$-domination number of a graph, Int. J. Math. Math. Sci., 13 (1990), 205–206. https://doi.org/10.1155/S016117129000031X doi: 10.1155/S016117129000031X |
[4] | M. Chellali, O. Favaron, A. Hansberg, L. Volkmann, $k$-domination and $k$-independence in graphs: A survey, Graphs Comb., 28 (2012), 1–55. https://DOI 10.1007/s00373-011-1040-3 doi: 10.1007/s00373-011-1040-3 |
[5] | G. B. Ekinci, C. Bujtás, Bipartite graphs with close domination and $k$-domination numbers, Open Math., 18 (2020), 873–885. https://doi.org/10.1515/math-2020-0047 doi: 10.1515/math-2020-0047 |
[6] | O. Favaron, $k$-domination and $k$-independence in graphs, Ars Comb., 25 (1988), 159–167. |
[7] | O. Favaron, A. Hansberg, L. Volkmann, On $k$-domination and minimum degree in graphs, J. Graph Theory, 57 (2008), 33–40. https://doi.org/10.1002/jgt.20279 doi: 10.1002/jgt.20279 |
[8] | A. Hansberg, R. Pepper, On $k$-domination and $j$-independence in graphs, Discrete Appl. Math., 161 (2013), 1472–1480. https://doi:10.1016/j.dam.2013.02.008 doi: 10.1016/j.dam.2013.02.008 |
[9] | A. Hansberg, On the $k$-domination number, the domination number and the cycle of length four, Utilitas Math., 98 (2015), 65–76. |
[10] | S. Bermudo, J. C. Hernández-Gómez, J. M. Sigarreta, On the total k-domination in graphs, Discuss. Math. Graph Theory, 38 (2018), 301–317. https://doi:10.7151/dmgt.2016 doi: 10.7151/dmgt.2016 |
[11] | S. Bermudo, J. L. Sánchez, J. M. Sigarreta, Total $k$-domination in Cartesian product graphs, Period. Math. Hung., 75 (2017), 255–267. https://DOI 10.1007/s10998-017-0191-2 doi: 10.1007/s10998-017-0191-2 |
[12] | H. Fernau, J. A. Rodríguez-Velázquez, J. M. Sigarreta, Global powerful $r$-alliances and total $k$-domination in graphs, Util. Math., 98 (2015), 127–147. |
[13] | V. R. Kulli, On $n$-total domination number in graphs, in Graph Theory, Combinatorics, Algorithms and Applications, SIAM, Philadelphia, USA, (1991), 319–324. |
[14] | T. W. Haynes, S. Hedetniemi, P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998. |
[15] | T. W. Haynes, S. Hedetniemi, P. J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998. |
[16] | A. Cabrera-Martínez, New bounds on the double domination number of trees, Discrete Appl. Math., 315 (2022), 97–103. https://doi.org/10.1016/j.dam.2022.03.022 doi: 10.1016/j.dam.2022.03.022 |
[17] | M. Hajian, M. A. Henning, N. Jafari Rad, A classification of cactus graphs according to their domination number, Discuss. Math. Graph Theory, 42 (2022), 613–626. https://doi.org/10.7151/dmgt.2295 doi: 10.7151/dmgt.2295 |
[18] | M. A. Henning, P. Kaemawichanurat, Connected domination critical graphs with a block having maximum number of cut vertices, Appl. Math. Comput., 406 (2021), 126248. https://doi.org/10.1016/j.amc.2021.126248 doi: 10.1016/j.amc.2021.126248 |
[19] | M. A. Henning, A. Yeo, A new upper bound on the total domination number in graphs with minimum degree six, Discrete Appl. Math., 302 (2021), 1–7. https://doi.org/10.1016/j.dam.2021.05.033 doi: 10.1016/j.dam.2021.05.033 |
[20] | I. Gutman, S. J. Cyvin, Introduction to the Theory of Benzenoid Hydrocarbons, Springer, Berlin, 1989. |
[21] | S. Ding, M. I. Qureshi, S. F. Shah, A. Fahad, M. K. Jamil, J. B. Liu, Face index of nanotubes and regular hexagonal lattices, Int. J. Quantum Chem., 121 (2021), e26761. https://doi.org/10.1002/qua.26761 doi: 10.1002/qua.26761 |
[22] | J. B. Liu, Y. Bao, W. T. Zheng, Network coherence analysis on a family of nested weighted n-polygon networks, Fractals, 29 (2021), 2150260–2150276. https://doi.org/10.1142/S0218348X21502601 doi: 10.1142/S0218348X21502601 |
[23] | R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000. |
[24] | R. Todeschini, V. Consonni, Molecular Descriptors for Chemoinformatics, Wiley-VCH, Weinheim, 2009. |
[25] | T. Haynes, D. Kinsley, E. Seier, Y. Zou, A quantitative analysis of secondary RNA structure using domination based parameters on trees, BMC Bioinf., 7 (2006), 108. https://doi.org/10.1186/1471-2105-7-108 doi: 10.1186/1471-2105-7-108 |
[26] | S. Bermudo, R. A. Higuita, J. Rada, Domination in hexagonal chains, Appl. Math. Comput., 369 (2020), 124817. https://doi.org/10.1016/j.amc.2019.124817 doi: 10.1016/j.amc.2019.124817 |
[27] | S. Bermudo, R. A. Higuita, J. Rada, Domination number of catacondensed hexagonal systems, J. Math. Chem., 59 (2021), 1348–1367. https://doi.org/10.1007/s10910-021-01243-5 doi: 10.1007/s10910-021-01243-5 |
[28] | L. Hutchinson, V. Kamat, C. E. Larson, S. Mehta, D. Muncy, N. Van Cleemput, Automated conjecturing VI : domination number of benzenoids, Match-Commun. Math. Comput. Chem., 80 (2018), 821–834. |
[29] | T. Iqbal, M. Imran, S. A. U. H. Bokhary, Domination and power domination in certain families of nanostars dendrimers, IEEE Access, 8 (2020), 130947–130951. |
[30] | S. Majstorović, A. Klobučar, Upper bound for total domination number on linear and double hexagonal chains, Int. J. Chem. Mod., 3 (2010), 139–145. |
[31] | J. Quadras, A. S. Merlin Mahizl. I. Rajasingh, R. S. Rajan, Domination in certain chemical graphs, J. Math. Chem., 53 (2015), 207–219. https://doi.org/10.1007/s10910-014-0422-1 doi: 10.1007/s10910-014-0422-1 |
[32] | D. Vukičević, A. Klobučar, $K$-Dominating sets on linear benzenoids and on the infinite hexagonal grid, Croat. Chem. Acta, 80 (2007), 187–191. |
[33] | N. Almalki, P. Kaemawichanurat, Domination and independent domination in hexagonal systems, Mathematics, 10 (2022). https://doi.org/10.3390/math10010067 |
[34] | Y. Gao, E. Zhu, Z. Shao, I. Gutman, A. Klobučar, Total domination and open packing in some chemical graphs, J. Math. Chem., 56 (2018), 1481–1492. https://doi.org/10.1007/s10910-018-0877-6 doi: 10.1007/s10910-018-0877-6 |
[35] | A. Klobučar, A. Klobučar, Total and double total domination number on hexagonal grid, Mathematics, 7 (2019), 1110. https://doi.org/10.3390/math7111110 doi: 10.3390/math7111110 |
[36] | S. Majstorović, T. Došlić, A. Klobučar, $K$-Domination on hexagonal cactus chains, Kragujevac J. Math., 36 (2012), 335–347. |
[37] | S. Majstorović, A. Klobučar, T. Došlić, Domination numbers of m-cactus chains, Ars Comb., 125 (2016), 11–22. |