In this work, we consider the problem of the existence and uniqueness of solution, and also the simple existence of solution, for implicit differential equations of arbitrary order involving Caputo-Fabrizio derivative. The main tools for this study are contraction mapping principle and Schaefer's fixed point result. We also study the stability of the equations in the sense of Ulam-Hyers and also from the perspective of Ulam-Hyers-Rassias.
Citation: Kadda Maazouz, Rosana Rodríguez-López. Differential equations of arbitrary order under Caputo-Fabrizio derivative: some existence results and study of stability[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 6234-6251. doi: 10.3934/mbe.2022291
In this work, we consider the problem of the existence and uniqueness of solution, and also the simple existence of solution, for implicit differential equations of arbitrary order involving Caputo-Fabrizio derivative. The main tools for this study are contraction mapping principle and Schaefer's fixed point result. We also study the stability of the equations in the sense of Ulam-Hyers and also from the perspective of Ulam-Hyers-Rassias.
[1] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201 |
[2] | M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential, Progr. Fract. Differ. Appl., 2 (2016), 1–11. https://doi.org/10.18576/pfda/020101 doi: 10.18576/pfda/020101 |
[3] | S. Abbas, M. Benchohra, On the generalized Ulam-Hyers-Rassias stability for Darboux problem for partial fractional implicit differential equations, Appl. Math. E-Notes, 14 (2014), 20–28. Available from: https://www.math.nthu.edu.tw/amen/2014/131113(final).pdf. |
[4] | S. M. Aydogan, D. Baleanu, A. Mousalou, S. Rezapoux, On approximate solutions for two higher-order Caputo-Fabrizio fractional integro-differential equations, Adv. Differ. Equations, 2017 (2017), 11. https://doi.org/10.1186/s13662-017-1258-3 doi: 10.1186/s13662-017-1258-3 |
[5] | D. Baleanu, A. Mousalou, S. Rezapoux, On the existence of solutions for some infinite coefficient-symetric Caputo-Fabrizio fractional integro-differential equations, Boundary Value Probl., 2017 (2017), 1–9. https://doi.org/10.1186/s13661-017-0867-9 doi: 10.1186/s13661-017-0867-9 |
[6] | E. F. D. Goufo, Applications of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equations, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607 |
[7] | J. Hristov, Derivation of fractional Dodson equation and beyond: Transient mass diffusion with a non-singular memory and exponentially fading-out diffusivity, Progr. Fract. Differ. Appl., 3 (2017), 255–270. https://doi.org/10.18576/pfda/030402 doi: 10.18576/pfda/030402 |
[8] | J. Losada, J. J. Nieto, Properties of new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 97–92. https://doi.org10.12785/pfda/010202 doi: 10.12785/pfda/010202 |
[9] | D. Mozyrska, D. F. M. Torres, M. Wyrwas, Solutions of systems with the Caputo-Fabrizio fractional delta derivative on time scales, Nonlinear Anal. Hybrid Syst., 32 (2019) 168–176. https://doi.org/10.1016/j.nahs.2018.12.001 doi: 10.1016/j.nahs.2018.12.001 |
[10] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A |
[11] | B. S. T. Alkahtani, Model of heat with Caputo-Fabrizio derivative with fractional order, J. Comput. Theor. Nanosci., 13 (2016), 2994–2999. https://doi.org/10.1166/jctn.2016.4948 doi: 10.1166/jctn.2016.4948 |
[12] | J. Hristov, Transient heat diffusion with a non-singular fading memory: From the Cattaneo constitutive equation with Jeffreys kernel to the Caputo-Fabrizio time-fractional derivative, Therm. Sci., 20 (2016), 757–762. https://doi.org/10.2298/TSCI160112019H doi: 10.2298/TSCI160112019H |
[13] | J. Hristov, Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: Appraising analysis with emphasis on diffusion models, Front. Fract. Calc., 1 (2017), 270–342. https://doi.org/10.2174/9781681085999118010013 doi: 10.2174/9781681085999118010013 |
[14] | X. J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel application to the modelling of the steady heat flow, Therm. Sci., 20 (2016), 753–756. https://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y |
[15] | D. S. Cimpean, D. Popa, Hyers-Ulam stability of Euler's equation, Appl. Math. Lett., 24 (2011) 1539–1543. https://doi.org/10.1016/j.aml.2011.03.042 doi: 10.1016/j.aml.2011.03.042 |
[16] | S. M. Jung, Hyers-Ulam stability of linear differential equations of first order Ⅱ, Appl. Math. Lett., 19 (2006), 854–858. https://doi.org/10.1016/j.aml.2005.11.004 doi: 10.1016/j.aml.2005.11.004 |
[17] | C. Alsina, R. Ger, On some inequalities and stability results related to the exponential functio, J. Inequal. Appl., 2 (1998), 373–380. https://doi.org/10.1155/S102558349800023X doi: 10.1155/S102558349800023X |
[18] | E. Capelas de Olivera, J. V. da C. Sousa, Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations, Results Math., 73 (2018), 50–56. https://doi.org/10.1007/s00025-018-0872-z doi: 10.1007/s00025-018-0872-z |
[19] | S. M. Jung, On the Hyers-Ulam stability of the functional equation that have the quadratic property, J. Math. Anal. Appl., 222 (1998), 126–137. https://doi.org/10.1006/jmaa.1998.5916 doi: 10.1006/jmaa.1998.5916 |
[20] | M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk-Dydakt. Prace Mat., 13 (1993), 295–270. |
[21] | J. M. Rassias, Functional Equations, Difference Inequalities and Ulam Stability Notions (F.U.N.), Nova Science Publishers, Inc., New York, 2010. |
[22] | T. M. Rassias, J. Brzdek, Functional Equations in Mathematical Analysis, Springer, New York, NY, 2012. https://doi.org/10.1007/978-1-4614-0055-4 |
[23] | D. L. Kleiman, M. R. Etchechoury, P. Puleston, A simple method for impasse points detection in nonlinear electrical circuits, Math. Probl. Eng., 2018 (2018), 2613890. https://doi.org/10.1155/2018/2613890 doi: 10.1155/2018/2613890 |
[24] | M. Benchohra, S. Bouriah, Existence and stability results for nonlinear boundary value problem for implicit differential equations of fractional order, Moroc. J. Pure Appl. Anal., 1 (2015), 22–37. https://doi.org/10.7603/s40956-015-0002-9 doi: 10.7603/s40956-015-0002-9 |
[25] | M. Benchohra, S. Bouriah, J. R. Graef, Nonlinear implicit differential equations of fractional order at resonance, Electron. J. Differ. Equations, 2016 (2016), 1–10. Available from: https://ejde.math.txstate.edu/Volumes/2016/324/benchohra.pdf. |
[26] | S. Abbas, M. Benchohra, J. R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations, De Gruyter, Berlin, 2018. https://doi.org/10.1515/9783110553819 |
[27] | M. Benchohra, S. Bouriah, J. J. Nieto, Existence and Ulam stability for nonlinear implicit differential equations with Riemann-Liouville fractional derivative, Demonstr. Math., 52 (2019), 437–450. https://doi.org/10.1515/dema-2019-0032 doi: 10.1515/dema-2019-0032 |
[28] | M. Alam, D. Shah, Hyers-Ulam stability of coupled implicit fractional integro-differential equations with Riemann–Liouville derivatives, Chaos Solitons Fractals, 150 (2021), 111122. https://doi.org/10.1016/j.chaos.2021.111122 doi: 10.1016/j.chaos.2021.111122 |
[29] | A. M. Saeed, M. S. Abdo, M. B. Jeelani, Existence and Ulam–Hyers stability of a fractional-order coupled system in the frame of generalized hilfer derivatives, Mathematics, 9 (2021), 2543. https://doi.org/10.3390/math9202543 doi: 10.3390/math9202543 |
[30] | K. Zhao, S. Ma, Ulam-Hyers-Rassias stability for a class of nonlinear implicit Hadamard fractional integral boundary value problem with impulses, AIMS Math., 7 (2021), 3169–3185. https://doi.org/10.3934/math.2022175 doi: 10.3934/math.2022175 |
[31] | S. Etemad, B. Tellab, J. Alzabut, S. Rezapour, M. I. Abbas, Approximate solutions and Hyers–Ulam stability for a system of the coupled fractional thermostat control model via the generalized differential transform, Adv. Differ. Equations, 2021 (2021), 428. https://doi.org/10.1186/s13662-021-03563-x doi: 10.1186/s13662-021-03563-x |
[32] | E. Bicer, Application of Sumudu transform method for Hyers-Ulam stability of partial differential equation, J. Appl. Math. Inf., 39 (2021), 267–275. https://doi.org/10.14317/jami.2021.267 doi: 10.14317/jami.2021.267 |
[33] | A. Granas, On the Leray-Schauder alternative, Topol. Methods Nonlinear Anal., 2 (1993), 225–231. https://doi.org/10.12775/TMNA.1993.040 doi: 10.12775/TMNA.1993.040 |
[34] | T. H. Gronwall, Note on the derivatives with respect to a parameter of the solutions of a system of differential equations, Ann. Math., 20 (1919), 292–296. https://doi.org/10.2307/1967124 doi: 10.2307/1967124 |
[35] | R. Bellman, The stability of solutions of linear differential equations, Duke Math. J., 10 (1943), 643–647. https://doi.org/10.1215/S0012-7094-43-01059-2 doi: 10.1215/S0012-7094-43-01059-2 |
[36] | E. A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill Book Company, Inc., New York, 1956. https://doi.org/10.1063/1.3059875 |
[37] | K. Liu, M. Fe$ \mathop {{\rm{c}}} \limits^ \smallsmile $kan, D. O'Regan, J. Wang, Hyers-Ulam stability and existence of solutions for differential equations with Caputo-Fabrizio fractional derivative, Mathematics, 7 (2019), 333. https://doi.org/10.3390/math7040333 doi: 10.3390/math7040333 |
[38] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional Calculus Models and Numerical Methods, World Scientific, New York, 2012. |
[39] | A. Cabada, K. Maazouz, Results for fractional differential equations with integral boundary conditions involving the Hadamard derivative, NABVP, 292 (2018), 145–155. https://doi.org/10.1007/978-3-030-26987-6_10 doi: 10.1007/978-3-030-26987-6_10 |
[40] | H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061 |