Research article Special Issues

Oscillation result for half-linear delay difference equations of second-order

  • Received: 25 December 2021 Revised: 22 January 2022 Accepted: 03 February 2022 Published: 10 February 2022
  • In this paper, we obtain the new single-condition criteria for the oscillation of second-order half-linear delay difference equation. Even in the linear case, the sharp result is new and, to our knowledge, improves all previous results. Furthermore, our method has the advantage of being simple to prove, as it relies just on sequentially improved monotonicities of a positive solution. Examples are provided to illustrate our results.

    Citation: Chinnasamy Jayakumar, Shyam Sundar Santra, Dumitru Baleanu, Reem Edwan, Vediyappan Govindan, Arumugam Murugesan, Mohamed Altanji. Oscillation result for half-linear delay difference equations of second-order[J]. Mathematical Biosciences and Engineering, 2022, 19(4): 3879-3891. doi: 10.3934/mbe.2022178

    Related Papers:

  • In this paper, we obtain the new single-condition criteria for the oscillation of second-order half-linear delay difference equation. Even in the linear case, the sharp result is new and, to our knowledge, improves all previous results. Furthermore, our method has the advantage of being simple to prove, as it relies just on sequentially improved monotonicities of a positive solution. Examples are provided to illustrate our results.



    加载中


    [1] H. Adiguzel, Oscillation theorems for nonlinear fractional difference equations, Bound. Value Probl., (2018), 178. https://doi.org/10.1186/s13661-018-1098-4
    [2] J. Alzabut, V. Muthulakshmi, A. Ozbekler, H. Adiguzel, On the oscillation of Non-linear Fractional Difference Equations with Damping, Mathematics, 7 (2019). http://dx.doi.org/10.3390/math7080687
    [3] T. Ghosh, S.S. Santra, R. Bhattacharjee, D. Majumder, Second-order nonlinear differential equations: Oscillation tests and applications, J. Phys. Conference Ser. 1797 (2021), 012055. doi: 10.1088/1742-6596/1797/1/012055
    [4] A. Murugesan, K. Ammamuthu, Sufficient conditions for oscillation of second order neutral advanced difference equations, Int. J. Pure Appl. Math., 98(2015), 145–156. https://doi.org/10.26637/MJM0804/0089 doi: 10.26637/MJM0804/0089
    [5] B. Ping, M. Han, Oscillation of second order difference equations with advanced argument, Discrete Contin. Dyn. Syst., 2003 (2003), 108–112. http://doi.org/10.3934/proc.2003.2003.108 doi: 10.3934/proc.2003.2003.108
    [6] O. Moaaz, A. Muhib, S. S. Santra; An oscillation test for solutions of second-order neutral differential equations of mixed typy, Mathematics, 9 (2021), 1634. https://doi.org/10.3390/math9141634 doi: 10.3390/math9141634
    [7] S. R. Grace, J. Alzabut, Oscillation results for nonlinear second order difference equations with mixed neutral terms, Adv. Differ. Equ., (2020), 8. https://doi.org/10.1186/s13662-019-2472-y
    [8] A. K. Tripathy, Oscillatory behaviour of a class of nonlinear second order mixed difference equations, Electron. J. Qual. Theory Differ. Equ., 48, (2010). https://doi.org/10.14232/ejqtde.2010.1.48
    [9] R. P. Agarwal, M. Bohner, S. R. Grace, D. O'Regan, Discrete oscillatory theory, Hindawi Publishing, Corporation., New York, 2005.
    [10] R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Kluwer Academic Publishers, Dordrecht, 2000.
    [11] R. P. Agarwal, Difference equations and inequalities, Second edition, Monographs and Textbooks in Pure and Applied Mathematics, 228, Marcel Dekker, Inc., New York, 2000.
    [12] R. P. Agarwal, P. J. Y. Wong, Advanced topics in difference equations, Mathematics and its Applications, 404, Kluwer Academic Publishers Group, Dordrecht, 1997. https://doi.org/10.1007/978-94-015-8899-7
    [13] R. E. Mickens, Difference equations, Second edition, Van Nostrand Reinhold Co., New York, 1990.
    [14] I. GyŐri, G. Ladas, Oscillation theory of delay differential equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1991.
    [15] H. Li, H. Li, S. Zhong, Stability of neutral type descriptor system with mixed delays, Chaos Soliton. Fract., 33 (2007), 1796–1800. https://doi.org/10.1016/j.chaos.2006.03.055 doi: 10.1016/j.chaos.2006.03.055
    [16] Y. Li, Positive periodic solutions of periodic neutral Lotka-Volterra system with distributed delays, Chaos Soliton. Fract., 37 (2008), 288–298. https://doi.org/10.1016/j.chaos.2006.09.025 doi: 10.1016/j.chaos.2006.09.025
    [17] J. H. Park, O. M. Kwon, Stability analysis of certain nonlinear differential equation, Chaos Soliton. Fract., 37 (2008), 450–453. https://doi.org/10.1016/j.chaos.2006.09.015 doi: 10.1016/j.chaos.2006.09.015
    [18] J. H. Park, O. Kwon, Controlling uncertain neutral dynamic systems with delay in control input, Chaos Soliton. Fract., 26 (2005), 805–812. https://doi.org/10.1016/j.chaos.2005.03.001 doi: 10.1016/j.chaos.2005.03.001
    [19] J. H. Park, Design of dynamic controller for neutral differential systems with delay in control input, Chaos Soliton. Fract., 23 (2005), 503–509. https://doi.org/10.1016/j.chaos.2004.05.022 doi: 10.1016/j.chaos.2004.05.022
    [20] K.-W. Yu, C.-H. Lien, Stability criteria for uncertain neutral systems with interval time-varying delays, Chaos Soliton. Fract., 38 (2008), 650–657. https://doi.org/10.1016/j.chaos.2007.01.002 doi: 10.1016/j.chaos.2007.01.002
    [21] E. Thandapani, S. Selvarangam, Oscillation results for third order half-linear neutral difference equations, Bull. Math. Anal. Appl., 4 (2012), 91–102.
    [22] S. S. Santra, D. Baleanu, K. M. Khedher, O. Moaaz, First-order impulsive differential systems: Sufficient and necessary conditions for oscillatory or asymptotic behavior, Adv. Differ. Equ., (2021), 283. https://doi.org/10.1186/s13662-021-03446-1
    [23] S. S. Santra, K. M. Khedher, K. Nonlaopon, H. Ahmad, New Results on qualitative behavior of second order nonlinear neutral impulsive differential systems with canonical and non-canonical conditions, Symmetry, 13 (2021), 934. https://doi.org/10.3390/sym13060934 doi: 10.3390/sym13060934
    [24] S. S. Sundar, A. Ghosh, O. Bazighifan, K. M. Khedher, T. A. Nofal, Second-order impulsive differential systems with mixed and several delays, Adv. Differ. Equ., (2021), 318. https://doi.org/10.1186/s13662-021-03474-x
    [25] S. S. Santra, A. K. Sethi, O. Moaaz, K. M. Khedher, Shao-Wen Yao, New oscillation theorems for second-order differential equations with canonical and non canonical operator via Riccati transformation, Mathematics, 10 (2021), 1111. https://doi.org/10.3390/math9101111 doi: 10.3390/math9101111
    [26] M. Ruggieri, S. S. Santra, A. Scapellato, On nonlinear impulsive differential systems with canonical and non-canonical operators, Appl. Anal., (2021). https://doi.org/10.1080/00036811.2021.1965586
    [27] M. Ruggieri, S. S. Santra, A. Scapellato Oscillatory behavior of a class of neutral differential equations, Bull. Braz. Math. Soc., (2021). https://doi.org/10.1007/s00574-021-00276-3
    [28] O. Bazighifan, A. Scapellato, Oscillatory properties of even-order ordinary differential equations with variable coefficients, Miskolc Math. Notes, 21 (2020), 641–652. https://doi.org/10.18514/MMN.2020.3387 doi: 10.18514/MMN.2020.3387
    [29] A. Murugesan, C. Jayakumar, Oscillation condition for second order half-linear advanced difference equation with variable coefficients, Malaya J. Mat., 8 (2020), 1872–1879. https://doi.org/10.26637/MJM0804/0089 doi: 10.26637/MJM0804/0089
    [30] P. Gopalakrishnan, A. Murugesan, C. Jayakumar, Oscillation conditions of the second-order noncanonical difference equations, J. Math. Computer Sci., 25 (2022), 351–360. http://dx.doi.org/10.22436/jmcs.025.04.05 doi: 10.22436/jmcs.025.04.05
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2199) PDF downloads(91) Cited by(7)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog