Processing math: 100%
Research article Special Issues

Oscillation behavior for neutral delay differential equations of second-order


  • In this paper, new criteria for oscillation of neutral delay differential equations of second-order are presented. One objective of this study is to complement and extend some well-known related results in the literature. To support our main results, we give illustrating examples.

    Citation: Osama Moaaz, Ali Muhib, Waed Muhsin, Belgees Qaraad, Hijaz Ahmad, Shao-Wen Yao. Oscillation behavior for neutral delay differential equations of second-order[J]. Mathematical Biosciences and Engineering, 2021, 18(4): 4390-4401. doi: 10.3934/mbe.2021221

    Related Papers:

    [1] B. Qaraad, O. Moaaz, D. Baleanu, S. S. Santra, R. Ali, E. M. Elabbasy . Third-order neutral differential equations of the mixed type: Oscillatory and asymptotic behavior. Mathematical Biosciences and Engineering, 2022, 19(2): 1649-1658. doi: 10.3934/mbe.2022077
    [2] A. Muhib, I. Dassios, D. Baleanu, S. S. Santra, O. Moaaz . Odd-order differential equations with deviating arguments: asymptomatic behavior and oscillation. Mathematical Biosciences and Engineering, 2022, 19(2): 1411-1425. doi: 10.3934/mbe.2022065
    [3] Xiulan Lai, Xingfu Zou . Dynamics of evolutionary competition between budding and lytic viral release strategies. Mathematical Biosciences and Engineering, 2014, 11(5): 1091-1113. doi: 10.3934/mbe.2014.11.1091
    [4] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [5] Tyler Cassidy, Morgan Craig, Antony R. Humphries . Equivalences between age structured models and state dependent distributed delay differential equations. Mathematical Biosciences and Engineering, 2019, 16(5): 5419-5450. doi: 10.3934/mbe.2019270
    [6] Peng Feng, Menaka Navaratna . Modelling periodic oscillations during somitogenesis. Mathematical Biosciences and Engineering, 2007, 4(4): 661-673. doi: 10.3934/mbe.2007.4.661
    [7] Dimitri Breda, Davide Liessi . A practical approach to computing Lyapunov exponents of renewal and delay equations. Mathematical Biosciences and Engineering, 2024, 21(1): 1249-1269. doi: 10.3934/mbe.2024053
    [8] Yanqin Wang, Xin Ni, Jie Yan, Ling Yang . Modeling transcriptional co-regulation of mammalian circadian clock. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1447-1462. doi: 10.3934/mbe.2017075
    [9] Ishtiaq Ali . Bernstein collocation method for neutral type functional differential equation. Mathematical Biosciences and Engineering, 2021, 18(3): 2764-2774. doi: 10.3934/mbe.2021140
    [10] H.T. Banks, S. Dediu, H.K. Nguyen . Sensitivity of dynamical systems to parameters in a convex subset of a topological vector space. Mathematical Biosciences and Engineering, 2007, 4(3): 403-430. doi: 10.3934/mbe.2007.4.403
  • In this paper, new criteria for oscillation of neutral delay differential equations of second-order are presented. One objective of this study is to complement and extend some well-known related results in the literature. To support our main results, we give illustrating examples.



    In this paper, we study the oscillatory behavior for neutral delay differential equations of second-order

    (a(ξ)ϑ(ξ))+q(ξ)f(ϰ(σ(ξ)))=0, (1.1)

    where ξξ0 and

    ϑ(ξ):=ϰγ(ξ)+p(ξ)ϰ(τ(ξ)).

    Throughout this article, we assume:

    (M1) γ is a quotient of odd positive integers and γ1;

    (M2) aC1([ξ0,),(0,)), p,qC([ξ0,),[0,)), 0p(ξ)<1 and

    ξ01a(ρ)dρ=;

    (M3) τ,σC([ξ0,),R), τ(ξ)ξ, σ(ξ)<ξ and limξτ(ξ)=limξσ(ξ)=;

    (M4) fC(R,R) and f(ϰ)/ϰγk for ϰ0 and a constant k>0.

    By a solution of Eq (1.1), we mean a nontrivial real-valued function ϰC([ξϰ,),R) with ξϰ:= min{τ(ξϰ),σ(ξϰ)} for some ξϰξ0, which has the property aϑC1([ξ0,),R) and satisfies Eq (1.1) on [ξ0,). We will consider only those solutions of Eq (1.1) which exist on some half-line [ξϰ,) and satisfy the condition

    sup{|ϰ(ξ)|:ξcξ<}>0 for any ξcξϰ.

    If y is either positive or negative, eventually, then y is called nonoscillatory; otherwise it is called oscillatory.

    Due to the many applications for differential equations of the second-order in various problems of economics, biology, and physics, there is constant interest in obtaining new sufficient conditions for the oscillation or nonoscillation of the solutions of varietal types for differential equations. The development in the study of second-order delay differential equations with a canonical operator can be followed through the works [1,2,3,4,5,6], while the equations with a noncanonical operator [7,8,9,10,11]. The works [12,13,14,15,16] extended the results from the second-order to the higher-order delay differential equations.

    For some related works, Baculikova and Dzurina [5] considered the oscillation of the neutral differential equation

    (a(ξ)(ϰ(ξ)+p(ξ)ϰ(τ(ξ))))+q(ξ)ϰ(σ(ξ))=0,

    under the condition

    0p(ξ)p0< and τσ=στ. (1.2)

    Grace and Lalli [3] studied the oscillation of the equation

    (a(ξ)(ϰ(ξ)+p(ξ)ϰ(ξτ)))+q(ξ)f(ϰ(ξτ))=0.

    Dong [2], Liu and Bai [17] and Xu and Meng [18,19] investigated the oscillation of equation

    (a(ξ)(ϰ(ξ)+p(ξ)ϰ(τ(ξ)))γ)+q(ξ)ϰβ(σ(ξ))=0,

    where 0p(ξ)<1. Li and Han [20,21,22] considered the oscillation of the second-order neutral differential equation

    (ϰ(ξ)+p(ξ)ϰ(τ(ξ)))+q(ξ)ϰ(σ(ξ))=0

    for the case where Eq (1.2) holds. Recently, Moaaz [6] obtained sufficient conditions for the oscillation of neutral differential equations second order

    (a(ξ)((ϰ(ξ)+p(ξ)ϰ(τ(ξ))))γ)+f(ξ,ϰ(σ(ξ)))=0,

    where

    ξ0(1a(ρ))1/γdρ=.

    The objective of this paper is to establish new oscillation results for Eq (1.1). This paper is structured as follows: Firstly, by applying the theorems of comparison that compare the second-order equations with first-order delay equations, we establish a new criterion for oscillation of Eq (1.1). Secondly, we present new results for oscillation of Eq (1.1) by using the Riccati technique. Finally, some examples are considered to illustrate the main results.

    Throughout this paper, we will be employing the next notations:

    U(ξ):=kq(ξ)(1p(σ(ξ))),η(ξ):=ξξ1a1(ρ)dρ,˜η(ξ):=η(ξ)+ξξ1η(ρ)η(σ(ρ))U(ρ)dρ

    and

    ˆη(ξ):=exp(ξσ(ξ)du˜η(u)a(u)).

    To prove the oscillation criteria, we need the next lemmas.

    Lemma 2.1. [1,Lemma 3] Let ϰ be a positive solution of Eq (1.1) on [ξ0,), then there exists a ξ1ξ0 such that

    ϑ(ξ)>0,ϑ(ξ)>0 and (a(ξ)(ϑ(ξ))γ)0. (2.1)

    Proof. Assume that ϰ(ξ)>0 is a solution of Eq (1.1). From Eq (1.1), we get

    (a(ξ)ϑ(ξ))kq(ξ)ϰγ(σ(ξ))<0

    Therefore, (a(ξ)ϑ(ξ)) is decreasing. Thus ϑ(ξ)>0 or ϑ(ξ)<0 for ξξ1. If ϑ(ξ)<0, then there exists a constant c such that

    ϑ(ξ)ca(ξ)<0

    Integrating from ξ1 to ξ, we have

    ϑ(ξ)ϑ(ξ1)cξξ11a(s)ds as ξ

    This is a contradiction and we conclude that ϑ(ξ)>0.

    Theorem 2.2. If the first order delay differential equation

    w(ξ)+U(ξ)˜η(σ(ξ))w(σ(ξ))=0 (2.2)

    is oscillatory, then all solutions of Eq (1.1) are oscillatory.

    Proof. Assume that Eq (1.1) has a non-oscillatory solution ϰ on [ξ0,). Without loss of generality, we assume that there exists a ξ1ξ0 such that ϰ(ξ)>0, ϰ(τ(ξ))>0 and ϰ(σ(ξ))>0 for ξξ1. By the definition of ϑ, using τ(ξ)ξ and ϑ(ξ)>0, we obtain, for ξξ1,

    ϰγ(ξ)=ϑ(ξ)p(ξ)ϰ(τ(ξ))ϑ(ξ)p(ξ)ϑ(τ(ξ))(1p(ξ))ϑ(ξ),

    which together with Eq (1.1) implies that

    (a(ξ)ϑ(ξ))kq(ξ)(1p(σ(ξ)))ϑ(σ(ξ))U(ξ)ϑ(σ(ξ)). (2.3)

    From Lemma 2.1, we see that

    ϑ(ξ)=ϑ(ξ1)+ξξ11a(ρ)a(ρ)ϑ(ρ)dρη(ξ)a(ξ)ϑ(ξ).

    By simple computations, we see that

    (ϑ(ξ)η(ξ)a(ξ)ϑ(ξ))=η(ξ)(a(ξ)ϑ(ξ))η(ξ)U(ξ)ϑ(σ(ξ)). (2.4)

    Integrating Eq (2.4) from ξ1 to ξ, we get

    ϑ(ξ)η(ξ)a(ξ)ϑ(ξ)+ξξ1η(ρ)U(ρ)ϑ(σ(ρ))dρ.

    Thus, from the fact that (a(ξ)(ϑ(ξ))γ)0, we arrive at

    ϑ(ξ)η(ξ)a(ξ)ϑ(ξ)+ξξ1η(ρ)U(ρ)η(σ(ρ))a(σ(ρ))ϑ(σ(ρ))dρη(ξ)a(ξ)ϑ(ξ)+ξξ1η(ρ)U(ρ)η(σ(ρ))a(ρ)ϑ(ρ)dρa(ξ)ϑ(ξ)(η(ξ)+ξξ1η(ρ)U(ρ)η(σ(ρ))dρ)a(ξ)ϑ(ξ)˜η(ξ). (2.5)

    Next, we set w(ξ)=a(ξ)ϑ(ξ). Using Eqs (2.3) and (2.5), we note that w be a positive solution of

    w(ξ)+U(ξ)˜η(σ(ξ))w(σ(ξ))0.

    Using [25,Theorem1], we have that Eq (2.2) also has a positive solution, and so, we arrive at a contradiction. This ends the proof.

    Corollary 1. If

    limsupξξσ(ξ)U(ρ)˜η(σ(ρ))dρ>1,σis non-decreasing (2.6)

    or

    liminfξξσ(ξ)U(ρ)˜η(σ(ρ))dρ>1e, (2.7)

    then all solutions of Eq (1.1) are oscillatory.

    Proof. Using [23,Theorem 2.1.1], we note that the conditions Eqs (2.6) or (2.7) ensure oscillation of Eq (2.2). Thus, from Theorem 2.2, all solutions of Eq (1.1) are oscillatory.

    Lemma 2.3. [4,Lemma 4] Let Eq (1.1) has an eventually positive solution ϰ. Suppose that σ is strictly increasing. Assume for some δ>0 that

    liminfξξσ(ξ)U(ρ)˜η(σ(u))duδ. (2.8a)

    Then

    ω(σ(ξ))ω(ξ)θn(δ) (2.9)

    for every n0 and ξ large enough, where w(ξ):=a(ξ)ϑ(ξ),

    θ0(u):=1  and  θn+1(u):=exp(uθn(u)),n=0,1,.... (2.10)

    Theorem 2.4. Assume that σ is strictly increasing and Eq (2.8a) holds for some δ>0. If there exists a function φC1([ξ0,),(0,)) such that

    limsupξξξ1(U(ρ)φ(ρ)((φ(ρ)2)a(σ(ρ)))4φ(ρ)σ(ρ)θn(δ))dρ=, (2.11)

    for sufficiently large ξξ1 and for some n0, where θn(δ) is defined as in Eq (2.10) and φ+(ξ)=max{0,φ(ξ)}, then all solutions of Eq (1.1) are oscillatory.

    Proof. Assume that there is a positive solution ϰ of Eq (1.1) on [ξ0,). Thus, there is a ξ1ξ0 such that ϰ(ξ)>0, ϰ(τ(ξ))>0 and ϰ(σ(ξ))>0 for ξξ1. It follows from Lemma 2.3 that

    ϑ(σ(ξ))ϑ(ξ)(θn(δ)a(ξ)a(σ(ξ))). (2.12)

    We define the function Φ(ξ) by

    Φ(ξ):=φ(ξ)a(ξ)(ϑ(ξ)ϑ(σ(ξ))). (2.13)

    Then, Φ(ξ)>0 for ξξ1. Differentiating Eq (2.13), we get

    Φ(ξ)=φ(ξ)φ(ξ)Φ(ξ)+φ(ξ)(a(ξ)ϑ(ξ))ϑ(σ(ξ))φ(ξ)σ(ξ)a(ξ)(ϑ(ξ)ϑ(σ(ξ)))(ϑ(σ(ξ))ϑ(σ(ξ))).

    From Eqs (2.3), (2.12) and (2.11), we obtain

    Φ(ξ)φ(ξ)U(ξ)+φ+(ξ)φ(ξ)Φ(ξ)(σ(ξ)θn(δ)φ(ξ)a(σ(ξ)))Φ2(ξ)φ(ξ)U(ξ)+(φ(ρ))2a(σ(ρ))4φ(ρ)σ(ρ)θn(δ).

    Integrating this inequality from ξ1 to ξ, we conclude

    limsupξξξ1(U(ρ)φ(ρ)(φ(ρ))2a(σ(ρ))4φ(ρ)σ(ρ)θn(δ))dρΦ(ξ1),

    which contradicts with Eq (2.11). This ends the proof.

    Theorem 2.5. Assume that there exists a function ϕC1([ξ0,),(0,)) such that

    limsupξξξ1(ϕ(ρ)U(ρ)ˆη(ξ)(φ(ρ))2a(ρ)4ϕ(ρ))dρ=, (2.14)

    for some sufficiently large ξξ1, where ϕ+(ξ)=max{0,ϕ(ξ)}. Then all solutions of Eq (1.1) are oscillatory.

    Proof. Assume that there is a positive solution ϰ of Eq (1.1) on [ξ0,). Thus, there is a ξ1ξ0 such that ϰ(ξ)>0, ϰ(τ(ξ))>0 and ϰ(σ(ξ))>0 for ξξ1. From Lemma 2.1, we have that Eq (2.1) holds. As in the proof of Theorem 2.2, we arrive at Eq (2.5). From Eq (2.5), we have

    ϑ(ξ)ϑ(ξ)1˜η(ξ)a(ξ).

    Integrating this inequality from σ(ξ) to ξ, we get

    ϑ(σ(ξ))ϑ(ξ)exp(ξσ(ξ)du˜η(u)a(u)). (2.15)

    Combining Eqs(2.3) and (2.15), we have

    (a(ξ)ϑ(ξ))ϑ(ξ)U(ξ)(ϑ(σ(ξ))ϑ(ξ))U(ξ)ˆη(ξ). (2.16)

    Define the function

    Ψ(ξ)=ϕ(ξ)a(ξ)(ϑ(ξ)ϑ(ξ)). (2.17)

    Then Ψ(ξ)>0 for ξ>ξ1. Differentiating Eq (2.17), we arrive at

    Ψ(ξ)(a(ξ)ϑ(ξ))ϑ(ξ)ϕ(ξ)1ϕ(ξ)a(ξ)Ψ2(ξ)+ϕ(ξ)ϕ(ξ)Ψ(ξ). (2.18)

    From Eqs (2.16), (2.17) and (2.18), we deduce that

    Ψ(ξ)ϕ(ξ)U(ξ)ˆη(ξ)1ϕ(ξ)a(ξ)Ψ2(ξ)+ϕ+(ξ)ϕ(ξ)Ψ(ξ)ϕ(ξ)U(ξ)ˆη(ξ)+(ϕ+(ξ))2a(ξ)4ϕ(ξ).

    Integrating this inequality from ξ1 to ξ, we find

    limsupξξξ1(ϕ(ρ)U(ρ)ˆη(ξ)(φ(ρ))2a(ρ)4ϕ(ρ))dρΨ(ξ1),

    which contradicts with Eq (2.14). This ends the proof.

    Theorem 2.6. If

    liminfξ1ψ(ξ)ξa1(u)ψ2(u)du>14, (2.19)

    where

    ψ(ξ):=ξU(u)ˆη(u)du

    then all solutions of Eq (1.1) are oscillatory.

    Proof. Proceeding as in the proof of Theorem Eq (2.5), we arrive at Eq (2.18). Using Eq (2.18) with ϕ(ξ)=1, we obtain

    Ψ(ξ)(a(ξ)ϑ(ξ))ϑ(ξ)1a(ξ)Ψ2(ξ)

    Thus, we obtain

    Ψ(ξ)U(ξ)ˆη(ξ)1a(ξ)Ψ2(ξ)<0. (2.20)

    By integrating Eq (2.20) from ξ to ρ, we get

    ρξU(u)ˆη(u)du+ρξa1(u)Ψ2(u)duΨ(ξ)Ψ(ρ),

    Since Ψ>0 and Ψ<0, we see that limρΨ(ρ)=c0. Thus the previous inequality becomes

    ψ(ξ)+ξa1(u)Ψ2(u)duΨ(ξ),

    Hence

    1+1ψ(ξ)ξa1(u)ψ2(u)(Ψ(u)ψ(u))2duΨ(ξ)ψ(ξ), (2.21)

    Set

    δ:=infξξ1Ψ(ξ)ψ(ξ).

    From Eq (2.21), δ1. Taking Eqs (2.19) and (2.21) into account, we find 1+14δ2δ, which not possible with the permissible value δ1. Thus, the proof is complete.

    Example 2.7. Consider the differential equation

    (ϰ(ξ)+12ϰ(ξe))+q0ξ2ϰ(ξe)=0, (2.22)

    where ξ>0. By apply Theorem 2.1 in [24] or Theorem 1 in [26], Eq (2.22) is oscillatory if q0>1.3591. From Theorem 2.5, Eq (2.22) is oscillatory if q0>1.1425. Thus, our results improves results in [24,26].

    Q(ξ)=min{q(ξ),q(τ(ξ))}.
    0p(ξ)p0<.

    Lemma 3.1. [27] Let α be a ratios of two odd positive integers. Then

    KvLv(α+1)/ααα(α+1)α+1Kα+1Lα, L>0.

    Theorem 3.2. Assume that γ=1, a(ξ)0, σ(ξ)>0, σ(ξ)τ(ξ), ττ0>0 and στ=τσ. Furthermore, Assume that there exists a function ρ(ξ)C1([ξ0,),(0,)), for all sufficiently large ξ1ξ0, there is a ξ2>ξ1 such that

    limsupξξξ2(kρ(s)Q(s)(1+p0τ0)14a(s)(ρ+(s))2ρ(s)σ(s))ds=, (3.1)

    where ρ+(ξ)=max{0,ρ(ξ)}. Then Eq (1.1) is oscillatory.

    Proof. Assume that there is a positive solution ϰ of Eq (1.1) on [ξ0,). Thus, there is a ξ1ξ0 such that ϰ(ξ)>0, ϰ(τ(ξ))>0 and ϰ(σ(ξ))>0 for ξξ1.Now, from Eq (1.1), we obtain

    0(a(ξ)ϑ(ξ))+p0τ0(a(τ(ξ))ϑ(τ(ξ)))+kq(ξ)ϰ(σ(ξ))+kp0q(τ(ξ))ϰ(σ(τ(ξ))),

    which follows from στ=τσ that

    (a(ξ)ϑ(ξ))+p0τ0(a(τ(ξ))ϑ(τ(ξ)))+kQ(ξ)ϑ(σ(ξ))0. (3.2)

    Next, we define a function ω(ξ) by

    ω(ξ)=ρ(ξ)a(ξ)(ϑ(ξ))ϑ(σ(ξ)), (3.3)

    then ω(ξ)>0. Differentiating Eq (3.3) with respect to ξ, we have

    ω(ξ)=ρ(ξ)ρ(ξ)ω(ξ)+ρ(ξ)(a(ξ)(ϑ(ξ)))ϑ(σ(ξ))ρ(ξ)a(ξ)(ϑ(ξ))ϑ(σ(ξ))σ(ξ)ϑ2(σ(ξ)), (3.4)

    since ϑ(ξ)0 and σ(ξ)<ξ, we get

    ω(ξ)ρ(ξ)ρ(ξ)ω(ξ)+ρ(ξ)(a(ξ)(ϑ(ξ)))ϑ(σ(ξ))ρ(ξ)a(ξ)(ϑ(ξ))2σ(ξ)ϑ2(σ(ξ)). (3.5)

    It follows from Eqs (3.3) and (3.5) that

    ω(ξ)ρ(ξ)ρ(ξ)ω(ξ)+ρ(ξ)(a(ξ)(ϑ(ξ)))ϑ(σ(ξ))σ(ξ)a(ξ)ρ(ξ)ω2(ξ). (3.6)

    Similarly, define another function ψ by

    ψ(ξ)=ρ(ξ)a(τ(ξ))(ϑ(τ(ξ)))ϑ(σ(ξ)), (3.7)

    then ψ(ξ)>0. Differentiating Eq (3.7) with respect to ξ, we have

    ψ(ξ)=ρ(ξ)ρ(ξ)ψ(ξ)+ρ(ξ)(a(τ(ξ))(ϑ(τ(ξ))))ϑ(σ(ξ))ρ(ξ)a(τ(ξ))(ϑ(τ(ξ)))ϑ(σ(ξ))σ(ξ)ϑ2(σ(ξ)), (3.8)

    since ϑ(ξ)0 and σ(ξ)<τ(ξ), we get

    ψ(ξ)ρ(ξ)ρ(ξ)ψ(ξ)+ρ(ξ)(a(τ(ξ))(ϑ(τ(ξ))))ϑ(σ(ξ))ρ(ξ)a(τ(ξ))(ϑ(τ(ξ)))2σ(ξ)ϑ2(σ(ξ)). (3.9)

    It follows from Eqs (3.7) and (3.9) that

    ψ(ξ)ρ(ξ)ρ(ξ)ψ(ξ)+ρ(ξ)(a(τ(ξ))(ϑ(τ(ξ))))ϑ(σ(ξ))σ(ξ)ρ(ξ)a(ξ)ψ2(ξ). (3.10)

    Multiplying Eq (3.10) by p0/τ0 and combining it with Eq (3.6), we get

    ω(ξ)+p0τ0ψ(ξ)ρ(ξ)((a(ξ)(ϑ(ξ)))ϑ(σ(ξ))+p0τ0(a(τ(ξ))(ϑ(τ(ξ))))ϑ(σ(ξ)))+ρ+(ξ)ρ(ξ)ω(ξ)σ(ξ)a(ξ)ρ(ξ)ω2(ξ)+p0τ0(ρ+(ξ)ρ(ξ)ψ(ξ)σ(ξ)ρ(ξ)a(ξ)ψ2(ξ)).

    From Eq (3.2), we obtain

    ω(ξ)+p0τ0ψ(ξ)kρ(ξ)Q(ξ)+ρ+(ξ)ρ(ξ)ω(ξ)σ(ξ)a(ξ)ρ(ξ)ω2(ξ)+p0τ0(ρ+(ξ)ρ(ξ)ψ(ξ)σ(ξ)ρ(ξ)a(ξ)ψ2(ξ)). (3.11)

    From Lemma 3.1, Eq (3.11), becomes

    ω(ξ)+p0τ0ψ(ξ)kρ(ξ)Q(ξ)+14(ρ+(ξ))2a(ξ)ρ(ξ)σ(ξ)+p0τ014(ρ+(ξ))2a(ξ)ρ(ξ)σ(ξ) (3.12)

    integrating Eq (3.12) from ξ2 (ξ2ξ1) to ξ, we get

    ξξ2(kρ(s)Q(s)(1+p0τ0)14a(s)(ρ+(s))2ρ(s)σ(s))dsω(ξ2)+p0τ0ψ(ξ2),

    which contradicts Eq (3.1). This ends the proof.

    Example 3.3. Consider the differential equation

    (ϰ(ξ)+2ϰ(ξe))+q0ξ2ϰ(ξe)=0, (3.13)

    where γ=1 and q0>0. We note that a(ξ)0, p(ξ)=2, σ(ξ)=1/e>0, σ(ξ)=τ(ξ)=ξ/e, q(ξ)=q0/ξ2, τ0=1/e>0 and στ=τσ=ξ/e2. It's easy to verify that

    Q(ξ)=q0/ξ2.

    By choosing ρ(ξ)=ξ2, the condition Eq (3.1) is satisfied if q0>17.496.

    Thus, from Theorem 3.2, we see that Eq (3.13) is oscillatory if q0>17.496.

    In this paper, by different techniques and criteria, the oscillatory behavior of a class of second-order neutral delay differential equations has been studied. The results obtained are an extension and supplement to the relevant results in the literature. It is interesting to extend the results in this paper to Emden-Fowler delay differential equations with a sublinear neutral term.

    The authors present their sincere thanks to the editors and two anonymous referees.

    National Natural Science Foundation of China (No. 71601072), Key Scientific Research Project of Higher Education Institutions in Henan Province of China (No. 20B110006) and the Fundamental Research Funds for the Universities of Henan Province (No. NSFRF210314).

    There are no competing interests.



    [1] B. Baculikova, J. Dzurina, Oscillation theorems for second order nonlinear neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. doi: 10.1016/j.camwa.2011.10.024
    [2] J. G. Dong, Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments, Comput. Math. Appl., 59 (2010), 3710–3717. doi: 10.1016/j.camwa.2010.04.004
    [3] S. R. Grace, B. S. Lalli, Oscillation of nonlinear second order neutral delay differential equations, Rad. Math., 3 (1987), 77–84.
    [4] S. R. Grace, J. Dzurina, I. Jadlovska, T. Li, An improved approach for studying oscillation of second-order neutral delay differential equations, J. Ineq. Appl., 2018 (2008), 193.
    [5] B. Baculikova, J. Dzurina, Oscillation theorems for second order neutral differential equations, Comput. Math. Appl., 61 (2011), 94–99. doi: 10.1016/j.camwa.2010.10.035
    [6] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Equations, (2019), 484.
    [7] R. P. Agarwal, Ch. Zhang, T. Li, Some remarks on oscillation of second order neutral differential equations, Appl. Math. Comput., 274, (2016), 178–181.
    [8] M. Bohner, S. R. Grace, I. Jadlovska, Oscillation criteria for second-order neutral delay differential equations, Electron. J. Qual. Theory Differ. Equations, 60 (2017).
    [9] O. Moaaz, E. M. Elabbasy, B. Qaraad, An improved approach for studying oscillation of generalized Emden-Fowler neutral differential equation, J. Ineq. Appl., 69 (2020).
    [10] O. Moaaz, A. Muhib, S. Owyed, E. E. Mahmoud, A. Abdelnaser, Second-order neutral differential equations: improved criteria for testing the oscillation, J. Math., 2021.
    [11] O. Moaaz, M. Anis, D. Baleanu, A. Muhib, More effective criteria for oscillation of second-order differential equations with neutral arguments, Mathematics, 8 (2020), 986. doi: 10.3390/math8060986
    [12] B. Baculikova, J. Dzurina, T. Li, Oscillation results for even-order quasilinear neutral functional differential equations, Electron. J. Differ. Equations, 2011 (2011), 1–9.
    [13] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, A new approach in the study of oscillatory behavior of even-order neutral delay differential equations, Appl. Math. Comput., 225 (2013), 787–794.
    [14] B. Baculikova, J. Dzurina, Oscillation theorems for higher order neutral differential equations, Appl. Math. Comput., 219 (2012), 3769–3778.
    [15] O. Moaaz, E. M. Elabbasy, E. Shaaban, Oscillation criteria for a class of third order damped differential equations, Arab J. Math. Sci., 24, (2018), 16–30.
    [16] O. Moaaz, S. Furuichi, A. Muhib, New comparison theorems for the nth order neutral differential equations with delay inequalities, Mathematics, 8 (2020), 454. doi: 10.3390/math8030454
    [17] L. Liu, Y. Bai, New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Appl. Math., 231 (2009), 657–663. doi: 10.1016/j.cam.2009.04.009
    [18] R. Xu, F. Meng, Some new oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput., 182 (2006), 797–803.
    [19] R. Xu, F. Meng, Oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput., 192 (2007), 216–222.
    [20] Z. Han, T. Li, S. Sun, W. Chen, On the oscillation of second-order neutral delay differential equations, Adv. Differ. Equations, (2010), 1–8.
    [21] Z. Han, T. Li, S. Sun, W. Chen, Oscillation criteria for second-order nonlinear neutral delay differential equations, Adv. Differ. Equations, (2010), 1–23.
    [22] T. Li, Z. Han, P. Zhao, S. Sun, Oscillation of even-order neutral delay differential equations, Adv. Differ. Equations, (2010), 1–9.
    [23] G. Ladde, V. Lakshmikantham, B. Zhang, Oscillation theory of differential equations with deviating arguments, Marcel Dekker, NewYork, 1987.
    [24] H. Liu, F. Meng, P. Liu, Oscillation and asymptotic analysis on a new generalized Emden–Fowler equation, Appl. Math. Comput., 219 (2012), 2739–2748.
    [25] C. Philos, On the existence of nonoscillatory solutions tending to zero at for differential equations with positive delay, Arch. Math., 36 (1981), 168–178. doi: 10.1007/BF01223686
    [26] Y. Wu, Y. Yu, J. Zhang, J. Xiao, Oscillation criteria for second order Emden-Fowler functional differential equations of neutral type, Appl. Math. Comput., 210 (2012), 2739–2748.
    [27] C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 26 (2013), 179–183. doi: 10.1016/j.aml.2012.08.004
  • This article has been cited by:

    1. Asma Al-Jaser, Belgees Qaraad, Omar Bazighifan, Loredana Florentina Iambor, Second-Order Neutral Differential Equations with Distributed Deviating Arguments: Oscillatory Behavior, 2023, 11, 2227-7390, 2605, 10.3390/math11122605
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2911) PDF downloads(129) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog