Research article Special Issues

Third-order neutral differential equations of the mixed type: Oscillatory and asymptotic behavior

  • Received: 11 July 2021 Accepted: 18 October 2021 Published: 14 December 2021
  • In this work, by using both the comparison technique with first-order differential inequalities and the Riccati transformation, we extend this development to a class of third-order neutral differential equations of the mixed type. We present new criteria for oscillation of all solutions, which improve and extend some existing ones in the literature. In addition, we provide an example to illustrate our results.

    Citation: B. Qaraad, O. Moaaz, D. Baleanu, S. S. Santra, R. Ali, E. M. Elabbasy. Third-order neutral differential equations of the mixed type: Oscillatory and asymptotic behavior[J]. Mathematical Biosciences and Engineering, 2022, 19(2): 1649-1658. doi: 10.3934/mbe.2022077

    Related Papers:

  • In this work, by using both the comparison technique with first-order differential inequalities and the Riccati transformation, we extend this development to a class of third-order neutral differential equations of the mixed type. We present new criteria for oscillation of all solutions, which improve and extend some existing ones in the literature. In addition, we provide an example to illustrate our results.



    加载中


    [1] J. Hale, Theory of Functional Differential Equations, Springer, 1977.
    [2] O. Bazighifan, T. Abdeljawad, Q. M. Al-Mdallal, Differential equations of even-order with p-Laplacian like operators: qualitative properties of the solutions, Adv. Differ. Equations, 2021 (2021), 1–10. doi: 10.1186/s13662-021-03254-7. doi: 10.1186/s13662-021-03254-7
    [3] O. Bazighifan, A. F. Aljohani, Explicit criteria for the qualitative properties of differential equations with p-Laplacian-like operator, Adv. Differ. Equ., 2020 (2020), 454. doi: 10.1186/s13662-020-02907-3. doi: 10.1186/s13662-020-02907-3
    [4] O. Bazighifan, P. Kumam, Oscillation theorems for advanced differential equations with p-Laplacian like operators, Mathematics, 8 (2020), 821. doi: 10.3390/math8050821. doi: 10.3390/math8050821
    [5] M. Bohner, T. Li, Oscillation of second-order p-Laplace dynamic equations with a nonpositive neutral coefficient, Appl. Math. Lett., 37 (2014), 72–76. doi: 10.1016/j.aml.2014.05.012. doi: 10.1016/j.aml.2014.05.012
    [6] J. Dzurina, Oscillation of second order differential equations with advanced argument, Math. Slovaca, 45 (1995), 263–268.
    [7] S. R. Grace, J. R. Graef, E. Tunc, Oscillatory behavior of second order damped neutral differential equations with distributed deviating arguments, Miskolc Math. Notes, 18 (2017), 759–769. doi: 10.18514/MMN.2017.2326. doi: 10.18514/MMN.2017.2326
    [8] T. Li, E. Thandapani, J. R. Graef, E. Tunc, Oscillation of second-order Emden–Fowler neutral differential equations, Nonlinear Stud., 20 (2013), 1–8.
    [9] O. Moaaz, E. M. Elabbasy, A. Muhib, Oscillation criteria for even-order neutral differential equations with distributed deviating arguments, Adv. Differ. Equations, 297 (2019). doi: 10.1186/s13662-019-2240-z. doi: 10.1186/s13662-019-2240-z
    [10] T. Candan, Asymptotic properties of solutions of third-order nonlinear neutral dynamic equations, Adv. Differ. Equations, 2014 (2014), 35. doi: 10.1186/1687-1847-2014-35. doi: 10.1186/1687-1847-2014-35
    [11] O. Moaaz, New criteria for oscillation of nonlinear neutral differential equations, Adv. Differ. Eqs., 2019 (2019), 484. doi: 10.1186/s13662-019-2418-4. doi: 10.1186/s13662-019-2418-4
    [12] O. Moaaz, E. M. Elabbasy, B. Qaraad, An improved approach for studying oscillation of generalized Emden–Fowler neutral differential equation, J. Inequal. Appl., 69 (2020), doi: 10.1186/s13660-020-02332-w. doi: 10.1186/s13660-020-02332-w
    [13] O. Moaaz, B. Qaraad, R. El-Nabulsi, O. Bazighifan, New results for kneser solutions of third-order nonlinear neutral differential equations, Mathematics, 8 (2020), 686. doi: 10.3390/math8050686. doi: 10.3390/math8050686
    [14] B. Baculikova, J. Dzurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 52 (2010), 215–226. doi: 10.1016/j.mcm.2010.02.011. doi: 10.1016/j.mcm.2010.02.011
    [15] J. Dzurina, E. Thandapani, S. Tamilvanan, Oscillation of solutions to third-order half-linear neutral differential equations, Electron. J. Differ. Equations, 2012 (2012), 1–9. doi: 10.21136/MB.2013.143232. doi: 10.21136/MB.2013.143232
    [16] J. Graef, E. Tunc, S. Grace, Oscillatory and asymptotic behavior of a third-order nonlinear neutral differential equation, Opusc. Math., 37 (2017), 839–852. doi: 10.7494/OpMath.2017.37.6.839. doi: 10.7494/OpMath.2017.37.6.839
    [17] T. Li, C. Zhang, G. Xing, Oscillation of third-order neutral delay differential equations, Abstr. Appl. Anal., 2012 (2012). doi: 10.1155/2012/569201. doi: 10.1155/2012/569201
    [18] T. Li, Yu. V. Rogovchenko, On asymptotic behavior of solutions to higher-order sublinear Emden-Fowler delay differential equations, Appl. Math. Lett., 67 (2017), 53–59, doi.org/10.1016/j.aml.2016.11.007 doi: 10.1016/j.aml.2016.11.007
    [19] E. Thandapani, T. Li, On the oscillation of third-order quasi-linear neutral functional differential equations, Arch. Math., 47 (2011), 181–199.
    [20] C. Zhang, T. Li, B. Sun, E. Thandapani, On the oscillation of higher-order half-linear delay differential equations, Appl. Math. Lett., 24 (2011), 1618–1621, doi: 10.1016/j.aml.2011.04.015. doi: 10.1016/j.aml.2011.04.015
    [21] R. P. Agarwal, M. Bohner, T. Li, C. Zhang, Oscillation of third-order nonlinear delay differential equations, Taiwanese J. Math., 17 (2013), 545–558. doi: 10.11650/tjm.17.2013.2095. doi: 10.11650/tjm.17.2013.2095
    [22] G. E. Chatzarakis, S. R. Grace, I. Jadlovska, T. Li, E. Tunc, Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity, 2019 (2019), 1–7. doi: 10.1155/2019/5691758. doi: 10.1155/2019/5691758
    [23] J. Dzurina, S. R. Grace, I. Jadlovska, On nonexistence of Kneser solutions of third-order neutral delay differential equations, Appl. Math. Letter., 88 (2019), 193–200. doi: 10.1016/j.aml.2018.08.016. doi: 10.1016/j.aml.2018.08.016
    [24] B. Baculikova, J. Dzurina, Some properties of third-order differential equations with mixed arguments, J. Math., 2013 (2013). doi: 10.1155/2013/528279. doi: 10.1155/2013/528279
    [25] S. R. Grace, On the oscillations of mixed neutral equations, J. Math. Anal. Appl., 194 (1995), 377–388. doi: 10.1006/jmaa.1995.1306. doi: 10.1006/jmaa.1995.1306
    [26] E. Thandapani, R. Rama, Oscillatory behavior of solutions of certain third order mixed neutral differential equations, Tamkang J. Math., 44 (2013), 99–112. doi: 10.5556/J.TKJM.44.2013.1150. doi: 10.5556/J.TKJM.44.2013.1150
    [27] Z. Han, T. Li, C. Zhang, S. Sun, Oscillatory behavior of solutions of certain third-order mixed neutral functional differential equations, Bull. Malays. Math., 35 (2012), 611–620.
    [28] O. Moaaz, D. Chalishajar, O. Bazighifan, Asymptotic behavior of solutions of the third order nonlinear mixed type neutral differential equations, Mathematics., 8 (2020), 485. doi: 10.3390/math8040485. doi: 10.3390/math8040485
    [29] B. Baculikova, J. Dzurina, Oscillation of third-order neutral differential equations, Math. Comput. Model., 52 (2010), 215–226. doi: 10.1016/j.mcm.2010.02.011. doi: 10.1016/j.mcm.2010.02.011
    [30] S. Y. Zhang, Q. Wang, Oscillation of second-order nonlinear neutral dynamic equations on time scales, Appl. Math. Comput., 216 (2010), 2837–2848, doi: 10.1016/j.amc.2010.03.134. doi: 10.1016/j.amc.2010.03.134
    [31] E. M. Elabbasy, T. S. Hassan, O. Moaaz, Oscillation behavior of second-order nonlinear neutral differential equations with deviating arguments, Opusc. Math., 32 (2012), 719–730. doi: 10.7494/OpMath.2012.32.4.719. doi: 10.7494/OpMath.2012.32.4.719
    [32] C. Philos, On the existence of nonoscillatory solutions tending to zero at $\infty $for differential equations with positive delay, Arch. Math., 36 (1981), 168–178. doi: 10.1007/BF01223686. doi: 10.1007/BF01223686
    [33] Y. Kitamura, T. Kusano, Oscillation of first-order nonlinear differential equations with deviating arguments. Proc. Amer. Math., 78 (1980), 64–68. doi: 10.1090/S0002-9939-1980-0548086-5. doi: 10.1090/S0002-9939-1980-0548086-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2080) PDF downloads(109) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog