Research article Special Issues

Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia


  • Received: 10 September 2021 Revised: 24 October 2021 Accepted: 11 November 2021 Published: 07 January 2022
  • This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.

    Citation: Rui Huang, Xiwen Liao, Qiaochuan Li. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2424-2452. doi: 10.3934/mbe.2022112

    Related Papers:

  • This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis (GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through genome-wide screening, we identified 30 snoRNAs that were significantly associated with the prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can significantly divide AML patients into high- and low-risk groups. Through GSEA, snoRNAs co-expressed genes and DEGs functional enrichment analysis, we screened a large number of potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and other classic cancer-related signaling pathways. In the subsequent targeted drug screening using CMap, we also identified six drugs that can be used for AML targeted therapy, they were alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which may serve as a novel prognostic biomarker for AML.



    加载中


    [1] A. Khwaja, M. Bjorkholm, R. E. Gale, R. L. Levine, C. T. Jordan, G. Ehninger, et al., Acute myeloid leukaemia, Nat. Rev. Dis. Primers, 2 (2016), 16010. https://doi.org/10.1038/nrdp.2016.10 doi: 10.1038/nrdp.2016.10
    [2] E. Estey, H. Dohner, Acute myeloid leukaemia, Lancet, 368 (2006), 1894-1907. https://doi.org/10.1016/S0140-6736(06)69780-8 doi: 10.1016/S0140-6736(06)69780-8
    [3] L. Bullinger, K. Dohner, E. Bair, S. Frohling, R. F. Schlenk, R. Tibshirani, et al., Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia, N. Eng. J. Med., 350 (2004), 1605-1616. https://doi.org/10.1056/NEJMoa031046 doi: 10.1056/NEJMoa031046
    [4] E. Papaemmanuil, M. Gerstung, L. Bullinger, V. I. Gaidzik, P. Paschka, N. D. Roberts, et al., Genomic classification and prognosis in acute myeloid leukemia, N. Eng. J. Med., 374 (2016), 2209-2221. https://doi.org/10.1056/NEJMoa1516192 doi: 10.1056/NEJMoa1516192
    [5] C. C. Coombs, M. S. Tallman, R. L. Levine, Molecular therapy for acute myeloid leukaemia, Nat. Rev. Clin. Oncol., 13 (2016), 305-318. https://doi.org/10.1038/nrclinonc.2015.210 doi: 10.1038/nrclinonc.2015.210
    [6] J. W. Tyner, C. E. Tognon, D. Bottomly, B. Wilmot, S. E. Kurtz, S. L. Savage, et al., Functional genomic landscape of acute myeloid leukaemia, Nature, 562 (2018), 526-531. https://doi.org/10.1038/s41586-018-0623-z doi: 10.1038/s41586-018-0623-z
    [7] S. Abelson, G. Collord, S. W. K. Ng, O. Weissbrod, N. M. Cohen, E. Niemeyer, et al., Prediction of acute myeloid leukaemia risk in healthy individuals, Nature, 559 (2018), 400-404. https://doi.org/10.1038/s41586-018-0317-6 doi: 10.1038/s41586-018-0317-6
    [8] S. C. Meyer, R. L. Levine, Translational implications of somatic genomics in acute myeloid leukaemia, Lancet Oncol., 15 (2014), e382-394. https://doi.org/10.1016/S1470-2045(14)70008-7 doi: 10.1016/S1470-2045(14)70008-7
    [9] T. Bratkovic, J. Bozic, B. Rogelj, Functional diversity of small nucleolar RNAs, Nucleic Acids Res., 48 (2020), 1627-1651. https://doi.org/10.1093/nar/gkz1140 doi: 10.1093/nar/gkz1140
    [10] J. Ni, A. L. Tien, M. J. Fournier, Small nucleolar RNAs direct site-specific synthesis of pseudouridine in ribosomal RNA, Cell, 89 (1997), 565-573. https://doi.org/10.1016/s0092-8674(00)80238-x doi: 10.1016/s0092-8674(00)80238-x
    [11] V. Chikne, K. S. Rajan, M. Shalev-Benami, K. Decker, S. Cohen-Chalamish, H. Madmoni, et al., Small nucleolar RNAs controlling rRNA processing in Trypanosoma brucei, Nucleic Acids Res., 47 (2019), 2609-2629. https://doi.org/10.1093/nar/gky1287 doi: 10.1093/nar/gky1287
    [12] L. Xing, X. Zhang, X. Zhang, D. Tong, Expression scoring of a small-nucleolar-RNA signature identified by machine learning serves as a prognostic predictor for head and neck cancer, J. Cell Phys., 235 (2020), 8071-8084. https://doi.org/10.1002/jcp.29462 doi: 10.1002/jcp.29462
    [13] Y. Zhao, Y. Yan, R. Ma, X. Lv, L. Zhang, J. Wang, et al., Expression signature of six-snoRNA serves as novel non-invasive biomarker for diagnosis and prognosis prediction of renal clear cell carcinoma, J. Cell Mol. Med., 24 (2020), 2215-2228. https://doi.org/10.1111/jcmm.14886 doi: 10.1111/jcmm.14886
    [14] L. Huang, X. Z. Liang, Y. Deng, Y. B. Liang, X. Zhu, X. Y. Liang, et al., Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data, Pathol. Res. Pract., 216 (2020), 152937. https: //doi.org/10.1016/j.prp.2020.152937
    [15] J. Gong, Y. Li, C. J. Liu, Y. Xiang, C. Li, Y. Ye, et al., A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer, Cell Rep., 21 (2017), 1968-1981. https://doi.org/10.1016/j.celrep.2017.10.070 doi: 10.1016/j.celrep.2017.10.070
    [16] The Cancer Genome Atlas Research Network, Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia, N. Eng. J. Med., 368 (2013), 2059-2074. https://doi.org/10.1056/NEJMoa1301689
    [17] M. D. Robinson, D. J. McCarthy, G. K. Smyth, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, 26 (2010), 139-140. https://doi.org/10.1093/bioinformatics/btp616 doi: 10.1093/bioinformatics/btp616
    [18] R. Huang, X. Liao, Q. Li, Identification and validation of potential prognostic gene biomarkers for predicting survival in patients with acute myeloid leukemia, Oncol. Targets Ther., 10 (2017), 5243-5254. https://doi.org/10.2147/OTT.S147717 doi: 10.2147/OTT.S147717
    [19] X. Liao, X. Wang, K. Huang, C. Yang, T. Yu, C. Han, et al., Genome-scale analysis to identify prognostic microRNA biomarkers in patients with early stage pancreatic ductal adenocarcinoma after pancreaticoduodenectomy, Cancer Manage. Res., 10 (2018), 2537-2551. https://doi.org/10.2147/CMAR.S168351 doi: 10.2147/CMAR.S168351
    [20] X. Liao, X. Wang, K. Huang, C. Han, J. Deng, T. Yu, et al., Integrated analysis of competing endogenous RNA network revealing potential prognostic biomarkers of hepatocellular carcinoma, J. Cancer, 10 (2019), 3267-3283. https://doi.org/10.7150/jca.29986 doi: 10.7150/jca.29986
    [21] W. H. Da, B. T. Sherman, R. A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources, Nat. Protoc., 4 (2009), 44-57. https://doi.org/10.1038/nprot.2008.211 doi: 10.1038/nprot.2008.211
    [22] V. K. Mootha, C. M. Lindgren, K. F. Eriksson, A. Subramanian, S. Sihag, J. Lehar, et al., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes, Nat. Genet., 34 (2003), 267-273. https://doi.org/10.1038/ng1180 doi: 10.1038/ng1180
    [23] A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert, M. A. Gillette, et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proc. Nat. Acad. Sci. U. S. A., 102 (2005), 15545-15550. https://doi.org/10.1073/pnas.0506580102 doi: 10.1073/pnas.0506580102
    [24] A. Liberzon, C. Birger, H. Thorvaldsdottir, M. Ghandi, J. P. Mesirov, P. Tamayo, The molecular signatures database (MSigDB) hallmark gene set collection, Cell Syst., 1 (2015), 417-425. https://doi.org/10.1016/j.cels.2015.12.004 doi: 10.1016/j.cels.2015.12.004
    [25] A. Liberzon, A. Subramanian, R. Pinchback, H. Thorvaldsdottir, P. Tamayo, J. P. Mesirov, Molecular signatures database (MSigDB) 3.0, Bioinformatics, 27 (2011), 1739-1740. https://doi.org/10.1093/bioinformatics/btr260 doi: 10.1093/bioinformatics/btr260
    [26] J. Lamb, The connectivity map: a new tool for biomedical research, Nat. Rev. Cancer, 7 (2007), 54-60. https://doi.org/10.1038/nrc2044 doi: 10.1038/nrc2044
    [27] J. Lamb, E. D. Crawford, D. Peck, J. W. Modell, I. C. Blat, M. J. Wrobel, et al., The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease, Science, 313 (2006), 1929-1935. https://doi.org/10.1126/science.1132939 doi: 10.1126/science.1132939
    [28] E. W. Sayers, J. Beck, J. R. Brister, E. E. Bolton, K. Canese, D. C. Comeau, et al., Database resources of the national center for biotechnology information, Nucleic Acids Res., 48 (2020), D9-D16. https://doi.org/10.1093/nar/gkz899
    [29] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, et al., PubChem 2019 update: improved access to chemical data, Nucleic Acids Res., 47 (2019), D1102-D1109. https://doi.org/10.1093/nar/gky1033
    [30] M. Kuhn, D. Szklarczyk, A. Franceschini, M. Campillos, C. V. Mering, L. J. Jensen, et al., STITCH 2: an interaction network database for small molecules and proteins, Nucleic Acids Res., 38 (2010), D552-556. https://doi.org/10.1093/nar/gkp937
    [31] M. Kuhn, C. V. Mering, M. Campillos, L. J. Jensen, P. Bork, STITCH: interaction networks of chemicals and proteins, Nucleic Acids Res., 36 (2008), D684-688. https://doi.org/10.1093/nar/gkm795
    [32] D. Szklarczyk, A. Santos, C. V. Mering, L. J. Jensen, P. Bork, M. Kuhn, STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data, Nucleic Acids Res., 44 (2016), D380-384. https://doi.org/10.1093/nar/gkv1277
    [33] K. Yoshihara, M. Shahmoradgoli, E. Martinez, R. Vegesna, H. Kim, W. Torres-Garcia, et al., Inferring tumour purity and stromal and immune cell admixture from expression data, Nat. Commun., 4 (2013), 2612. https://doi.org/10.1038/ncomms3612
    [34] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 1711 (2018), 243-259. https://doi.org/10.1007/978-1-4939-7493-1_12 doi: 10.1007/978-1-4939-7493-1_12
    [35] Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, I. Golani, Controlling the false discovery rate in behavior genetics research, Behav. Brain Res., 125 (2001), 279-284. https://doi.org/10.1016/s0166-4328(01)00297-2 doi: 10.1016/s0166-4328(01)00297-2
    [36] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D. Ramage, et al., Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res., 13 (2003), 2498-2504. https://doi.org/10.1101/gr.1239303 doi: 10.1101/gr.1239303
    [37] D. Otasek, J. H. Morris, J. Boucas, A. R. Pico, B. Demchak, Cytoscape automation: empowering workflow-based network analysis, Genome Biol., 20 (2019), 185. https://doi.org/10.1186/s13059-019-1758-4
    [38] D. Ronchetti, L. Mosca, G. Cutrona, G. Tuana, M. Gentile, S. Fabris, et al., Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia, BMC Med. Genomics, 6 (2013), 27. https://doi.org/10.1186/1755-8794-6-27
    [39] E. Bignotti, S. Calza, R. A. Tassi, L. Zanotti, E. Bandiera, E. Sartori, et al., Identification of stably expressed reference small non-coding RNAs for microRNA quantification in high-grade serous ovarian carcinoma tissues, J. Cell Mol. Med., 20 (2016), 2341-2348. https://doi.org/10.1111/jcmm.12927 doi: 10.1111/jcmm.12927
    [40] L. H. Mao, S. Y. Chen, X. Q. Li, F. Xu, J. Lei, Q. L. Wang, et al., LncRNA-LALR1 upregulates small nucleolar RNA SNORD72 to promote growth and invasion of hepatocellular carcinoma, Aging (Albany NY), 12 (2020), 4527-4546. https://doi.org/10.18632/aging.102907 doi: 10.18632/aging.102907
    [41] F. G. Lafaille, O. Harschnitz, Y. S. Lee, P. Zhang, M. L. Hasek, G. Kerner, et al., Human SNORA31 variations impair cortical neuron-intrinsic immunity to HSV-1 and underlie herpes simplex encephalitis, Nat. Med., 25 (2019), 1873-1884. https://doi.org/10.1038/s41591-019-0672-3 doi: 10.1038/s41591-019-0672-3
    [42] H. Davanian, A. Balasiddaiah, R. Heymann, M. Sundstrom, P. Redenstrom, M. Silfverberg, et al., Ameloblastoma RNA profiling uncovers a distinct non-coding RNA signature, Oncotarget, 8 (2017), 4530-4542. https://doi.org/10.18632/oncotarget.13889 doi: 10.18632/oncotarget.13889
    [43] I. Nepstad, K. J. Hatfield, I. S. Gronningsaeter, H. Reikvam, The PI3K-Akt-mTOR signaling pathway in human acute myeloid leukemia (AML) cells, Int. J. Mol. Sci., 21 (2020), 2907. https://doi.org/10.3390/ijms21082907
    [44] L. Herschbein, J. L. Liesveld, Dueling for dual inhibition: Means to enhance effectiveness of PI3K/Akt/mTOR inhibitors in AML, Blood Rev., 32 (2018), 235-248. https://doi.org/10.1016/j.blre.2017.11.006 doi: 10.1016/j.blre.2017.11.006
    [45] J. Bertacchini, N. Heidari, L. Mediani, S. Capitani, M. Shahjahani, A. Ahmadzadeh, et al., Targeting PI3K/AKT/mTOR network for treatment of leukemia, Cell Mol. Life Sci., 72 (2015), 2337-2347. https://doi.org/10.1007/s00018-015-1867-5 doi: 10.1007/s00018-015-1867-5
    [46] Y. Su, X. Li, J. Ma, J. Zhao, S. Liu, G. Wang, et al., Targeting PI3K, mTOR, ERK and Bcl-2 signaling network shows superior antileukemic activity against AML ex vivo, Biochem. Pharmacol., 148 (2018), 13-26. https://doi.org/10.1016/j.bcp.2017.11.022 doi: 10.1016/j.bcp.2017.11.022
    [47] Y. Tabe, A. Tafuri, K. Sekihara, H. Yang, M. Konopleva, Inhibition of mTOR kinase as a therapeutic target for acute myeloid leukemia, Expert Opin. Ther. Targets, 21 (2017), 705-714. https://doi.org/10.1080/14728222.2017.1333600 doi: 10.1080/14728222.2017.1333600
    [48] N. Guo, M. Azadniv, M. Coppage, M. Nemer, J. Mendler, M. Becker, et al., Effects of neddylation and mTOR inhibition in acute myelogenous leukemia, Transl. Oncol., 12 (2019), 602-613. https://doi.org/10.1016/j.tranon.2019.01.001 doi: 10.1016/j.tranon.2019.01.001
    [49] J. Wu, G. Hu, Y. Dong, R. Ma, Z. Yu, S. Jiang, et al., Matrine induces Akt/mTOR signalling inhibition-mediated autophagy and apoptosis in acute myeloid leukaemia cells, J. Cell Mol. Med., 21 (2017), 1171-1181. https://doi.org/10.1111/jcmm.13049 doi: 10.1111/jcmm.13049
    [50] Y. Feng, L. Wu, mTOR up-regulation of PFKFB3 is essential for acute myeloid leukemia cell survival, Biochem. Biophys. Res. Commun., 483 (2017), 897-903.
    [51] J. Bertacchini, C. Frasson, F. Chiarini, D. D'Avella, B. Accordi, L. Anselmi, et al., Dual inhibition of PI3K/mTOR signaling in chemoresistant AML primary cells, Adv. Biol. Regul., 68 (2018), 2-9. https://doi.org/10.1016/j.jbior.2018.03.001 doi: 10.1016/j.jbior.2018.03.001
    [52] V. Stavropoulou, S. Kaspar, L. Brault, M. A. Sanders, S. Juge, S. Morettini, et al., MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome, Cancer Cell, 30 (2016), 43-58. https://doi.org/10.1016/j.ccell.2016.05.011 doi: 10.1016/j.ccell.2016.05.011
    [53] T. J. Zhang, J. D. Zhou, J. C. Ma, Z. Q. Deng, Z. Qian, D. M. Yao, et al., CDH1 (E-cadherin) expression independently affects clinical outcome in acute myeloid leukemia with normal cytogenetics, Clin. Chem. Lab. Med., 55 (2017), 123-131. https://doi.org/10.1515/cclm-2016-0205 doi: 10.1515/cclm-2016-0205
    [54] S. Wu, Y. Du, J. Beckford, H. Alachkar, Upregulation of the EMT marker vimentin is associated with poor clinical outcome in acute myeloid leukemia, J. Transl. Med., 16 (2018), 170. https://doi.org/10.1186/s12967-018-1539-y
    [55] L. Zhong, J. Chen, X. Huang, Y. Li, T. Jiang, Monitoring immunoglobulin heavy chain and T-cell receptor gene rearrangement in cfDNA as minimal residual disease detection for patients with acute myeloid leukemia, Oncol. Lett., 16 (2018), 2279-2288. https://doi.org/10.3892/ol.2018.8966 doi: 10.3892/ol.2018.8966
    [56] A. G. Chapuis, D. N. Egan, M. Bar, T. M. Schmitt, M. S. McAfee, K. G. Paulson, et al., T cell receptor gene therapy targeting WT1 prevents acute myeloid leukemia relapse post-transplant, Nat. Med., 25 (2019), 1064-1072. https://doi.org/10.1038/s41591-019-0472-9 doi: 10.1038/s41591-019-0472-9
    [57] H. J. Stauss, S. Thomas, M. Cesco-Gaspere, D. P. Hart, S. A. Xue, A. Holler, et al., WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells, Blood Cells Mol. Dis., 40 (2008), 113-116. https://doi.org/10.1016/j.bcmd.2007.06.018 doi: 10.1016/j.bcmd.2007.06.018
    [58] Y. Wang, A. V. Krivtsov, A. U. Sinha, T. E. North, W. Goessling, Z. Feng, et al., The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML, Science, 327 (2010), 1650-1653. https://doi.org/10.1126/science.1186624 doi: 10.1126/science.1186624
    [59] A. M. Gruszka, D. Valli, M. Alcalay, Wnt signalling in acute myeloid leukaemia, Cells, 8 (2019), 1403. https://doi.org/10.3390/cells8111403
    [60] F. J. Staal, F. Famili, L. G. Perez, K. Pike-Overzet, Aberrant Wnt signaling in leukemia, Cancers (Basel), 8 (2016), 78. https://doi.org/10.3390/cancers8090078
    [61] A. Valencia, J. Roman-Gomez, J. Cervera, E. Such, E. Barragan, P. Bolufer, et al., Wnt signaling pathway is epigenetically regulated by methylation of Wnt antagonists in acute myeloid leukemia, Leukemia, 23 (2009), 1658-1666. https://doi.org/10.1038/leu.2009.86 doi: 10.1038/leu.2009.86
    [62] E. A. Griffiths, S. D. Gore, C. Hooker, M. A. McDevitt, J. E. Karp, B. D. Smith, et al., Acute myeloid leukemia is characterized by Wnt pathway inhibitor promoter hypermethylation, Leuk. Lymphoma, 51 (2010), 1711-1719. https://doi.org/10.3109/10428194.2010.496505 doi: 10.3109/10428194.2010.496505
    [63] C. Gasparini, C. Celeghini, L. Monasta, G. Zauli, NF-kappaB pathways in hematological malignancies, Cell Mol. Life Sci., 71 (2014), 2083-2102. https://doi.org/10.1007/s00018-013-1545-4 doi: 10.1007/s00018-013-1545-4
    [64] M. Breccia, G. Alimena, NF-kappaB as a potential therapeutic target in myelodysplastic syndromes and acute myeloid leukemia, Expert Opin. Ther. Targets, 14 (2010), 1157-1176. https://doi.org/10.1517/14728222.2010.522570 doi: 10.1517/14728222.2010.522570
    [65] M. C. Bosman, J. J. Schuringa, E. Vellenga, Constitutive NF-kappaB activation in AML: Causes and treatment strategies, Crit. Rev. Oncol. Hematol., 98 (2016), 35-44. https://doi.org/10.1016/j.critrevonc.2015.10.001 doi: 10.1016/j.critrevonc.2015.10.001
    [66] J. Zhou, Y. Q. Ching, W. J. Chng, Aberrant nuclear factor-kappa B activity in acute myeloid leukemia: from molecular pathogenesis to therapeutic target, Oncotarget, 6 (2015), 5490-5500. https://doi.org/10.18632/oncotarget.3545 doi: 10.18632/oncotarget.3545
    [67] C. H. Choi, H. Xu, H. Bark, T. B. Lee, J. Yun, S. I. Kang, et al., Balance of NF-kappaB and p38 MAPK is a determinant of radiosensitivity of the AML-2 and its doxorubicin-resistant cell lines, Leuk. Res., 31 (2007), 1267-1276. https://doi.org/10.1016/j.leukres.2006.11.006 doi: 10.1016/j.leukres.2006.11.006
    [68] A. Volk, J. Li, J. Xin, D. You, J. Zhang, X. Liu, et al., Co-inhibition of NF-kappaB and JNK is synergistic in TNF-expressing human AML, J. Exp. Med., 211 (2014), 1093-1108. https://doi.org/10.1084/jem.20130990 doi: 10.1084/jem.20130990
    [69] M. C. Bosman, H. Schepers, J. Jaques, A. Z. Brouwers-Vos, W. J. Quax, J. J. Schuringa, et al., The TAK1-NF-kappaB axis as therapeutic target for AML, Blood, 124 (2014), 3130-3140. https://doi.org/10.1182/blood-2014-04-569780 doi: 10.1182/blood-2014-04-569780
    [70] M. Ma, X. Wang, N. Liu, F. Shan, Y. Feng, Low-dose naltrexone inhibits colorectal cancer progression and promotes apoptosis by increasing M1-type macrophages and activating the Bax/Bcl-2/caspase-3/PARP pathway, Int. Immunopharmacol., 83 (2020), 106388. https://doi.org/10.1016/j.intimp.2020.106388
    [71] N. Liu, M. Ma, N. Qu, R. Wang, H. Chen, F. Hu, et al., Low-dose naltrexone inhibits the epithelial-mesenchymal transition of cervical cancer cells in vitro and effects indirectly on tumor-associated macrophages in vivo, Int. Immunopharmacol., 86 (2020), 106718. https://doi.org/10.1016/j.intimp.2020.106718
    [72] A. C. Menezes, M. Carvalheiro, J. M. P. F. de Oliveira, A. Ascenso, H. Oliveira, Cytotoxic effect of the serotonergic drug 1-(1-Naphthyl)piperazine against melanoma cells, Toxicol. Int. Vitro, 47 (2018), 72-78. https://doi.org/10.1016/j.tiv.2017.11.011 doi: 10.1016/j.tiv.2017.11.011
    [73] G. G. Wei, L. Gao, Z. Y. Tang, P. Lin, L. B. Liang, J. J. Zeng, et al., Drug repositioning in head and neck squamous cell carcinoma: An integrated pathway analysis based on connectivity map and differential gene expression, Pathol. Res. Pract., 215 (2019), 152378. https://doi.org/10.1016/j.prp.2019.03.007
    [74] J. Takezawa, Y. Ishimi, K. Yamada, Proteasome inhibitors remarkably prevent translesion replication in cancer cells but not normal cells, Cancer Sci., 99 (2008), 863-871. https://doi.org/10.1111/j.1349-7006.2008.00764.x doi: 10.1111/j.1349-7006.2008.00764.x
    [75] P. G. Richardson, C. Mitsiades, T. Hideshima, K. C. Anderson, Bortezomib: proteasome inhibition as an effective anticancer therapy, Annu. Rev. Med., 57 (2006), 33-47. https://doi.org/10.1146/annurev.med.57.042905.122625 doi: 10.1146/annurev.med.57.042905.122625
    [76] I. Zavrski, C. Naujokat, K. Niemoller, C. Jakob, U. Heider, C. Langelotz, et al., Proteasome inhibitors induce growth inhibition and apoptosis in myeloma cell lines and in human bone marrow myeloma cells irrespective of chromosome 13 deletion, J. Cancer Res. Clin. Oncol., 129 (2003), 383-391. https://doi.org/10.1007/s00432-003-0454-6 doi: 10.1007/s00432-003-0454-6
    [77] W. X. Wang, B. H. Kong, P. Li, K. Song, X. Qu, B. X. Cui, et al., Effect of extracellular signal regulated kinase signal pathway on apoptosis induced by MG262 in ovarian cancer cells, Zhonghua Fu Chan Ke Za Zhi, 43 (2008), 690-694
    [78] J. Y. Wu, S. S. Lin, F. T. Hsu, J. G. Chung, Fluoxetine inhibits DNA repair and NF-kB-modulated metastatic potential in non-small cell lung cancer, Anticancer Res., 38 (2018), 5201-5210. https://doi.org/10.21873/anticanres.12843 doi: 10.21873/anticanres.12843
    [79] L. C. Hsu, H. F. Tu, F. T. Hsu, P. F. Yueh, I. T. Chiang, Beneficial effect of fluoxetine on anti-tumor progression on hepatocellular carcinoma and non-small cell lung cancer bearing animal model, Biomed. Pharmacother., 126 (2020), 110054. https://doi.org/10.1016/j.biopha.2020.110054
    [80] A. R. Mun, S. J. Lee, G. B. Kim, H. S. Kang, J. S. Kim, S. J. Kim, Fluoxetine-induced apoptosis in hepatocellular carcinoma cells, Anticancer Res., 33 (2013), 3691-3697
    [81] D. Sun, L. Zhu, Y. Zhao, Y. Jiang, L. Chen, Y. Yu, et al., Fluoxetine induces autophagic cell death via eEF2K-AMPK-mTOR-ULK complex axis in triple negative breast cancer, Cell Prolif., 51 (2018), e12402. https://doi.org/10.1111/cpr.12402
    [82] A. M. Kabel, A. A. Elkhoely, Ameliorative potential of fluoxetine/raloxifene combination on experimentally induced breast cancer, Tissue Cell, 48 (2016), 89-95. https://doi.org/10.1016/j.tice.2016.02.002 doi: 10.1016/j.tice.2016.02.002
    [83] M. Bowie, P. Pilie, J. Wulfkuhle, S. Lem, A. Hoffman, S. Desai, et al., Fluoxetine induces cytotoxic endoplasmic reticulum stress and autophagy in triple negative breast cancer, World J. Clin. Oncol., 6 (2015), 299-311. https://doi.org/10.5306/wjco.v6.i6.299 doi: 10.5306/wjco.v6.i6.299
    [84] T. M. Khing, W. W. Po, U. D. Sohn, Fluoxetine enhances anti-tumor activity of paclitaxel in gastric adenocarcinoma cells by triggering apoptosis and necroptosis, Anticancer Res., 39 (2019), 6155-6163. https://doi.org/10.21873/anticanres.13823 doi: 10.21873/anticanres.13823
    [85] P. P. Khin, W. W. Po, W. Thein, U. D. Sohn, Apoptotic effect of fluoxetine through the endoplasmic reticulum stress pathway in the human gastric cancer cell line AGS, Naunyn Schmiedebergs Arch. Pharmacol., 393 (2020), 537-549. https://doi.org/10.1007/s00210-019-01739-7 doi: 10.1007/s00210-019-01739-7
    [86] M. Marcinkute, S. Afshinjavid, A. A. Fatokun, F. A. Javid, Fluoxetine selectively induces p53-independent apoptosis in human colorectal cancer cells, Eur. J. Pharmacol., 857 (2019), 172441. https://doi.org/10.1016/j.ejphar.2019.172441
    [87] V. Kannen, S. B. Garcia, W. A. Silva, M. Gasser, R. Monch, E. J. Alho, et al., Oncostatic effects of fluoxetine in experimental colon cancer models, Cell Signal, 27 (2015), 1781-1788. https://doi.org/10.1016/j.cellsig.2015.05.008 doi: 10.1016/j.cellsig.2015.05.008
    [88] V. Kannen, H. Hintzsche, D. L. Zanette, W. A. Silva, S. B. Garcia, A. M. Waaga-Gasser, et al., Antiproliferative effects of fluoxetine on colon cancer cells and in a colonic carcinogen mouse model, PLoS One, 7 (2012), e50043. https://doi.org/10.1371/journal.pone.0050043
    [89] H. Stopper, S. B. Garcia, A. M. Waaga-Gasser, V. Kannen, Antidepressant fluoxetine and its potential against colon tumors, World J. Gastrointest. Oncol., 6 (2014), 11-21. https://doi.org/10.4251/wjgo.v6.i1.11 doi: 10.4251/wjgo.v6.i1.11
    [90] S. J. Koh, J. M. Kim, I. K. Kim, N. Kim, H. C. Jung, I. S. Song, et al., Fluoxetine inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice, Am. J. Physiol. Gastrointest. Liver Phys., 301 (2011), G9-19. https://doi.org/10.1152/ajpgi.00267.2010
    [91] K. H. Liu, S. T. Yang, Y. K. Lin, J. W. Lin, Y. H. Lee, J. Y. Wang, et al., Fluoxetine, an antidepressant, suppresses glioblastoma by evoking AMPAR-mediated calcium-dependent apoptosis, Oncotarget, 6 (2015), 5088-5101. https://doi.org/10.18632/oncotarget.3243 doi: 10.18632/oncotarget.3243
    [92] J. Ma, Y. R. Yang, W. Chen, M. H. Chen, H. Wang, X. D. Wang, et al., Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells, Oncol. Rep., 36 (2016), 676-684. https://doi.org/10.3892/or.2016.4860 doi: 10.3892/or.2016.4860
  • mbe-19-03-112-Supplementary.pdf
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3298) PDF downloads(161) Cited by(6)

Article outline

Figures and Tables

Figures(17)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog