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Abstract: This study mainly used The Cancer Genome Atlas (TCGA) RNA sequencing dataset to 
screen prognostic snoRNAs of acute myeloid leukemia (AML), and used for the construction of 
prognostic snoRNAs signature for AML. A total of 130 AML patients with RNA sequencing dataset 
were used for prognostic snoRNAs screenning. SnoRNAs co-expressed genes and differentially 
expressed genes (DEGs) were used for functional annotation, as well as gene set enrichment analysis 
(GSEA). Connectivity Map (CMap) also used for potential targeted drugs screening. Through 
genome-wide screening, we identified 30 snoRNAs that were significantly associated with the 
prognosis of AML. Then we used the step function to screen a prognostic signature composed of 14 
snoRNAs (SNORD72, SNORD38, U3, SNORA73B, SNORD79, SNORA73, SNORD12B, 
SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, SNORA31), which can 
significantly divide AML patients into high- and low-risk groups.  Through GSEA, snoRNAs 
co-expressed genes and DEGs functional enrichment analysis, we screened a large number of 
potential functional mechanisms of this prognostic signature in AML, such as phosphatidylinositol 
3-kinase-Akt, Wnt, epithelial to mesenchymal transition, T cell receptors, NF-kappa B, mTOR and 
other classic cancer-related signaling pathways. In the subsequent targeted drug screening using 
CMap, we also identified six drugs that can be used for AML targeted therapy, they were 
alimemazine, MG-262, fluoxetine, quipazine, naltrexone and oxybenzone. In conclusion, our current 
study was constructed an AML prognostic signature based on the 14 prognostic snoRNAs, which 
may serve as a novel prognostic biomarker for AML. 
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1. Introduction 

As a clonal malignant disease of hematopoietic system, acute myeloid leukemia (AML) is a 
group of diseases with high heterogeneity [1,2]. In recent years, with the development of 
immunology, cytogenetics and molecular biology, the biological characteristics of AML tumor cells 
have been more deeply understood and laid a foundation for the precise classification, diagnosis, 
prognosis and selection of the best treatment for AML [3–6]. Epidemiological studies have shown that 
environmental, occupational and genetic factors are closely related to the incidence of AML [7,8]. Small 
nucleolar RNA (snoRNA) is also a class of non-coding RNA, with a length of 60-30nt. As early 
studies found that snoRNA was mainly located in the nucleoli and was related to the processing and 
modification of rRNA, its function was relatively simple [9–11]. However, in recent years, more and 
more RNA sequencing (RNA-seq) dataset show that snoRNA shows a general trend of high 
expression in tumors, and some studies show that snoRNA is involved in the occurrence, progression 
and prognosis of tumors, and may be a kinds of new clinical biomarkers [12–14]. Gong et al. 
organized The Cancer Genome Atlas (TCGA) pan-cancer RNA-seq datasets and turned the analyzed 
snoRNA datasets into a visual webpage for researchers to analyze the relationship between snoRNAs 
and cancers [15]. Through literature search, we have not found any related research on the 
relationship between snoRNAs and AML prognosis. To fill in this research gap, we extracted the 
snoRNA dataset from the RNA-seq dataset of TCGA AML cohort, and used to screen for the 
prognostic snoRNAs of AML, and explored their related molecular mechanisms. This study mainly 
used TCGA RNA sequencing dataset to screen prognostic snoRNAs of AML, and used for the 
construction of prognostic signature for AML. 

2. Materials and methods 

2.1. Data acquisition and processing 

Level 3 RNA-seq dataset was downloaded from TCGA website (https://portal.gdc.cancer.gov), 
and the corresponding clinical parameters were obtained from University of California, Santa Cruz 
(UCSC) Xena (http://xena.ucsc.edu) [16]. Inclusion criteria for this study were that AML patients 
with complete prognostic parameters and RNA sequencing data sets would be included in the 
follow-up prognostic analysis of this study, otherwise they will be excluded. The raw RNA-seq 
dataset was normalized with edgeR [17]. SnoRNA is included in the RNA-seq dataset. We download 
genome annotation files from the Ensembl website (http://asia.ensembl.org/index.html) to annotate 
the genes and snoRNAs in the RNA-seq matrix. Then separate the snoRNAs from the RNA-seq 
matrix according to the annotated file. Prognostic snoRNAs were identified by the multivariate Cox 
proportional hazards regression model using the survival package in the R platform. Then we used 
step function and Cox model to screen the optimal prognostic signature in R platform. The 
calculation formula of prognostic signature is as follows: risk score = ExpsnoRNA1 × βsnoRNA1 + 
ExpsnoRNA2 × βsnoRNA2 + … ExpsnoRNAn × βsnoRNAn (Exp: expression value) [18–20]. The 
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time-dependent receiver operating characteristic curve is realized by the survivalROC package in the 
R platform. The nomogram was implemented by the rms package of R platform. Since all datasets of 
gastric cancer included in the present study were downloaded from open access public database, and 
the authors were not involved in any animal or human experiments. Therefore, additional approval 
by an Ethics Committee was not needed. 

2.2. Functional enrichment analysis 

The co-expression genes screening of snoRNAs are realized by Cor function of R platform. 
Pearson correlation coefficient |r| > 0.4 and P value < 0.05 was identified as the co-expressed genes 
of snoRNA. Functional enrichment analysis was performed using Database for Annotation, 
Visualization, and Integrated Discovery v6.8 (DAVID v6.8, https://david.ncifcrf.gov/home.jsp) [21]. 
We also used the gene set enrichment analysis (GSEA) approach to perform differential functional 
enrichment analysis for AML patients between high-risk and low-risk phenotypes. Gene set database 
of GSEA were used the c2 (curated gene sets: c2.all.v7.0.symbols.gmt)and c5 (gene ontology gene 
sets:  c5.all.v7.0.symbols.gmt) gene set, which were downloaded from the molecular signatures 
database [22–25]. GSEA results of | normalized enrichment score (NES)| > 1, P value < 0.05 and 
false discovery rate (FDR) < 0.25 were considered to be statistically significant. We then used edgeR 
packages to screen differentially expressed genes (DEGs) between AML patients with high- and 
low-risk phenotypes. Genes with |log2 fold change (FC)| > 2, P value < 0.05 and FDR < 0.05 were 
identified as DEGs. After screening DEGs, we also use these DEGs and Connectivity Map (CMap: 
https://portals.broadinstitute.org/cmap/) online analysis tools to screen potential AML targeted 
therapeutic drugs [26,27]. The chemical formula of the drug is obtained from the PubChem website 
(https://pubchem.ncbi.nlm.nih.gov) [28,29], and the gene-drug interaction network were obtained 
from the STITCH website (http://stitch.embl.de/) [30–32]. We further used the Estimation of 

STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) method 
to score the immune cells and stromal cells in the tumor microenvironment [33]. CIBERSORT was 
used for immune cell infiltration analysis [34].  

2.3. Statistical analysis 

The grouping of high- and low-expression groups are based on the median expression value of 
each gene. In this study, FDR was calculated in strict accordance with the Benjamini-Hochberg 
program [35]. Volcano plot and heat map are drawn in R platform by ggplot2 package in the R 
platform (Version 3.6.2, https://www.r-project.org) and interactive network diagrams are drawn using 
Cytoscape software (Version 3.6.1, https://cytoscape.org) [36,37]. P < 0.05 was considered to be 
statistically significant. 

3. Results 

3.1. Pronostic snoRNAs screening 

The flow chart of this study is shown in Figure 1. There were 130 AML patients of TCGA 
cohort were included into our current study, the clinical parameters were shown in Table 1. In the 
obtained clinical parameters, we found that age and french american british (FAB) morphology type 
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were significantly related to the prognosis of AML. Subsequently, we also conducted survival 
analysis based on ALP classification and found that APL patients had a better prognosis than 
non-APL patients (P = 0.003, Table 1). We included these two parameters in the subsequent 
multivariate Cox proportional hazard regression model for adjustment. A total of 940 snoRNAs were 
derived from the RNA-seq dataset. After normalization by edgeR, we finally obtained 354 snoRNAs 
with an average value greater than 1 for subsequent survival analysis. By using the survival package 
of the R platform, we screened a total of 30 snoRNAs in the TCGA cohort that were significantly 
related to the prognosis of AML (Figure 2 and Table S1).  

 

Figure 1. Flow chart of the present study. 
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Table 1. Clinical parameters of 130 AML patients in TCGA cohort. 

Variables Events/total (n = 
130) 

MST 
(days) 

HR (95% CI) Log-rank 
P 

Age (years) 
 

< 0.0001 
≤ 65 48/96 822 1 
> 65 30/34 214 3.236(2.022–5.1

80) 
Gender 

 
0.916 

Female 36/60 671 1 
Male 42/70 577 0.976(0.625–1.5

26) 
Cytogenetics abnormality § 0.19 
Normal 42/61 518 1 
Complex 8/15 366 0.984 

(0.460–2.105) 
Others 21/42 945 0.625(0.369–1.0

56) 
FAB morphology type 0.029 
M0 7/12 792 1 
M1 19/30 731 1.438(0.604–3.4

24) 
M2 19/32 486 1.240(0.520–2.9

55) 
M3 3/14 NA 0.278(0.072–1.0

83) 
M4 19/27 580 1.451(0.609–3.4

58) 
M5 8/12 214 2.027(0.728–5.6

44) 
M6 + M7 3/3 304 3.361(0.851–13.

272) 
FAB morphology type (APL 
classification) 

0.003 

APL 3/14 NA 1 
Non-APL 75/116 518 4.965(1.554–15.

867) 
Risk score < 0.0001 
Low risk 24/65 1706 1 
High risk 54/65 245 6.761(3.911–11.

687) 
Notes: §Information of cytogenetics abnormality was unavailable in 12 patients.   
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Figure 2. Volcano plot of prognostic snoRNAs screening. 

3.2. Prognostic signature and nomogram construction 

Then we used the step function in the R platform to screen the optimal prognostic signature 
model, and finally screened out 14 prognostic snoRNAs combinations in the TCGA AML cohort, 
which can significantly divide AML patients into high-risk and low-risk patients (Figure 3A–C, 
Table 1, log-rank P < 0.0001, median survival time of low risk vs. high risk = 1706 vs. 245 days). 
These 14 prognostic snoRNAs were SNORD72, SNORD38, U3, SNORA73B, SNORD79, 
SNORA73, SNORD12B, SNORA74, SNORD116-12, SNORA65, SNORA14, snoU13, SNORA75, 
SNORA31. The risk score model formula is as follows: risk score = ExpSNORD72 × 0.452 + 
ExpSNORD38 × 0.310 + ExpU3 × (-0.203) + ExpSNORA73B × 0.527 + ExpSNORD79 × (-0.288) + ExpSNORA73 

× (-0.712) + ExpSNORD12B × (-0.608) + ExpSNORA74 × 0.226 + ExpSNORD116-12 × (-0.540) + ExpSNORA65 × 
1.227 + ExpSNORA14 × 0.290 + ExpsnoU13 × 0.756 + ExpSNORA75 × 0.225 + ExpSNORA31 × (-0.282). After 
correcting age and FAB morphology type in the multivariate Cox proportional hazards regression 
model, we found that AML patients with high risk score had a significantly increased risk of death 
than these with lower risks (adjusted P < 0.0001, adjusted hazard ratio = 5.967, 95%  confidence 
interval = 3.319-10.728). The time-dependent ROC curve indicated that this prognostic signature had 
a high accuracy in predicting survival for AML patients [all area under the curve (AUC) were greater 
than 0.8], especially the highest accuracy in predicting 5-year survival for AML patients, which the 
AUC was 0.940 (Figure 3C). The kaplan-meier survival curves of the 14 snoRNAs that make up the 
prognostic signature were summarized in Figure 4A–N. Then we constructed the AML prognosis 
nomogram according to the risk value and phenotype of risk score, we found that the risk score 
contributed the most to AML prognosis than other clinical parameters (Figure 5A,B).  
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Figure 3. Prognostic signature of fourteen prognostic snoRNAs in AML overall survival. 
(A) Survival distribution plot of fourteen prognostic snoRNAs and AML; (B) 
Kaplan-Meier curve of the prognostic signature; (C) Time-dependent ROC curve of the 
prognostic signature. 
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Figure 4. Kaplan-Meier curve of fourteen prognostic snoRNAs in AML. (A)SNORA14; 
(B) SNORA31; (C) SNORA65; (D) SNORA73; (E) SNORA73B; (F) SNORA74; (G) 
SNORA75; (H) SNORA12B; (I) SNORD38; (J) SNORD72; (K) SNORD79; (L) 
SNORD116-12; (M) snoU13; (N) U3. 
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Figure 5. Nomogram of the risk score in AML overall survival. (A) Nomogram of low- 
and high-risk score phenotypes in AML; (B) Nomogram of the risk score in AML.  

3.3. Functional enrichment analysis 

In order to further understand the role of this prognostic signature in AML, we used RNA-seq 
dataset to screen the co-expression protein coding genes (PCGs) for snoRNAs, and then used for 
functional enrichment. Through co-expression analysis, we obtained a total of 1971 snoRNA-PCG 
co-expression interaction pairs (Figure 6, Table S2). Through DAVID v6.8 functional enrichment, we 
found that these snoRNAs co-expressed PCGs can be significantly enriched in protein SUMOylation, 
protein ubiquitination, cellular response to DNA damage stimulus, DNA repair, positive regulation of 
canonical Wnt signaling pathway, negative regulation of target of rapamycin (TOR) signaling, cell 
cycle, regulation of transforming growth factor beta receptor signaling pathway, cyclin-dependent 
protein serine/threonine kinase regulator activity, positive regulation of I-kappaB kinase/NF-kappaB 
signaling and negative regulation of autophagy (Figure 7, Table S3). We then used the survival 
package of the R platform to perform a prognosis analysis of these snoRNAs co-expressed PCGs 
using a multivariate Cox proportional hazard regression model. In total, we obtained 382 snoRNAs 
co-expressed PCGs that were significantly related to the prognosis of AML (Figure 8A, Table S4). 
The top three genes with the most significant P values are phosphodiesterase 3B (PDE3B), branched 
chain keto acid dehydrogenase kinase (BCKDK) and centromere protein C (CENPC). Kaplan-meier 
survival curves of these three genes were shown in Figure 8B–D. 
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Figure 6. SnoRNA-gene co-expressed interaction networks of fourteen prognostic 
snoRNAs in AML. 

 

Figure 7. Functional enrichment results of the fourteen prognostic snoRNAs co-expressed genes.
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Figure 8. Survival analysis results of the fourteen prognostic snoRNAs co-expressed 
genes in AML. (A) Volcano plot of the survival results;(B) Kaplan-Meier curve of 
PDE3B; (C) Kaplan-Meier curve of BCKDK; (D) Kaplan-Meier curve of CENPC. 

Then we also used GSEA to enrich the differential biological functions and pathways between 
high- and low-risk score phenotypes. We used c2 reference data set for pathway enrichment analysis 
in GSEA, and we found that high-risk phenotypes could be significantly enriched in AML cluster 15, 
metastasis model up, apoptosis via trail dn, mitogen-activated protein kinase 14 (MAPK14) targets 
up, Th1/Th2 pathway, transforming growth factor (TGF) beta receptor signaling in epithelial to 
mesenchymal transition (EMT), T to natural killer up, janus kinase 2 (JAK2) targets up, IL6 
signaling up, tumor protein 53 (TP53) targets up, Akt1 signaling via mTOR up, vascular endothelial 
growth factor A (VEGF) signaling pathway, CD40 signaling up, Rho pathway, T cell receptors (TCR) 
pathway, and P38/Mikk3/6 pathway (Figure 9A–P, Table S5). While GSEA using c5 reference data 
set were significantly enriched in positive regulation of humoral immune response, regulation of 
lymphocyte apoptotic process, negative regulation of leukocyte cell-cell adhesion, regulation of 
lymphocyte differentiation, B cell proliferation, positive regulation of cell-cell adhesion, regulation 
of cell-cell adhesion, JUN N-terminal kinase (JNK) cascade, regulation of immunoglobulin 
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production, regulation of myeloid leukocyte differentiation, regulation of lymphocyte migration, and 
lymphocyte homeostasis (Figure 10A–L, Table S6). 

 

Figure 9. GSEA analysis results of the low- and high-risk score phenotypes in AML 
using c2 reference gene set. (A) AML cluster 15; (B) metastasis model up; (C) apoptosis 
via trail dn; (D) MAPK14 targets up; (E) Th1/Th2 pathway; (F) TGF beta receptor 
signaling in epithelial to mesenchymal transition (EMT); (G) T to natural killer up; (H) 
JAK2 targets up; (I) IL6 signaling up; (J) TP53 targets up; (K) Akt1 signaling via mTOR 
up; (L) VEGF signaling pathway; (M) CD40 signaling up; (N) Rho pathway; (O) TCR 
pathway; (P) P38/MIKK3/6 pathway. 
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Figure 10. GSEA analysis results of the low- and high-risk score phenotypes in AML 
using c5 reference gene set. (A) positive regulation of humoral immune response; (B) 
regulation of lymphocyte apoptotic process; (C) negative regulation of leukocyte cell-cell 
adhesion; (D) regulation of lymphocyte differentiation; (E) B cell proliferation; (F) 
positive regulation of cell-cell adhesion; (G) regulation of cell-cell adhesion; (H) JNK 
cascade; (I) regulation of immunoglobulin production; (J) regulation of myeloid leukocyte 
differentiation; (K) regulation of lymphocyte migration; (L) lymphocyte homeostasis. 
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In order to further understand the differential biological functions and pathways between high- 
and low-risk phenotypes, we also screened for differentially expressed genes between the two 
phenotypes and performed functional enrichment. By screening, we obtained a total of 185 DEGs 
between high- and low-risk phenotypes (Figure 11, Table S7 and Figure S1). Through functional 
enrichment, we found that these DEGs can be significantly enriched in cellular response to retinoic 
acid, positive regulation of cell proliferation, gamma-aminobutyric acid type A receptor subunit 
alpha1 (GABA-A) receptor complex, cell junction, cell surface receptor signaling pathway, ephrin 
receptor signaling pathway, gamma-aminobutyric acid signaling pathway, extracellular matrix 
(ECM)-receptor interaction, phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway and 
proteoglycans in cancer (Figure 12, Table S8). We also use these DEGs to conduct potential AML 
targeted drug screening in CMap. We have screened a total of six small molecule drugs that may be 
potential targeted therapies for AML. These six drugs are alimemazine, MG-262, fluoxetine, 
quipazine, naltrexone and oxybenzone (Figure 13A–G). In the analysis of the Drug-gene interaction 
network constructed by STITCH, we found that fluoxetine can play a targeted therapeutic role in 
AML by participating in the regulation of solute carrier family 6 member 2 (SLC6A2) and 
cytochrome P450 family 2 subfamily C member 9 (CYP2C9) (Figure 14). In addition, Quipazine is 
also involved in the regulation of SLC6A2 in AML (Figure 14).  In addition, we also found that 
naltrexone plays a targeted therapeutic role in AML through  gamma-aminobutyric acid type A 
receptor subunit alpha2 (GABRA2) and oxybenzone through potassium voltage-gated channel 
interacting protein 1 (KCNIP1) (Figure 14). Finally, we used multivariate Cox proportional hazard 
regression model to analyze the prognostic values of these DEGs in R platform, and we screened a 
total of 28 DEGs that were significantly related to the prognosis of AML (Figure 15A, Table S9). The 
top three genes with the most significant P values are matrix metallopeptidase 7 (MMP7) (Figure 
15B), SIX homeobox 4 (SIX4) (Figure 15C) and gamma-aminobutyric acid type A receptor subunit 
epsilon (GABRE) (Figure 15D).  
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Figure 11. Volcano plot of the differentially expressed genes between the low- and 
high-risk score phenotypes of AML. 

 

Figure 12. Functional enrichment results of the differentially expressed genes between 
the low- and high-risk score phenotypes of AML. 
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Figure 13. CMap analysis results of the low- and high-risk score phenotypes in AML. (A) 
The chemical structure of alimemazine; (B) The chemical structure of MG-262; (C) The 
chemical structure of fluoxetine; (D) The chemical structure of quipazine; (E) The 
chemical structure of naltrexone; (F) The chemical structure of oxybenzone; (G) The list 
of CMap analysis results. 
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Figure 14. Drug-gene interaction networks of six drugs. 
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Figure 15. Survival analysis results of the differentially expressed genes between the 
low- and high-risk score phenotypes of AML. (A) Volcano plot of the survival results; (B) 
Kaplan-Meier curve of MMP7; (C) Kaplan-Meier curve of SIX4; (D) Kaplan-Meier 
curve of GABRE. 

3.4. Immune microenvironment and infiltration analysis 

By calculating the scores of stromal cells and immune cells in the immune microenvironment, 
we found that there are significant differences in AML patients at different risks in their immune and 
ESTIMATE scores, and AML patients with high risk score have higher immune scores and 
ESTIMATE scores (Figure 16A–C).  No significant difference was observed in the stromal score 
between the two risk score of AML patients (Figure 16A). By ploting a histogram of immune cell 
infiltration in AML patients, we can clearly understand the proportion of immune cells in AML 
patients (Figure 17A). Furthermore, we observed that there is significant differences in mast cell 
resting infiltration between AML patients with different risk score (Figure 17B). 
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Figure 16. Scatter plot of immune microenvironment score in TCGA AML cohort. (A) 
Stromal score; (B) Immune score; (C) ESTIMATE score. 

 

Figure 17. Demonstration of analysis of immune cell infiltration results in TCGA AML 
cohort. (A) Histogram of the proportion of immune cells; (B) Violin plot of immune cells 
between AML patients with different risk scores. 

4. Discussion 

With the discovery of high-throughput sequencing technology, more and more studies have 
shown that snoRNAs is closely related to the prognosis of cancers. Huang et al. identified several 
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snoRNAs significantly related to the prognosis of colon adenocarcinoma by analyzing the TCGA 
RNA-seq dataset, and constructed a prognosis signature consisting of two snoRNAs expressions [14]. 
Similar to the research by Huang et al., Xing et al. identified snoRNAs of 113 snoRNAs significantly 
related to the prognosis of HNSC by using the RNA-seq dataset of the TCGA head and neck 
squamous cell carcinoma (HNSC) cohort, and used the least absolute shrinkage and selection 
operator (LASSO) regression to construct a prognostic signature that included 5 prognostic snoRNAs, 
which can significantly divide HNSC patients into high- and low-risk phenotypes [12]. In addition, 
Zhao et al. used TCGA ccRCC RNA-seq dataset to identify a 6snoRNA signature for ccRCC 
diagnosis and prognosis prediction [13]. Based on the above research, this study used the TCGA 
sequencing dataset to screen snoRNAs related to AML prognosis. We identified a total of 30 
snoRNAs that were significantly related to the prognosis of AML, and constructed an AML 
prognostic signature containing 14 prognostic snoRNAs based on the above results, which can 
accurately predict the 5-year survival of AML patients.  

For the above 14 prognostic snoRNAs, some of them have also been reported to be closely 
related to cancers in previous studies. Ronchetti et al. screened the expression profile of 
sno/scaRNAs in patients with chronic lymphocytic leukemia (CLL) and found that SNORA31 is 
down-regulated in CLL, which may be a new biomarker related to CLL [38]. Bignotti et al. found 
that SNORD72 was significantly upregulated in high-grade serous carcinoma tissues compared with 
normal control tissues [39]. Mao et al. found that SNORD72 is significantly overexpressed in 
hepatocellular carcinoma (HCC) tumor tissues, and it plays an oncogene role in HCC. High 
expression of SNORD72 can significantly promote HCC cell proliferation, colony formation and 
invasion [40]. Human SNORA31 variations can affect the innate immunity of the central nervous system 
to herpes simplex virus-1, thereby affecting the occurrence of herpes simplex encephalitis [41]. Davanian 
et al found that SNORA65 was significantly up-regulated in Ameloblastoma tissue, and the 
expression level was positively correlated with the tumor size [42].  

For the function of the above 14 snoRNAs prognostic signature in AML, we found that this 
prognostic signature is closely related to some classic tumor-related signaling pathways, including 
PI3K-Akt, Wnt, EMT, TCR, NF-κB, mTOR signaling pathways. The PI3K-Akt-mTOR pathway is 
one of the abnormally up-regulated signaling pathways in cancers, including AML. The increased 
activity in the PI3K-Akt-mTOR pathway is a poor prognostic indicator of AML. Pharmacological 
targeting of the PI3K-Akt-mTOR pathway with specific inhibitors can inhibit the growth of AML 
cells [43–45]. In addition, targeted inhibition of PI3K, mTOR, Erk and Bcl-2 signaling network can 
also increase the apoptosis of AML, which may be a potential AML targeted therapy strategy [46]. 
Targeted inhibition of mTOR kinase can be used as a potential strategy for the treatment of AML, 
and may also affect the resistance of AML to chemotherapy drugs [47]. Targeted inhibition of mTOR 
in AML cells can significantly reduce cell metabolic activity, block the cell cycle, and induce 
apoptosis, which may be a potential therapeutic strategy for AML [48–51]. In the process of tumor 
cell development and development, EMT will also cause tumor cells to lose some of the 
characteristics of epithelial cells to obtain some of the characteristics of interstitial cells, and also 
allow tumor cells to acquire stronger invasion and detachment capabilities. Targeted inhibition of 
EMT in AML cells can significantly reduce the invasiveness of AML, and EMT-related genes are 
significantly associated with poor prognosis of AML [52]. Zhang et al. found that EMT-related gene 
E-cadherin is lowly expressed in AML, and ROC analysis suggests that it can be used as a diagnostic 
biomarker for AML. At the same time, low expression of E-cadherin is also significantly associated 
with the poor prognosis of AML [53]. High expression of EMT-related gene vimentin is significantly 
associated with poor prognosis of AML [54]. Zhong et al showed that TCR gene rearrangement can 
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be used to monitor minimal residual disease in AML patients [55]. Previous studies showed that 
WT1-specific T cell receptor can be used for the treatment of AML, and can prevent the recurrence 
of AML after hematopoietic cell transplantation [56,57]. Previous studies have shown that Wnt 
signaling pathway is necessary to maintain the stem cell characteristics of AML[58,59], and 
dysregulation of Wnt signaling can alter the microenvironment of AML [60]. Wnt signaling pathway 
related genes are significantly associated with AML prognosis, and Wnt signaling pathway can be 
used as a target for AML therapy [59]. Inhibition of the Wnt signaling pathway by the use of Wnt 
antagonists in AML induces abnormal methylation in AML cells, which is closely associated with 
recurrence and death of AML patients [61,62]. NF-κB signaling pathway is closely related to cancer 
cell apoptosis, tumor genesis, angiogenesis, growth, tumor immunity and metastasis. Monotherapy or 
combination therapy with NF-κB inhibitors aimed at preventing NF-κB activity and inducing 
apoptosis can be used as a strategy for AML treatment [63–66]. Choi et al.'s research indicates that 
the instability of the NF-κB and p38/MAPK signaling pathway is a key factor in the resistance of 
AML cells to radiotherapy and doxorubicin [67]. Co-suppression of NF-κB and c-Jun N-terminal 
kinase can significantly increase the sensitivity of drug therapy in tumor necrosis factor-expressing 
AML cells [68]. The research of Bosman et al. showed that transforming growth factor-b activated kinase 
1 (TAK1) is significantly upregulated in AML, and its inhibitor can induce AML cell apoptosis by 
blocking NFKB [69]. Therefore, TAK1-NF-kB axis can be used as therapeutic target for AML [69].  

For the six small molecule drugs screened in this study, we found that some drugs have been 
reported to be closely related to tumors in previous studies. Ma et al.’s research suggests that 
low-dose naltrexone can participate in the regulation of Bax/Bcl-2/caspase-3/PARP signaling axis 
through M1 macrophages, thereby exerting a tumor suppressive effect in colorectal cancer cells [70]. 
Liu et al.’s study also reported that low-dose naltrexone can exert anti-cancer effects by inhibiting 
EMT of Hela cells [71]. 1-Naphthyl, a derivative of quipazine, can exert a tumor suppressive effect 
by inducing oxidative stress in melanoma cells [72]. MG-262, a proteasome inhibitor, which was 
reported by Wei et al. through CMap analysis and found that MG-262 may be a targeted therapeutic 
drug for head and neck squamous cell carcinoma [73]. Transcription replication will become an 
effective target of the proteasome inhibitor MG-262 in cancer chemotherapy, which can enhance the 
sensitivity of cancer cells to cisplatin, but has little effect on normal cells [74]. Proteasome inhibitors 
are a new class of anticancer drugs that have recently been introduced into the clinical treatment of 
multiple myeloma [75]. Zavrski et al. found that proteasome inhibitors, including MG-262, can 
significantly inhibit the growth of myeloma cells, block the cell cycle and induce apoptosis by using 
several proteasome inhibitors to intervene in human myeloma cell lines, respectively [76]. Wang et 
al.’s research suggests that MG-262 can induce ovarian cancer cell apoptosis, inhibit ovarian cancer 
cell proliferation and angiogenesis through the Erk signaling pathway [77]. Fluoxetine has been 
reported to have anti-tumor effects. Wu et al. found that fluoxetine can induce non-small cell lung 
cancer (NSCLC) cell apoptosis and inhibit DNA repair and metastatic potential by activating the 
NF-κB signaling pathway [78]. Hsu et al. confirmed via in vivo experiments that fluoxetine in 
hepatocellular carcinoma (HCC) and NSCLC can significantly reduce tumor cell proliferation, 
induce apoptosis, and regulate the expression of invasion-related proteins. Its potential mechanism of 
action in two tumors may be by blocking the activation of Akt/NF-κB or Erk/NF-κB signaling 
pathways [79]. MUN et al. also supported the conclusion that Fluoxetine plays an anti-tumor role in 
HCC [80]. Sun et al.’s findings suggest that fluoxetine can induce apoptosis and autophagic cell 
death of Triple negative breast cancer (TNBC) cells by inhibiting eEF2K and activating the 
AMPK-mTOR-ULK complex axis, which can be used as a potential TNBC treatment strategy [81]. 
Kabel et al.’s study also supports the conclusion that fluoxetine has an anti-cancer effect in breast 
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cancer [82]. Fluoxetine also can exert tumor suppressive effect by inducing cytotoxic endoplasmic 
reticulum stress and autophagy in TNBC [83]. Khing et al found that fluoxetine can significantly 
enhance the antiproliferative effect of paclitaxel in gastric adenocarcinoma cells, and the combined 
effect of the two drugs can significantly induce apoptosis and necroptosis [84]. The study of Khin et 
al. also suggested that fluoxetine has an anti-tumor effect in gastric cancer (GC), which induces 
apoptosis of GC cells through endoplasmic reticulum stress pathway [85]. Fluoxetine has also been 
reported that its antitumor effect in colorectal cancer cells mainly induces apoptosis and DNA 
breakage of colorectal cancer cells through its cytotoxic effect, and its mechanism of inducing 
apoptosis is p53-independent [86]. Kannen et al. found that fluoxetine can significantly affect the 
energy production of colorectal cancer tumor cells, and can also induce cell cycle arrest and inhibit 
cell proliferation, resulting in tumors under hypoxic conditions. Then, hypoxia can lead to reduced 
microvessel formation and reduced tumor size in the tumor tissue of the colorectal cancer xenograft 
model [87]. Several studies have also reported that Fluoxetine has antitumor effects in colorectal 
cancer [88,89]. Koh et al found that Fluoxetine can reduce the risk of experimental colitis-associated 
colon cancer in mice by participating in the regulation of NF-kB signaling pathway [90]. Fluoxetine 
can significantly inhibit the growth of glioblastoma and exert anticancer effect [91,92]. Although 
fluoxetine exerts antitumor effects in a variety of solid tumors, however, its role on AML has not 
been reported. Our study is the first to report that fluoxetine may be used as a potential AML targeted 
therapy drug based on in silico analysis. Through literature search, we have not found any reports 
about anti-tumor effects of alimemazine and oxybenzone.  

This study has some disadvantages that need to be clarified. First, the AML cohort in this study 
is derived from the TCGA single center cohort, and the sample size is small. Our results still need to 
be verified in a multi-center cohorts with large sample size. Secondly, many clinical parameters are 
unavailable due to dataset from TCGA. Third, because this study is a in silico analysis, we used 
genome-wide dataset to screen out a large number of potential functional mechanisms and targeted 
therapeutic drugs related to AML, but our results still lacks in vivo and in vitro functional 
experimental verification. Despite the aforementioned disadvantages, the advantage of this study is 
that we are the first to use genome-wide data set to screen prognostic snoRNAs for AML. This study 
explores the genome of AML from a new perspective, which can provide a theoretical basis for 
future research. At the same time, this study also identified six potential targeted drugs for AML. 
Once these drugs are verified in vivo and in vitro experiments, they can also help in the future 
treatment of AML. Most importantly, this study also constructed an AML prognostic signature and 
nomogram model based on snoRNAs expression, which can provide new biomarkers for AML.  

5. Conclusions 

In conclusion, our current study was constructed an AML prognostic signature based on 14 
snoRNAs, and a nomogram model for predicting AML prognosis was constructed based on this 
signature. Through GSEA, snoRNAs co-expressed PCGs and DEGs functional enrichment 
analysis, we screened a large number of potential functional mechanisms of this prognostic 
signature in AML. In the subsequent targeted drug screening, we also identified six 
small-molecule drugs that can be used for AML targeted therapy. At the same time, we also used 
drug-gene interaction analysis tools to identify potential targets for some drugs to function in 
AML.  We have also observed that AML patients with different risk scores have significant 
differences in the immune microenvironment and immune cell infiltration. Although this study is 
the first to comprehensively analyze the relationship between snoRNAs and AML prognosis 
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through whole-genome dataset, however, our results still need to be verified by further in vivo 
and in vitro functional experiments in future studies. 
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