This paper investigates the problem of rapid exponential stabilization for linear Lotka-McKendrick's equation. Based on a new event-triggered impulsive control (ETIC) method, an impulsive control is designed to solve the rapid exponential stabilization of the dynamic population Lotka-McKendrick's equation. The effectiveness of our control is verified through a numerical example.
Citation: Mohsen Dlala, Sharifah Obaid Alrashidi. Rapid exponential stabilization of Lotka-McKendrick's equation via event-triggered impulsive control[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 9121-9131. doi: 10.3934/mbe.2021449
This paper investigates the problem of rapid exponential stabilization for linear Lotka-McKendrick's equation. Based on a new event-triggered impulsive control (ETIC) method, an impulsive control is designed to solve the rapid exponential stabilization of the dynamic population Lotka-McKendrick's equation. The effectiveness of our control is verified through a numerical example.
[1] | C. Prieur, E. Trélat, Robust optimal stabilization of the brockett integrator via a hybrid feedback, Math. Control Signals Syst., 17 (2005), 201–216. doi: 10.1007/s00498-005-0152-9 |
[2] | E. D. Sontag, Stability and stabilization: discontinuities and the effect of disturbances, in Nonlinear Analysis, Differential Equations and Control, Springer, (1999), 551–598. |
[3] | P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE Trans. Autom. Control, 52 (2007), 1680–1685. doi: 10.1109/TAC.2007.904277 |
[4] | M. Heemels, J. Donkers, A. R. Teel, Periodic event-triggered control for linear systems, IEEE Trans. Autom. Control, 54 (2013), 847–861. |
[5] | A. Girard, Dynamic triggering mechanisms for event-triggered controls, IEEE Trans. Autom. Control, 60 (2015), 1992–1997. doi: 10.1109/TAC.2014.2366855 |
[6] | B. Liu, D. N. Liu, C. X. Dou, Exponential stability via event-triggered impulsive control for continuous-time dynamical systems, in Proceedings of the 33rd Chinese Control Conference, (2014), 4056–4060. |
[7] | M. Cao, Z. Ai, L. Peng, Input-to-state stabilization of nonlinear systems via event-triggered impulsive control, IEEE Access, 7 (2019), 118581–118585. doi: 10.1109/ACCESS.2019.2936586 |
[8] | B. Liu, D. J. Hill, Z. Sun, J. Huang, Event-triggered control via impulses for exponential stabilization of discrete-time delayed systems and networks, Int. J. Robust Nonlin. Control, 29 (2019), 1613–1638. doi: 10.1002/rnc.4450 |
[9] | R. Postoyan, P. Tabuada, D. Nesic, A. Anta, A framework for the event-triggered stabilization of nonlinear systems, IEEE Trans. Autom. Control, 60 (2015), 982–996. doi: 10.1109/TAC.2014.2363603 |
[10] | Y. Q. Xia, Y. L. Gao, L. P. Yan, M. Y. Fu, Recent progress in networked control systems —- A survey, Int. J. Autom. Comput., 12 (2015), 343–367. doi: 10.1007/s11633-015-0894-x |
[11] | M. S. Mahmoud, Y. Xia, Networked Control Systems, Elsevier, New York, 2019. |
[12] | J. Qin, Q. Ma, Y. Shi, L. Wang, Recent advances in consensus of multi-agent systems: a brief survey, IEEE Trans. Indust. Electron., 64 (2017), 4972–4983. doi: 10.1109/TIE.2016.2636810 |
[13] | C. Nowzari, E. Garcia, J. Cortes, Event-triggered communication and control of networked systems for multi-agent consensus, Automatica, 105 (2019), 1–27. doi: 10.1016/j.automatica.2019.03.009 |
[14] | C. Penga, F. Li, A survey on recent advances in event-triggered communication and control, IEEE Trans. Indust. Electron., 52 (2018), 58–63. |
[15] | X. Ge, Q. Han, L. Ding, Y. Wang, X. Zhang, Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques, IEEE Trans. Syst. Man CY-S., 50 (2020), 3112–3125. doi: 10.1109/TSMC.2020.3010825 |
[16] | Z. Yao, N. H. El-Farra, Resource-aware model predictive control of spatially distributed processes using event-triggered communication, in 52nd IEEE Conference on Decision and Control, 8 (2013), 3726–3731. |
[17] | N. Espitia, A. Girard, N. Marchand, C. Prieur, Event-based control of linear hyperbolic systems of conservation laws, Automatica, 70 (2016), 275–287. doi: 10.1016/j.automatica.2016.04.009 |
[18] | N. Espitia, A. Tanwani, S. Tarbouriech, Stabilization of boundary controlled hyperbolic pdes via lyapunov-based event triggered sampling and quantization, in 56th IEEE Conference on Decision and Control, (2017), 1266–1271. |
[19] | N. Espitia, I. Karafyllis, M. Krstic, Event-triggered boundary control of constant-parameter reaction-diffusion pdes: a small-gain approach, in 2020 American Control Conference (ACC), (2020), 3437–344. |
[20] | L. Baudouin, S. Marx, S. Tarbouriech, Event-triggered damping of a linear wave equation, IFAC PapersOnLine, 52 (2019), 58–63. |
[21] | V. Barbu, M. Iannelli, M. Martcheva, On the controllability of the Lotka-Mckendrick model of population dynamics, J. Math. Anal. Appl., 253 (2001), 142–165. doi: 10.1006/jmaa.2000.7075 |
[22] | N. Hegoburu, M. Tucsnak, Null controllability of the Lotka-Mckendrick system with spatial diffusion, Math. Control Relat. Fields, 8 (2018), 707–720. doi: 10.3934/mcrf.2018030 |
[23] | N. Hegoburu, P. Magal, M. Tucsnak, Controllability with positivity constraints of the Lotka-Mckendrick syste, SIAM J. Control Optim., 56 (2018), 723–750. doi: 10.1137/16M1103087 |
[24] | B. Ainseba, Exact and approximate controllability of the age and space population dynamics structured model, J. Math. Anal. Appl., 275 (2002), 562–574. doi: 10.1016/S0022-247X(02)00238-X |
[25] | O. Kavian, O. Traoré, Approximate controllability by birth control for a nonlinear population dynamics model, ESAIM Contr. Optim. Calc. Var., 17 (2011), 1198–1213. doi: 10.1051/cocv/2010043 |
[26] | O. Traore, Null controllability of a nonlinear population dynamics problem, Int. J. Math. Math. Sci., 2006 (2006), 1–20. |
[27] | D. Maity, M. Tucsnak, E. Zuazua, Controllability and positivity constraints in population dynamics with age structuring and diffusion, J. de Mathématiques Pures et Appliquées, 129 (2019), 153–179. doi: 10.1016/j.matpur.2018.12.006 |
[28] | N. Hegoburu, S. Anita, Null controllability via comparison results for nonlinear age-structured population dynamics, Math. Control Signal. Syst., 31 (2019). |
[29] | S. P. Wang, Z. R. He, Approximate controllability of population dynamics with size dependence and spatial distribution, ANZIAM J., 58 (2017), 474–481. |
[30] | M. L. Gurtin, R. C. MacCamy, Nonlinear age dependent population dynamics, Arch. Ration. Mech. Anal., 54 (1974), 281–300. doi: 10.1007/BF00250793 |
[31] | F. Kappel, K. Zhang, Approximation of linear age-structured population models using Legendre polynomials, J. Math. Anal. Appl., 180 (1993), 518–549. doi: 10.1006/jmaa.1993.1414 |
[32] | M. Iannelli, F. Milner, The Basic Approach to Age-Structured Population Dynamics, Springer, Dordrecht, 2017. |
[33] | A. G. McKendrick, Applications of mathematics to medical problems, Proc. Edinburgh Math. Soc., 44 (1925), 88–130. doi: 10.1017/S0370164600020824 |
[34] | A. J. Lotka, The stability of the normal age distribution, Proc. Nat. Acad. Sci., 8 (1922), 339–345. doi: 10.1073/pnas.8.11.339 |
[35] | S. Anita, Analysis and Control of Age-Dependent Population Dynamics, Springer-Verlag, New York, 2000. |
[36] | R. Hao, Y. Zhang, Z. Cao, J. Li, Q. Xu, L. Ye, et al., Control strategies and their effects on the covid-19 pandemic in 2020 in representative countries, J. Biosaf. Biosecur., 3 (2021), 76–81. doi: 10.1016/j.jobb.2021.06.003 |
[37] | V. Nicosia, P. E. Vértes, W. R. Schafer, V. Latora, E. T. Bullmore, Phase transition in the economically modeled growth of a cellular nervous system, Proc. Natl. Acad. Sci., 110 (2013), 7880–7885. doi: 10.1073/pnas.1300753110 |
[38] | V. Nicosia, M. Valencia, M. Chavez, A. Díaz-Guilera, V. Latora, Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110 (2013), 174102. doi: 10.1103/PhysRevLett.110.174102 |
[39] | M. Dlala, A. S. Almutairi, Rapid exponential stabilization of nonlinear wave equation derived from brain activity via event-triggered impulsive control, Math., 9 (2021), 516. doi: 10.3390/math9050516 |
[40] | A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1992. |
[41] | M. Rasheed, S. Laverty, B. Bannish, Numerical solutions of a linear age-structured population model, in AIP Conference Proceedings 2096, (2019), 1–5. |