Research article Special Issues

A multi-domain shear-stress dependent diffusive model of cell transport-aided dialysis: analysis and simulation

  • Received: 12 July 2021 Accepted: 10 September 2021 Published: 18 September 2021
  • Kidney dialysis is the most widespread treatment method for end-stage renal disease, a debilitating health condition common in industrialized societies. While ubiquitous, kidney dialysis suffers from an inability to remove larger toxins, resulting in a gradual buildup of these toxins in dialysis patients, ultimately leading to further health complications. To improve dialysis, hollow fibers incorporating a cell-monolayer with cultured kidney cells have been proposed; however, the design of such a fiber is nontrivial. In particular, the effects of fluid wall-shear stress have an important influence on the ability of the cell layer to transport toxins. In the present work, we introduce a model for cell-transport aided dialysis, incorporating the effects of the shear stress. We analyze the model mathematically and establish its well-posedness. We then present a series of numerical results, which suggest that a hollow-fiber design with a wavy profile may increase the efficiency of the dialysis treatment. We investigate numerically the shape of the wavy channel to maximize the toxin clearance. These results demonstrate the potential for the use of computational models in the study and advancement of renal therapies.

    Citation: Alex Viguerie, Sangita Swapnasrita, Alessandro Veneziani, Aurélie Carlier. A multi-domain shear-stress dependent diffusive model of cell transport-aided dialysis: analysis and simulation[J]. Mathematical Biosciences and Engineering, 2021, 18(6): 8188-8200. doi: 10.3934/mbe.2021406

    Related Papers:

  • Kidney dialysis is the most widespread treatment method for end-stage renal disease, a debilitating health condition common in industrialized societies. While ubiquitous, kidney dialysis suffers from an inability to remove larger toxins, resulting in a gradual buildup of these toxins in dialysis patients, ultimately leading to further health complications. To improve dialysis, hollow fibers incorporating a cell-monolayer with cultured kidney cells have been proposed; however, the design of such a fiber is nontrivial. In particular, the effects of fluid wall-shear stress have an important influence on the ability of the cell layer to transport toxins. In the present work, we introduce a model for cell-transport aided dialysis, incorporating the effects of the shear stress. We analyze the model mathematically and establish its well-posedness. We then present a series of numerical results, which suggest that a hollow-fiber design with a wavy profile may increase the efficiency of the dialysis treatment. We investigate numerically the shape of the wavy channel to maximize the toxin clearance. These results demonstrate the potential for the use of computational models in the study and advancement of renal therapies.



    加载中


    [1] V. Jha, G. Garcia-Garcia, K. Iseki, Z. Li, S. Naicker, B. Plattner, et al., Chronic kidney disease: Global dimension and perspectives, Lancet, 382 (2013), 260–272. doi: 10.1016/S0140-6736(13)60687-X
    [2] S. Berns, Improving care of patients with CKD: The 2015 National Kidney Foundation presidential address, Am. J. Kidney Dis., 66 (2015), 547–551. doi: 10.1053/j.ajkd.2015.07.012
    [3] R. Vanholder, U. Baurmeister, P. Brunet, G. Cohen, G. Glorieux, J. Jankowski, et al., A bench to bedside view of uremic toxins, J. Am. Soc. Nephrol., 19 (2008), 863–870. doi: 10.1681/ASN.2007121377
    [4] R. Masereeuw, H. A. Mutsaers, T. Toyohara, T. Abe, S. Jhawar, D. H. Sweet, et al., The kidney and uremic toxin removal: glomerulus or tubule?, Semin. Nephrol., 34 (2014), 191–208. doi: 10.1016/j.semnephrol.2014.02.010
    [5] J. Jansen, J. Jankowski, P. R. Gajjala, J. F. Wetzels, R. Masereeuw, Disposition and clinical implications of protein-bound uremic toxins, Clin. Sci., 131 (2017), 1631–1647. doi: 10.1042/CS20160191
    [6] K. M. Giacomini, S.-M. Huang, D. J. Tweedie, L. Z. Benet, K. L. Brouwer, X. Chu, et al., Membrane transporters in drug development, Nat. Rev. Drug Discov., 9 (2010), 215. doi: 10.1038/nrd3028
    [7] A. Davenport, How can dialyzer designs improve solute clearances for hemodialysis patients?, Hemodial. Int., 18 (2014), S43–S47.
    [8] M. Sangeetha, A. Kandaswamy, Fluid structure interaction study on straight and undulated hollow fibre hemodialyser membranes, Int. J. Biomed. Eng. Technol., 33 (2020), 11–27. doi: 10.1504/IJBET.2020.107648
    [9] J. K. Leypoldt, A. K. Cheung, T. Chirananthavat, J. F. Gilson, C. D. Kamerath, R. B. Deeter, Hollow fiber shape alters solute clearances in high flux hemodialyzers, ASAIO J., 49 (2003), 81–87. doi: 10.1097/00002480-200301000-00013
    [10] D. A. Buffington, C. J. Pino, L. Chen, A. J. Westover, G. Hageman, H. D. Humes, Bioartificial renal epithelial cell system (brecs): a compact, cryopreservable extracorporeal renal replacement device, Cell Med., 4 (2012), 33–44.
    [11] H. D. Humes, D. Buffington, A. J. Westover, S. Roy, W. H. Fissell, The bioartificial kidney: current status and future promise, Pediatr. Nephrol., 29 (2014), 343–351. doi: 10.1007/s00467-013-2467-y
    [12] N. Diban, D. Stamatialis, Polymeric hollow fiber membranes for bioartificial organs and tissue engineering applications, J. Chem. Technol. Biotechnol., 89 (2014), 633–643. doi: 10.1002/jctb.4300
    [13] J. Jansen, M. Fedecostante, M. Wilmer, L. Van den Heuvel, J. Hoenderop, R. Masereeuw, Biotechnological challenges of bioartificial kidney engineering, Biotechnol. Adv., 32 (2014), 1317–1327. doi: 10.1016/j.biotechadv.2014.08.001
    [14] Z. Y. Oo, K. Kandasamy, F. Tasnim, D. Zink, A novel design of bioartificial kidneys with improved cell performance and haemocompatibility, J. Cell. Mol. Med., 17 (2013), 497–507. doi: 10.1111/jcmm.12029
    [15] Y. Urakami, N. Kimura, M. Okuda, K.-i. Inui, Creatinine transport by basolateral organic cation transporter hoct2 in the human kidney, Pharm. Res., 21 (2004), 976–981.
    [16] J. Jansen, M. Fedecostante, M. Wilmer, J. Peters, U. Kreuser, P. Van Den Broek, et al., Bioengineered kidney tubules efficiently excrete uremic toxins, Sci. Rep., 6 (2016), 26715. doi: 10.1038/srep26715
    [17] D. Maggiorani, R. Dissard, M. Belloy, J.-S. Saulnier-Blache, A. Casemayou, L. Ducasse, et al., Shear stress-induced alteration of epithelial organization in human renal tubular cells, PLoS One, 10 (2015), e0131416.
    [18] N. Stathopoulos, J. Hellums, Shear stress effects on human embryonic kidney cells in vitro, Biotechnol. Bioeng., 27 (1985), 1021–1026. doi: 10.1002/bit.260270713
    [19] J. Hu, C. Hardy, C.-M. Chen, S. Yang, A. S. Voloshin, Y. Liu, Enhanced cell adhesion and alignment on micro-wavy patterned surfaces, PLoS One, 9 (2014), e104502.
    [20] C. Shen, Q. Meng, G. Zhang, Increased curvature of hollow fiber membranes could up-regulate differential functions of renal tubular cell layers, Biotechnol. Bioeng., 110 (2013), 2173–2183. doi: 10.1002/bit.24874
    [21] G. Leoni, A first course in Sobolev spaces, American Mathematical Soc., 2017.
    [22] J. L. Lions, E. Magenes, Problemes aux limites non homogenes et applications, Dunod, 1968.
    [23] F. Brezzi, G. Gilardi, Functional Analysis, Functional Spaces, Partial Differential Equations, volume 1, McGraw-Hill, New York, 1987, pp. 1–121.
    [24] A. Quarteroni, A. Veneziani, P. Zunino, Mathematical and numerical modeling of solute dynamics in blood flow and arterial walls, SIAM J. Num. Anal., 39 (2002), 1488–1511. doi: 10.1137/S0036142900369714
    [25] H. Humes, D. Buffington, A. Westover, S. Roy, W. Fissell, The bioartificial kidney: current status and future promise, Pediatr. Nephrol., 29 (2014), 343–351. doi: 10.1007/s00467-013-2467-y
    [26] R. Refoyo, E. Skouras, N. Chevtchik, D. Stamatialis, V. Burganos, Transport and reaction phenomena in multilayer membranes functioning as bioartificial kidney devices, J. Membr. Sci., 565 (2018), 61–71. doi: 10.1016/j.memsci.2018.08.007
    [27] T. T. Nieskens, M. J. Wilmer, Kidney-on-a-chip technology for renal proximal tubule tissue reconstruction, Eur. J. Pharmacol., 790 (2016), 46–56. doi: 10.1016/j.ejphar.2016.07.018
    [28] K.-J. Jang, A. P. Mehr, G. A. Hamilton, L. A. McPartlin, S. Chung, K.-Y. Suh, et al., Human kidney proximal tubule-on-a-chip for drug transport and nephrotoxicity assessment, Integr. Biol., 5 (2013), 1119–1129. doi: 10.1039/c3ib40049b
    [29] E. E. van Haaften, S. Quicken, W. Huberts, C. V. C. Bouten, N. A. Kurniawan, Computationally guided in-vitro vascular growth model reveals causal link between flow oscillations and disorganized neotissue, Commun. Biol., 546 (2021).
    [30] R. Temam, Navier–Stokes equations and nonlinear functional analysis, SIAM, 1995.
    [31] A. Quarteroni, A. Valli, Numerical approximation of partial differential equations, Springer Science & Business Media, 2008, volume 23.
    [32] F. Hecht, New development in freeFEM++, J. Numer. Math., 20 (2012), 251–265.
    [33] C. Steiner, Mass transfer of urea through blood, Ann. Biomed. Eng., 9 (1981), 217–225. doi: 10.1007/BF02363456
    [34] A. Viguerie, A. Veneziani, Deconvolution-based stabilization of the incompressible Navier–Stokes equations, J. Comput. Phys., 391 (2019), 226–242. doi: 10.1016/j.jcp.2018.11.024
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2529) PDF downloads(111) Cited by(2)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog